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Abstract: Marine and terrestrial environments are rich sources of various bioactive substances, 

which have been used by humans since prehistoric times. Nowadays, due to advances in chemical 

sciences, new substances are still discovered, and their chemical structures and biological proper-

ties are constantly explored. Drugs obtained from natural sources are used commonly in medicine, 

particularly in cancer and infectious diseases treatment. Naphthyridines, isolated mainly from 

marine organisms and terrestrial plants, represent prominent examples of naturally derived agents. 

They are a class of heterocyclic compounds containing a fused system of two pyridine rings, pos-

sessing six isomers depending on the nitrogen atom's location. In this review, biological activity of 

naphthyridines obtained from various natural sources was summarized. According to previous 

studies, the naphthyridine alkaloids displayed multiple activities, i.a., antiinfectious, anticancer, 

neurological, psychotropic, affecting cardiovascular system, and immune response. Their wide 

range of activity makes them a fascinating object of research with prospects for use in therapeutic 

purposes. 
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1. Introduction 

The natural environment abounds in substances with multiple biological properties 

that have become an inspiration and basis for modern drugs. Since prehistoric times, 

secondary metabolites especially in the form of plant materials have been used for ther-

apeutic purposes [1]. Nowadays, thanks to chemical sciences development, natural de-

rivatives can be isolated from terrestrial and marine sources as multi-component extracts 

or single compounds. This provides a possibility to explore their properties, from chem-

ical structures and general mechanisms of action to more specialized molecular targets. 

Naphthyridines are a class of heterocyclic compounds that are also referred to in the 

chemical literature as “benzodiazines” or “diazanaphthalenes”, due to possessing a 

fused system of two pyridine rings. There are six positional isomers with different loca-

tions of nitrogen atoms (Figure 1). 
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Figure 1. Isomeric forms of naphthyridines. 

The compounds containing the naphthyridine scaffold are found in natural products 

(plants and marine organisms) or can be obtained synthetically. The properties and 

synthesis of 1,8-isomer derivatives were most often described, mainly due to nalidixic 

acid (1-ethyl-7-methyl-4-oxo-1,8-naphthyridine-3-carboxylic acid), which was discovered 

by G. Lesher in 1962 [2] and introduced into treatment in 1967 as an antibacterial drug. In 

the last several decades, scientists’ interest in naphthyridines has been growing due to 

their broad spectrum of biological activity. In this review, biological activity of naphthy-

ridines derived exclusively from the natural environment is presented. Many of them 

revealed significant bioactivity and this article may encourage researchers to further the 

investigation of these chemical compounds. 

2. Naturally Occurring Naphthyridine Derivatives 

2.1.1,5-. Naphthyridine Derivatives 

1,5-Naphthyridine natural products are represented primarily by canthinone-type 

alkaloids. A major member of the group, canthin-6-one 1 (Figure 2), is isolated primarily 

from plants—the Rutaceae and Simaroubaceae families, but also from fungi [3]. The im-

munomodulatory activity of the compound has been determined. In rats with 

drug-induced colitis, canthin-6-one 1 reduced the production of pro-inflammatory me-

diators TNF-α (tumor necrosis factor α), IL-1β (interleukin-1β), IL-12p70 (interleu-

kin-12p70), and VEGF (vascular endothelial growth factor). Moreover, it diminished ox-

idative stress in colon tissues [4]. 
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Figure 2. Structure of canthin-6-one derivatives. 
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Moreover, canthin-6-one 1 has been studied for its anticancer properties. Normally, 

cell death determines system homeostasis and prevents excessive proliferation and ac-

cumulation of defective cells. Major mechanisms of cell death comprise programmed 

apoptosis and autophagy, and traumatic necrosis. In cancer cells, cell death is disturbed 

due to genetic abnormalities. Restoration of a proper cell cycle together with generating 

cell damage in tumor tissues are key targets for anticancer compounds. 

Canthin-6-one 1 was shown to activate apoptosis and necrosis in Kasumi-1human 

myeloid leukemia cells, with cell cycle arrest at G0/G1 and G2, respectively, at 7 μM and 

45 μM. The agent also induced cancer cells differentiation, a process which could poten-

tially lead to the conversion of neoplastic cells into normal [5]. 

