
molecules

Review

Curcumin as a Natural Remedy for Atherosclerosis:
A Pharmacological Review

Laxman Singh 1, Shikha Sharma 2, Suowen Xu 3,* , Devesh Tewari 2,* and Jian Fang 4,*

����������
�������

Citation: Singh, L.; Sharma, S.; Xu, S.;

Tewari, D.; Fang, J. Curcumin as a

Natural Remedy for Atherosclerosis:

A Pharmacological Review. Molecules

2021, 26, 4036. https://doi.org/

10.3390/molecules26134036

Academic Editor: Assunta Pandolfi

Received: 29 March 2021

Accepted: 28 June 2021

Published: 1 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre of Biodiversity Conservation & Management, G.B.Pant National Institute of Himalayan Environment,
Almora 263643, Uttarakhand, India; laxmansingh_13@yahoo.com

2 School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
shikhasharma22012@gmail.com

3 Department of Endocrinology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC,
University of Science and Technology of China, Hefei 230037, China

4 Department of Pharmacy, Huadu District People’s Hospital, Southern Medical University,
Guangzhou 510800, China

* Correspondence: sxu1984@ustc.edu.cn (S.X.); dtewari3@gmail.com (D.T.); lifegz@163.com (J.F.)

Abstract: Curcumin, a natural polyphenolic compound present in Curcuma longa L. rhizomes, shows
potent antioxidant, anti-inflammatory, anti-cancer, and anti-atherosclerotic properties. Atherosclero-
sis is a comprehensive term for a series of degenerative and hyperplasic lesions such as thickening
or sclerosis in large- and medium-sized arteries, causing decreased vascular-wall elasticity and
lumen diameter. Atherosclerotic cerebro-cardiovascular disease has become a major concern for
human health in recent years due to its clinical sequalae of strokes and heart attacks. Curcumin
concoction treatment modulates several important signaling pathways related to cellular migration,
proliferation, cholesterol homeostasis, inflammation, and gene transcription, among other relevant
actions. Here, we provide an overview of curcumin in atherosclerosis prevention and disclose the
underlying mechanisms of action of its anti-atherosclerotic effects.
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1. Introduction

Atherosclerosis is a common cause of cerebro-cardiovascular disease and is an age-
related chronic large-artery condition that develops in adult and aged patients [1]. The
pathogenesis of atherosclerosis is multifaceted. Numerous investigations have highlighted
hyperlipidemia, diabetes, smoking, hypertension, and other cardiovascular risk factors
which mediate oxidative stress causing damage to vascular endothelial cells. They also
cause infiltration of low-density lipoproteins (LDL) into the sub-endothelial space, mono-
cyte chemotaxis, aggregation below the endothelium, and platelet activation leading to
chronic inflammatory responses in vascular walls [2–5]. Atherosclerosis is the pathological
basis for many cerebro-cardiovascular diseases and acute cerebro-cardiovascular events
such as myocardial infarction and ischemic stroke, making it a serious public health con-
cern [6,7]. Anti-arteriosclerotic traditional Chinese medicines (TCM) are widely used in
Chinese clinical practice with a good safety profile and lasting efficacy [8,9]. Many tradi-
tional medicines used in TCM and other traditional medicine systems such as Ayurveda
including turmeric and ginseng have anti-atherosclerotic effects [10,11].

Turmeric prepared from the dried rhizomes of Curcuma longa L. (family, Zingiber-
aceae) is enriched with multiple bioactive chemical entities with multiple therapeutic
applications. The roots and rhizomes of turmeric contain curcumin that has been used
as a traditional drug to increase blood circulation and improve stasis [12]. Curcumin has
lipid-lowering, antioxidative, anti-inflammatory, and anti-infective effects [13–15]. There is
growing evidence that curcumin can regulate different signaling molecules to retard the
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progression and development of atherosclerosis [16]. Similarly, curcumin is also known to
regulate inflammatory responses by inhibiting nuclear factor kappa B (NF-κB) expression
in atherosclerotic plaques of aortic walls in domestic rabbits and alleviate the severity of
atherosclerosis [16].