1,5-Naphthyridine representatives were also obtained from Zanthoxylum paracan-

thum Kokwaro—an endemic, tropical plant, native to Kenya and Tanzania. Canthin-6-one 

and 10-methoxycanthin-6-one 2 (Figure 2), isolated from the species, have been regarded 

as promising antibacterial and antifungal substances [6]. They displayed strong inhibi-

tory activity against Staphylococcus aureus and Escherichia coli (MIC values respectively of 

0.49 and 3.91 µg/mL), and importantly also against methicillin-resistant Staphylococcus 

aureus strain (MIC values respectively 0.98, 3.91 µg/mL). The results of stronger can-

thin-6-one 1 were similar to that of reference omacilin. Antifungal effects of the com-

pounds 1–2 were presented with MIC values, respectively, of 3.91 and 7.81 µg/mL for 

canthin-6-one 1 and 10-methoxycanthin-6-one 2. The compounds 1–2 also exerted sig-

nificant anticancer effects against DU145 prostate and HCC 1395 human breast cancer 

cell lines, with the most impressive activity of 10-methoxycanthin-6-one 2 against DU145 

(IC50 = 1.58 µg/mL, and SI = 34.15) [6]. 

Ailanthus altissima Swingle has been considered as another natural source of 

1,5-naphthyridines. It is a genus of tree distributed primarily in China, but is now 

widespread in Europe and North America. Healing properties of the plant are known in 

traditional medicine, and it is used i.a. in treating bacterial infections, fever and diarrhe-

as. Kim et al. isolated six canthinone-type compounds, containing the 1,5-naphthyridine 

ring, from the bark of Ailanthus altissima Swingle [7]. The derivatives were determined as 

(R)-5-(1-hydroxyethyl)-canthine-6-one 3, canthin-6-one 1, 4-hydroxycanthin-6-one 4, 

10-hydroxycanthin-6-one 5, 9-hydroxycanthin-6-one 6, and 11-hydroxycanthin-6-one 7 

(Figure 2). The compounds 1 and 3–7 were tested for their anti-inflammatory properties. 

Derivatives 1–5 showed strong inhibitory effect on LPS (lipopolysaccharides)-induced 

NO (nitric oxide) production in RAW 264.7 murine macrophage cell line (IC50 = 7.73–

15.09 μM). Moreover, 10-hydroxycanthin-6-one showed antifungal activity against 

Fusarium graminearum and Fusarium solani (growth inhibition rates respectively of 74.5% 

and 57.9%), and antibacterial effect against Bacillus cereus (MIC = 15.62 µg/mL) [8]. Can-

thin-6-one displayed antiparasitic effect in mice infected with Trypanosoma cruzi, both in 

acute and chronic infection. Due to its low toxicity, it is considered a promising candidate 

in Chagas disease therapy [9]. Canthin-6-one and 8-hydroxy-canthin-6-one 8 were also 

shown to exert antimycobacterial effects [10]. 

1,5-Naphthyridine alkaloids were isolated also from Leitneria floridana, a species of 

shrub, commonly known as corkwood, which is distributed in the southern regions of the 

United States. Leitneria floridana-derived 1-methoxycanthin-6-one 9 appeared to exert an 

effect against HIV (Human Immunodeficiency Virus) with an EC50 value of 0.26 g/mL 

[11]. Beside antiviral properties, the compound displayed anticancer potency and was 

shown to induce cellular apoptosis by activation of c-Jun N-terminal kinase [12]. 

The protein complex NF-κB (nuclear factor kappa B) plays a key role in 

pro-inflammatory mechanisms and has been found chronically active in various types of 

tumors and autoimmune diseases. A study performed by Tran et al. showed that Eury-

coma longifolia-derived alkaloids: 9-hydroxycanthin-6-one 6, 9-methoxycanthin-6-one 10 

and 9,10-dimethoxycanthin-6-one 11 (Figure 2) significantly inhibited NF-κB transcrip-

tion with IC50 values in the range of 3.8–19.5 μM [13]. In another study, Brucea mol-

lis-isolated 9-methoxycanthin-6-one 10 exerted strong cytotoxic properties against KB 
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epidermoid carcinoma, LU-1 lung adenocarcinoma, LNCaP prostate adenocarcinoma, 

and HL-60 leukemia human cell lines with IC50 values in the range of 0.91–3.73 μM [14]. 

Picrasma quassioides, a genus of tree commonly growing in temperate regions of 

southern Asia, revealed to be the source of another natural naphthyridine agents. Jiao et 

al. isolated novel 1,5-naphthyridine alkaloids from Picrasma quassioides Bennet [15]. The 

compounds were determined as quassidine E 12 and canthin-16-one-14-butyric acid 13 

(Figure 3). The novel agents 12 and 13 reduced the production of pro-inflammatory me-

diators: NO, IL-6, and TNF-α in LPS-induced RAW 264.7 cells, with IC50 values in the 

range of 20.51–66.96 μM [15]. 

Natural products—cimiciduphytine 14 and eburnane derivatives 15 (Figure 

4)—were evaluated as natural painkillers and antihypertensive agents, which could be 

used in cerebral circulation disturbance therapy [16]. 
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Figure 3. Structures of quassidine E 12 and canthin-16-one-14-butyric acid 13. 
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Figure 4. Structures of cimiciduphytine 14 and eburnane derivatives 15. 

2.2.1,6-. Naphthyridine Derivatives 

Aaptos, a widely-known genus of marine sponges, is considered as a prominent 

natural source of 1,6-naphthyridines. Aaptos was firstly described by Gray in 1867 [17]. 

The genus is represented by nearly 29 species that can be found in shallow waters of 

coastal areas all over the world. Since the 1980s, Aaptos has been extensively researched 

due to being the source of at least 62 secondary metabolites with diverse biological ac-

tivities [18]. 
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Aaptamine (8,9-dimethoxy-1H-benzo[de][1,6]naphthyridine) 16 (Figure 5) isolated 

by Nakamura et al. [19] in 1982 from Aaptos aaptos became the first, maternity repre-

sentative of aaptamines family. The anticancer activity of the compound 16 has been ex-

tensively researched. Aaptamine exhibited notable cytotoxic effects in vitro against 

H1299 and A549 non-small cell lung cancer [20], HeLa cervical cancer [21], and CEM-SS 

T-lymphoblastic leukemia cell lines [22], with IC50 values ranging from 10.47 to 15.03 

μg/mL. Moreover, aaptamine 16 displayed a potent anticancer effect in mice carrying 

human hepatocellular carcinoma HCC-LM3 xenografts with downregulation of SOX9 

and Ki67 expression [23]. The agent 16 has been detected to intercalate into DNA [24], 

upregulate p21 expression, and induce apoptosis in cancer cells in a p53-independent 

manner [23,25]. Aaptamine 16 expressed the ability to interfere specifically with p53 and 

c-myc network in NT2 human embryonal carcinoma cell line [26]. Gong et al. [20] per-

formed further investigation of the mechanism of aaptamine 16 action in non-small cell 

lung cancer cell lines. The agent 16 displayed antiproliferative properties with inhibition 

of cancer cells growth and clonogenicity in a dose-dependent manner. Aaptamine in-

duced G1 cell cycle arrest with a reduction of CDK2 (Cyclin-dependent kinase 2), CDK4 

(Cyclin-dependent kinase 4), Cyclin D1, and Cyclin E levels, and also interfered with the 

PI3K/AKT/GSK3b (phosphatidylinositol-3 kinase/ protein kinase B/glycogen synthase 

kinase 3 beta) axis. It could potentially diminish the process of metastasis and tumor in-

vasion due to downregulation of MMP-7 (matrix metalloproteinase-7) and MMP-9 (ma-

trix metalloproteinase-9) expression [20]. Beside anticancer activity, aaptamine 16 was 

shown to block α-adrenoceptors in vascular smooth muscles [27]. Hence, it could be 

considered a antihypertensive agent. Moreover, the compound 16 has been reported to 

display antiviral activity against HIV-1 [24] and anti-amoebic effect towards Acan-

thamoeba castellanii [28]. Aaptamine 16 selectively blocked the type A MAO (Monoamine 

Oxidase) [29], an enzyme which is overexpressed in the brain during major depression 

episodes. Therefore, aaptamine 16 could be useful in depression therapy. Aaptamine 16 

demonstrated a wide range of activity, nevertheless its derivatives surpassed the effect of 

parental agent. 
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Figure 5. Aaptamine derivatives 16–18. 

There are several studies comparing properties of parent aaptamine 16 with its de-

rivatives demethyl(oxy)aaptamine 17 and isoaaptamine 18 (Figure 5). Dyshlovoy et al. 

[30] investigated anticancer properties of these compounds 16–18, isolated from Aaptos. 