The mechanistic function of curcumin against atherosclerosis is due at least in part to
its anti-inflammatory and anti-oxidative effects and inhibition of vascular smooth muscle
cell (VSMC) proliferation and migration. Firstly, inflammation is involved in the entire pro-
cess of atherosclerosis [17]. According to previous research, curcumin affects inflammatory
cells and factors such as inflammation-related enzymes to carry out its anti-inflammatory
effects [18,19]. Likewise, curcumin blocks NF-κB signaling to diminish the production of
vascular cell-adhesion molecules and inhibit interactions between leukocytes and endothe-
lial cells [20]. Secondly, oxidative stress is a prominent hallmark phenomena that initiates
the development of atherosclerosis [21]. Oxidized low-density lipoprotein (oxLDL) is the
common link in various aspects of atherosclerosis [22]. Curcumin decreases the sensitivity
of LDL towards oxidization, and thus decreases the load of oxidized product to interact
with the oxidized low-density lipoprotein receptor 1 (LOX-1) [23]. Curcumin also down
regulates inducible nitric oxide synthase activity to inhibit nitro-/oxidative-stress [24].
Thirdly, VSMC proliferation and migration of cells to the intima causes intimal thickening
in atherosclerosis. Specifically, neointimal responses associated with artery damage cause
proliferation, migration, and collagen synthesis in VSMCs that may increase the suscepti-
bility of blood vessels towards atherosclerosis [25]. Curcumin can increase PPAR-γ activity
to inhibit the proliferation of VSMCs [26].

Additionally, epidemiological studies highlight that human cytomegalovirus (HCMV)
infection is intimately coupled with the progression and development of atherosclerosis [27].
After entry, HCMV can damage vascular endothelial cells and alter their proliferation [28].
Oral administration of curcumin in ApoE−/− mice inhibits HCMV infection and improves
the cellular microenvironment in the host, thereby effectively preventing the development
of atherosclerotic lesions [29].

2. Atheroprotective Effects of Curcumin In Vitro

The potential of curcumin in protecting against various medical ailments, including
atherosclerosis, has been widely assessed. Atherosclerosis is a chronic inflammatory disease
resulting from arterial wall injury, sustained due to dyslipidemia, diabetes, hypertension,
and other cardiovascular risk factors that leads to macrophage and VSMC-derived foam
cell formation, endothelial cell dysfunction, immune cell activation, platelet activation, and
thrombus formation [30–33]. Several studies have demonstrated curcumin’s potent thera-
peutic potential in preventing foam cell formation, modulating macrophage polarization,
tuning cholesterol efflux, and regulating pro-inflammatory responses [16,34–38].

The anti-atherosclerotic properties of curcumin are expressed through suppressing
macrophage polarization (M1 to M2) [39] or by inducing M2 polarization via IL-4 and/or
IL-13 secretion in macrophages [40]. Similarly, convincing evidence suggests that cur-
cumin, when acting against macrophages treated with oxLDL, upregulates the expression
of thrombospondin-4 (THBS-4) [36] and modulates chemoattractant protein-1 (MCP-1)
expression, which represents the anti-inflammatory response [41]. The molecular targets
of anti-atherosclerotic effects of curcumin involve upregulation of miR-126, which further
inhibits signal transduction and PI3K/AKT and JAK2/STAT5 activation [42]. Other targets
of curcumin include NF-κB inhibition in the M1 macrophages, as well as promoting M2
phenotype via PPAR-γ activation. Further, curcumin inhibits toll-like receptor-4 (TLR4),
MAPK, and NF-κB signaling in macrophages and VSMCs [43] (Table 1).
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Table 1. In vitro evidence supporting the therapeutic potential of curcumin against atherosclerosis.

Experimental Model Concentration
Used Outcomes and Possible Mechanisms of Action References

U937 monocytes 0.01–1 µM − Inhibit lipid peroxidation and inflammatory cytokine production
under high glucose stimulated conditions

[44]

HMEC-1 cells 0.1–10 µM

− Reduce cell migration and viability and repress MMP-2, MMP-9,
and VEGF expression

− Upregulate miR-126 expression and inhibit PI3K/AKT and
JAK2/STAT5 signal transduction

[42]

ANA-1 mouse
macrophage cell line 5–25 µM − Decrease THBS-4 expression as induced by oxLDL [36]

RAW 264.7
macrophages

− Inhibit foam cell formation and CD36 expression level via
blocking p38 MAPK phosphorylation

[34]

H9c2 rat cardiac
myoblasts 5–40 µM − Activate p38-MAPK and JNK signaling pathways

− Promote apoptosis by chromatin condensation
[36]

Human monocytic
THP-1 cells 7.5–30 µM

− Inhibit M1 macrophage polarization and cytokine production
(IL-6, IL-12B, and TNF-α) and decrease TLR-4 expression

− Inhibit ERK, JNK, p38, and NF-kB phosphorylation, exerting
anti-inflammatory and anti-atherosclerotic activity

[43]

Human monocytic
THP-1 cells 5–20 µM − Reduce the influx of oxLDL in THP-1 cells

− Suppress CD36 and aP2 expression
[45]

RAW264.7
macrophage 6.25 and 12.5 µM

− Increase cholesterol efflux via Apo-A1 and HDL in macrophages
− Reduce oxLDL-induced cytokine production as well as M1

macrophage apoptosis
− Upregulate CD36 and ABCA1 expression in M1 macrophages

[37]

Ba/F3 cells 10–20 µM
− Inhibit TLR4 dimerization at the receptor level
− Inhibit the activation of MyD88 and TRIF-dependent pathways,

thereby blocking NF-κB and IRF3 signaling
[46]

RAW264.7
macrophage 6.25–25 µM − Inhibit the expression of M1 macrophage markers (i.e., iNOS,

IL-1b, IL-6, and MCP-1) and upregulate IKBα expression
[47]

RAW264.7
macrophage 6.25–50 µM

− Upregulate the expression of M2 markers such as MMR, Arg-1,
and PPAR-, as well as macrophage M2 polarization via IL-4
and/or IL-13 secretion.

[40]

RAW264.7
macrophage 6.25, and 25 nM − Repress titanium (Ti) particle-induced inflammation via

modulating macrophage M1 to M2 polarization
[34]

RAW264.7
macrophage 8–128 µM − Inhibit lipid accumulation and the production of MCP-1, TNF-α,

and IL-6
[48]

Mouse peritoneal
macrophages 10–50 µM − Reduce TLR4 expression and inhibit NF-κB activation [16]

Human monocytic
THP-1 cells 20–40 µM − Inhibit HIF-1α-induced apoptosis and inflammation of

macrophages via ERK signaling pathway
[49]

Bovine aortic
endothelial cells

(BAECs)
5–15 µM − Inhibit the expression of ET-1mRNA in BAECs, which may

influence the formation of atherosclerotic plaques
[50]
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Table 1. Cont.

Experimental Model Concentration
Used Outcomes and Possible Mechanisms of Action References

RAW264.7
macrophage 0.1–30 µM − Repress IL-1β, IL-6, and TNF-α production [51]

Human monocytic
THP-1 cells 0–50 µM − Attenuate MMP-9 and EMMPRIN expression via downregulation

of NF-κB and p38 MAPK signaling
[52]

Human monocytic
THP-1 cells 0 to 100 µM − Inhibit MMP-9 and EMMPRIN expression via inhibiting AMPK

and PKC pathway
[53]

Human monocytic
THP-1 cells 10−20 µM − Inhibit the PKC-δ/NADPH oxidase/ROS signaling and suppress

matrix invasion
[54]

Human monocytic
THP-1 cells 0–50 µM − Suppress TLR4/MyD88/NF-κB and P2X7R signaling and inhibit

inflammasome activation
[55]

THP1-derived
macrophage foam cells 0–80 µM − Promote cholesterol efflux via increased ABCA1 expression via

AMPK-SIRT1-LXRa signaling pathway
[38]

Human monocytic
THP-1 cells 5.0 µg/mL − Increase macrophage apoptosis, thus indicating a novel son

o-dynamic therapy for atherosclerosis
[56]

VSMCs 5–30 µM − Suppress oxLDL induced MCP-1 expression via p38 MAPK and
NF-κB signaling

[57]

H9c2 embryonic rat
heart derived cells 5–15 µM − Enhance DOX-induced cells apoptosis via Bcl-2 repression and

increasing expression of caspase-8 and -9
[58]

VSMCs 5–30 µM

− Decrease the expression/level of MCP-1, TNF-α, NO, and ROS
production

− Suppress TLR4 activation and inhibit ERK1/2 and p38 MAPK
phosphorylation

[59]

RAW264.7
macrophage 0–40 µM

− Inhibit MCP-1 production via the JNK and NK-κB signaling
− Enhance cholesterol efflux via activating the LXR-α, ABCA1 and

SR-BI pathway
[60]

3T3-L1 fibroblast cells 0–30 µM
− Inhibit MAPK phosphorylation by using Wnt/β-catenin

signaling, which leads to 3T3-L1 cell differentiation into
adipocytes

[61]

VSMCs 1.25–5 µM − Inhibit CRP protein production by modulating ROS-ERK1/2
signaling

[62]

Endothelial cells 10−5 M − Inhibit CD40 expression and inflammatory activity via
miR-590-3p-dependent pathway

[63]

Cultured porcine
coronary artery rings 5 µM − Block superoxide anion production mediated by eNOS

downregulation and reverse endothelial dysfunction
[64]

HUVEC cells 1, 10,100 µM

− Reduce E- and P-selectins expression and monocytes adhesion
induced by PM10 (3 µg/cm2) and TiO2-NPs (10 µg/cm2)

− Attenuate oxidative stress activation induced by PM10 particles
and TiO2-NPs in endothelial cells

[65]
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Table 1. Cont.

Experimental Model Concentration
Used Outcomes and Possible Mechanisms of Action References

HUVEC cells 25 µM
− Inhibit COX-2 expression and prostaglandin production
− Inhibit phosphorylation of PKC, p38 MAPK, and cAMP response

triggering COX-2 expression
[66]

HUVEC cells 1–25 µM
− Suppress the expression profile of ROS species, LOX-1 receptor,

and adhesion molecules (VCAM-1 and ICAM-1)
− Inhibit IκBα degradation and NFκB nuclear translocation

[67]

HUVEC cells 2.5–100 µM
− Decrease TLR2 and TLR4 mediated inflammatory response
− Inhibit adhesion molecules expression that reconcile monocyte

adhesion and endothelial migration
[68]

HUVEC cells 3–30 µM

− Inhibit NF-κB activation via TNF-α
− Suppress intracellular ROS production, monocyte adhesion, and

JNK, p38, and STAT-3 phosphorylation
− Attenuate expression profile of ICAM-1, MCP-1, and IL -8 at both

mRNA and protein levels

[69]

VSMCs 20–40 µM − Diminish phosphorylation of p-RhoA/p-MEK1/2 and NF-κB
signaling

[70]

VSMCs - − Activate miR-22/SP1 signaling pathway and prevent
proliferation and migration of VSMCs

[71]

VSMCs 12.5–50 µM
− Inhibit cholesterol accumulation via activating caveolin-1

expression that in turn negatively regulates SREBP-1 and
prevents nuclear translocation

[72]

HUVEC cells 0.5–2 µM

− Inhibit HCMV replication and proliferation
− Reduce intracellular ROS production and diminish inflammatory

cytokine production
− Downregulate HMGB1-TLR-NF-κB signaling

[29]

VSMCs 10–20 µM − Reduce NO production by inhibiting IL-6 and TNF-expression
− Upregulate PPAR-γ activity and attenuate VSMC proliferation

[34]

VSMCs 20 µM − Inhibit cell migration by negatively regulating NLRP3 expression
via NF-κB -mediated response and reduce IL-1β concentration

[26]

HMEC-1, human micro-vascular endothelial; PARP, poly(ADP-ribose) polymerase;MMR, macrophage mannose receptor; Arg-1, arginase-1;
HIF-1α, hypoxia- inducible factor 1α; TGF-β, transforming growth factor beta; AMPK, AMP-activated protein kinase; PKC, protein kinase
C; DOX, doxorubicin; ET-1, endothelin-1; PAR-γ, proliferator-activated receptor γ; LXR-α, liver X receptor α; SR-BI, scavenger receptor class
B type I; JAKs, Janus activated kinases; iNOS, inducible nitric oxide synthase; MyD88, myeloid differentiation factor 88; P2X7R, purinergic
2X7 receptor; PKC, protein kinase C; AD, aldosterone, CRP, C-reactive protein; HUVEC, human umbilical vein endothelial cells; LOX-1,
lectin-like oxidized LDL receptor-1; TEM, trans-endothelial migration; HMGB1, high mobility group box-1; MEK 1/2, mitogen-activated
protein kinase kinase 1/2; JNK-c, Jun N-terminal Kinase.

TLR4, an important signaling receptor, plays an important role in the pathogenesis
of plaque formation and the development of atherosclerosis [73]. Furthermore, TLR4
activates a variety of signal transduction molecules as well as transcription factors. An
important response of TLR4 activation is NF-κB and MAPK activation, which triggers
nuclear transduction that simultaneously propels the gene expression profile of an in-
flammatory reaction. The amplified expression profile increases ROS production and the
expression of inflammatory molecules, which causes the initiation of atherogenesis, leading
ultimately to the clinically critical destabilization of atherosclerotic plaques [16]. Reports
on curcumin supplementation fostering negative regulation not only on towards the TLR
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receptor but also on nuclear transduction molecules and inflammatory cytokines (TNF-α,
IL-1β, VCAM-1, ICAM 1, etc.) are presented [74] (Figure 1).
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Curcumin has also been shown to inhibit ligand-induced and ligand-independent
dimerization at the receptor level. LPS induces activation of both MyD88 and TRIF-
dependent signaling via the TLR4 receptor. Upon curcumin supplementation, TLR4 ho-
modimerization was blocked [46], providing a novel mechanism for its anti-inflammatory
effects. In a similar fashion, curcumin inhibits the NOD-like receptor (NLR) family, the
pyrin domain containing 3 (NLRP3) inflammasome via suppressing TLR4/MyD88/NF-κB,
the phosphorylation level of IkB-α, and purinergic 2X7 receptor (P2X7R) pathways in
phorbol 12-myristate 13-acetate (PMA)-induced macrophages [55]. NLRP3 inflammasome
is composed of a multiprotein complex having caspase and caspase 1 protein complex
for apoptosis [75]. On NLRP3 complex stimulation, caspase-1 is activated, which cleaves
the pro-forms of interleukin (IL)-1β and IL-18 into their mature forms. Once in fully
mature form, IL-1β (a primary pro-inflammatory cytokine) mediates the development of
atherosclerosis. Curcumin also inhibits VSMC migration by negatively regulating NLRP3
expression via an NF-κB-mediated response and decreasing IL-1 concentration [55].

In VSMCs, curcumin supplementation markedly reduces inflammatory responses
induced by LPS acting at TLR4. LPS induced stimulation of TRL4 increases the phosphory-
lation of IκBα, NF-κB (p65), and MAPKs [59]. Concurrently, this increases the inflammatory
cytokine expression profile of TLR4, MCP-1, iNOS, TNF-α, and NO production. In addition,
Meng et al. (2013) [59] established that curcumin supplementation inhibits TLR4 activation
and ERK1/2 and p38 MAPK phosphorylation, thereby preventing NF-κB nuclear translo-
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cation that mediates ROS production. Thus, inhibition of the expression profile may reduce
atherosclerotic plaque formation and reduce inflammatory cell infiltration into the plaques.
More recently, Zhang et al. [62] showed that curcumin inhibits aldosterone-induced pro-
duction of CRP in VSMCs by reducing ROS production via limiting aberrant activation of
the ERK1/2 signal pathway.

LDL is another important pathological entity that contributes to the development of
atherosclerotic lesions. ROS modifies LDL, thereby producing Ox-LDL. An increase in
Ox-LDL concentration in plasma has long been recognized as a key factor in atherosclerosis.
Ox-LDL, rather than binding to LDL receptor, binds to scavenger receptors (SRs). The
major SR is CD36 that recognizes ox-LDL [76]. After binding to CD36 on cell membrane,
ox-LDL can also trigger CD36 expression via PPAR-γ pathway [77]. Specifically, PPAR-γ,
once activated, dimerizes with the retinoid X receptor (RXR) and triggers PPAR-response
element (PPRE)-containing genes, which ultimately increases CD36 expression, resulting
in increased ox-LDL influx [78].

Cholesterol accumulation in macrophages results in foam cell formation and fatty
streak development via upregulating the expression/activity of several receptors, such
as SR-AI/II, SRBI, CD36, and LOX-1. In contrast, various efflux transporters play an
active role via ATP-binding cassette (ABC) transporters ABCA1, ABCG1, and SR-BI to
facilitate reverse cholesterol transport from macrophages [79]. Fatty acid-binding protein
(FABP)-4 or adipocyte protein 2 (aP2) coordinates cholesterol trafficking (efflux) but is also
known to activate an inflammatory response. Lack of aP2 protein complex changes the
cholesterol composition in macrophages, which concurrently amplifies CD36 expression
and enhances oxLDL influx [80]. This cascade creates a disease state, whereby macrophages
induce the release of IL-1β, TNFα, ROS, and matrix metalloproteases coupled with the
development of inflammation, cell migration, and plaque formation (Figure 1). Hence,
genetic or pharmacological inhibition of aP2 and CD36 expression might offer potential
remedies to atherosclerosis.

Several further lines of experimental evidence highlight the potent anti-atherogenic
effects of curcumin (documented in Table 1). For example, Zhou et al. (2014) [36]
demonstrated that curcumin treatment reduces the expression profile of oxLDL-induced
thrombospondins-4 (THBS-4). THBS-4 was reported to influence important cellular re-
sponses such as cell migration, proliferation, and adhesion, leading to atherogenesis
progression [81]. Curcumin further inhibits p38 MAPK activation and reduces PPAR-γ
and CD36 expression in oxLDL-treated macrophages, leading to decreased foam cell for-
mation [77]. In human umbilical vein endothelial cells (HUVECs), curcumin inhibits ROS
production, NF-κB-dependent LOX-1 expression, and VCAM-1 and ICAM-1 expression. In
addition, curcumin promotes NO production to confer vasodilatory effects [6,7]. Recent
studies also suggest that curcumin could reduce oxidative stress, ER stress, and inflam-
matory response induced by acrolein (a toxin from tobacco smoke) and cytomegalovirus
(CMV) infection in human endothelial cells [29,66]. The anti-inflammatory effects of cur-
cumin is exerted through inhibiting COX-2 expression and prostaglandin production via
reducing the phosphorylation of PKC, p38 MAPK, and cAMP response element-binding
protein as well as inhibiting the HMGB1-TLRS-NF-κB signaling pathway [29,66]. The broad
anti-inflammatory effects of curcumin underlie its effects on improving flow-mediated
dilation in human subjects [82].

3. Atheroprotective Effects of Curcumin In Vivo

Numerous lines of experimental evidence (Table 2) support the actions of curcumin in
reducing the cardiovascular risk associated with atherosclerosis.



Molecules 2021, 26, 4036 8 of 14

Table 2. In Vivoevaluation of the pharmacological properties of curcumin against atherosclerosis.

In Vivo Experimental
Model

Curcumin
Concentration Outcomes and Possible Mechanisms of Action References

ApoE−/− mice 0.1% w/w

− Downregulate TLR-4 expression
− Reduce the expression of IL-1β, TNF-α, VCAM-1, and ICAM-1 and the

activity of NF-κB
− Inhibit macrophage infiltration, resulting in reduced atherosclerotic plaques

and lesions development

[16]

Male New-Zealand
rabbits

1.66 mg/kg body
weight

− Reduce LDL propensity to lipid peroxidation
− Decrease TC, TG, and phospholipids level in rabbits

[10]

New Zealand white
male rabbits 10 mg/kg/week − Reduce serum levels of TC, TG, and LDL-c

− Decrease atherosclerotic lesions in the aortic arch
[35]

Ldlr−/− mice 500–1500 mg/kg

− Reduce oxLDL uptake in HP-1 cells
− Reduce the formation of fatty streaks and inhibit the expression of

inflammatory cytokines, aP2, and CD36
− Repress the progression of steatohepatosis

[45]

Male Wistar rats 100 mg/(kg/d)
curcumin

− Inhibit the expression profile of MMP-9, CD40L, TNF-α, and CRP, thereby
improving the permeability of coronary artery

[83]

ApoE−/− mice 200 mg/kg/d − Modulate T helper cell (Th2) and regulatory T cells (Tregs) to recover the
formed atherosclerotic lesions and plaque

[84]

Male Rabbits 0.2% − Reduce the expression of CRP, ICAM1, VCAM1, and PCSK9 gene
expression

[85]

ApoE/LDLR—
doubleknockout

mice
0.3 mg/perday − Reduce TC and TG levels in blood

− Reduce atherosclerotic lesion area and size
[20]

Male C57BL/6J (B6)
mice 0.09 mg − Prevent liver fat accumulation and development of atherosclerotic lesions

− Improve hyperlipidemia state
[86]

ApoE−/− mice 0.2% − Reduce leukocyte adhesion and trans endothelial migration [87]

LDLR−/− mice 100 mg/kg − Improve intestinal function against glucose intolerance
− Reduce aortic lesion area

[88]

Sprague-Dawley rats 100 mg/kg body
weight

− Inhibit the production of IL-6, TNF-α, IL-8, MCP-1, glucose, and
glycosylated hemoglobin (HbA1)

[44]

Sprague-Dawley rats 0.2–5.0 mg/kg − Inhibit the production of TNF-α, IL-1β,and MCP-1 [89]

Zebrafish 10% wt/wt − Inhibit hyper cholesterolemic state and improve antioxidant activity [90]

ApoE−/− mice 15–25mg/kg/d

− Reduce LDL-c, TC, and TG
− Decrease atherosclerotic plaque formation in the aorta and reduce lipid

deposition in the liver and inflammatory damage in the heart, lung, and
kidney

[29]

ApoE−/− mice 10 mg/kg − Reduce the formation of microvessel plaques, inhibit MMP-2 and -9 activity
and regulate LDL-c metabolism

[59]

LDLR−/− mice 0.02%w/w
− Decrease TC, TG, LDL-C, and Apo-B levels
− Increase plasma HDL-c and liver Apo A-I expression
− Inhibit HMG-CoA reductase, ACAT1, and ACAT2 expression

[91]

ApoE−/− mice
40, 60, and 80

mg/kg/d
curcumin

− Reduce lipocalin-2 (LCN2) biomarkers of atherosclerosis, present an
anti-hyperlipidemic effect, and inhibit the inflammatory response

[92]

Male ICR mice 1–2mmol/kg/day − Ameliorate dyslipidemia and hyperglycemia, reduce oxidative stress, and
enhance antioxidant activity

[93]

ApoE−/− mice 0.1% w/w − Reduce TC accumulation in the aortas
− Lower LDL-c level and decrease intestinal cholesterol absorption

[94]

VCAM-1, vascular cell adhesion molecule; ICAM-1, intracellular adhesion molecule; MMP, matrix metalloproteinase; Apo A-I, apolipopro-
tein A-I; Apo B, apolipoprotein B; HMG-CoA, 3-hydroxy-3-methyl-glutaryl-co-enzyme A reductase; ACAT, acyl-CoA/cholesterol acetyl
transferases; TC, total cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol;
CRP—creactive protein; MCP 1, monocyte chemoattractant protein 1.
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4. Clinical Studies of Curcumin

Few clinical trials involving double-blind placebo-controlled studies and randomized
controlled trials have been undertaken. A 12-week randomized placebo-controlled trial
of 118 participants showed that curcumin treatment reduced the risk of developing acute
cardiovascular events in people with type 2 diabetes and dyslipidemia [95]. Another
randomized controlled research with 87 patients found that taking 1 g of curcumin for
eight weeks lowered TC, TG, and HDL-c levels following nonalcoholic fatty liver infec-
tions [96]. On the other hand, curcumin lowered LDL-c and Apo B and increased Apo
A1 and HDL-c levels in healthy people, indicating anti-atherosclerosis efficacy [97]. In
coronary bypass graft, curcumin (4 g/day) reduced acute myocardial infarction and signifi-
cantly decreased malondialdehyde levels [98]. Further, in patients with chronic obstructive
pulmonary disease, curcumin (Theracurmin® 90 mg/day for 24 weeks) reduced the level
of the α1-antitrypsin–low-density lipoprotein (AT-LDL) complex, which promotes arte-
riosclerosis [99]. In another randomized trial, curcumin usage at 80 mg per day ameliorated
dyslipidemia in patients with reduced serum TG, salivary amylase, and β-amyloid levels
and increased plasma nitric oxide level after four weeks of study [100]. Likewise, in a
double-blind placebo-controlled study, curcumin (200 mg) supplementation improved
endothelial function measured by flow-mediated dilation (FMD), thus decreasing the
risk of cardiovascular diseases [101]. In another pilot study, curcumin (500 mg/day for
12 weeks) de-stiffened arteries in young, obese men with aortic stiffness [102]. Studies with
curcumin have potential limitations due to factors such as limited sample sizes; therefore,
large-scale clinical trials are required to characterize the actual potential and identify the
direct molecular targets of curcumin in treating atherosclerosis.

5. Conclusions and Perspectives

Substantial experimental evidence suggests that curcumin prevents endothelial dys-
function, smooth muscle cell proliferation and migration, and foam cell formation and
modulates macrophage polarization. Curcumin also counteracts inflammatory response,
supporting its potential application in atherosclerosis treatment. The anti-atherosclerotic
properties of curcumin occur through suppressing inflammatory response by skewing
macrophage polarization from M1 to M2 or by inducing M2 polarization through regu-
lating TLR4/MAPK/NF-κB pathways in macrophages and secretion of interleukins (IL-4
and/or IL-13). Similarly, curcumin concurrently regulates the expression and activity of
the lipid transporter expression (CD36, CD38, ABCA1, aP2, etc.) responsible for cholesterol
uptake and efflux, thus maintaining cell homeostasis. In addition, curcumin lowers the
circulating level of ox-LDL and blocks oxLDL elicited pro-atherogenic events by decreas-
ing the expression of MCP-1 and THBS-4 via the p38 MAPK and NF-κB pathways [52].
Likewise, curcumin suppresses TLR4 expression and macrophage infiltration in aortic
tissues and protects against atherosclerotic plaque formation [16]. A recent study has sug-
gested that curcumin blocks LPA-induced MCP-1 expression via TGFBR1/ROCK signaling
pathway [103].Additional studies are required to improve or add meaningful insights
into our understanding of the mechanism(s) of action of curcumin against atherosclerosis,
especially in the clinical setting. In addition, the development of novel drug delivery
systems, such as the creation of curcumin nanomicelles [104,105], is critical for improving
the oral bioavailability of curcumin which may contribute to its clinical efficacy [106].
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