Evaluation of cytotoxicity on human cancer cell lines (THP-1 human leukemia monocyt-

ic, HeLa cervical cancer, SNU-C4 colorectal carcinoma, SK-MEL-28 human melanoma, 

MDA-MB-231 breast cancer) in MTS assay confirmed significant anticancer potency of 

aaptamines 16–18, and aaptamine analogues exerted impressively higher activity than 

the parent compound. All the agents 16–18 induced apoptosis in THP-1 cell line, and the 

effect was also more significant for demethyl(oxy)aaptamine 17 and isoaaptamine 18. The 

study confirmed p53-independent cell cycle arrest induced by these compounds 16–18. 

The agents 16–18 were also shown to prevent cancerogenesis induced by epidermal 

growth factor at low, non-toxic concentrations in the JB6 P+ Cl41 murine epidermal cell 
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line. The mechanism of prevention is independent from the transcription of AP-1 (acti-

vator protein-1) and NF-ϰB. 

Wu et al. [31] investigated the cytotoxicity of aaptamine 16, deme-

thyl(oxy)aaptamine 17, and isoaaptamine 18 on breast cancer cell lines. The derivatives 

17 and 18 also presented higher activity than parent compound 16. Isoaaptamine 18 ex-

erted the highest effect on T-47D (IC50 = 30.13 µM), meanwhile demethyl(oxy)aaptamine 

17 was the most potent on MCF-7 (IC50 = 23.11 µM) and MDA-MB-231 (IC50 = 19.34 µM) 

cell lines. Isoaaptamine 18, chosen for further research as the most prominent alkaloid 

(84.74%) in the active fraction isolated from sponge Aaptos sp., presented short-term and 

long-term antiproliferative properties. The compound 18 inhibited XIAP (X-linked in-

hibitor of apoptosis protein) expression, and due to caspases 3 and 7 activation and 

cleavage of PARP (Poly ADP-ribose polymerase), induced apoptotic cell death in cancer 

cells. Cytotoxic properties of isoaaptamine 18 have also been based on autophagy induc-

tion, disruption to mitochondrial function, and over-generating reactive oxygen species. 

The role of isoaaptamine 18 as a significant apoptosis inducer on THP-1 cells was con-

firmed by Shubina et al. [32]. The compound 18 exerted the highest activity among tested 

aaptamine analogues. 

Beside aaptamine 16 and its major analogues demethyl(oxy)aaptamine 17 and iso-

aaptamine 18, other 1,6-naphthyridines have been successfully isolated from marine 

sponge Aaptos. Liu et al. [33] obtained four novel 1,6-naphthyridine alkaloids, suberitine 

A-D 19–22 (Figure 6), and two known alkaloids, demethyl(oxy)aaptamine 17 (Figure 5) 

and 8,9,9-trimethoxy-9H-benzo[de][1,6]naphthyridine 23 (Figure 7), from the Aaptos su-

beritoides.  

N

N

N

N

O

O
O

CH3

CH3

CH3

O O O

CH3

CH3CH3

N

N

N

N

O

O
O

CH3

CH3

CH3

O OCH3

N

N

N

N

O

O
O

CH3

CH3

CH3

O

CH3

O
O

CH3

CH3

N

N

N

N

O

O
O

CH3

CH3

CH3

O

CH3

O

19
20

21
22

 

Figure 6. Structures of suberitines A-D 19–22. 
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Figure 7. Structure of 8,9,9-trimethoxy-9H-benzo[de][1,6]naphthyridine 23 and 

1,3-dioxolo[4,5-d]benzo[de][1,6]naphthyridine 24. 

Cytotoxic evaluation of the compounds revealed significant antitumor activity of 20 

and 22 against P388 cell line with IC50 values, respectively, of 1.8 and 3.5 μM [33]. 

Toshiyuki Hamada et al. [34] isolated 

8,9,9-trimethoxy-9H-benzo[de][1,6]naphthyridine 23 and 

1,3-dioxolo[4,5-d]benzo[de][1,6]naphthyridine 24 (Figure 7) from the Bornean Aaptos 

aaptos and tested their cytotoxicity against adult T-cell leukemia cells. Compound 24 re-

vealed a significant antitumor effect with an IC50 value of 0.29 µM, while alkaloid 23 re-

mained inactive. 

Yu et al. [35] isolated nine novel and three previously-known aaptamine derivatives 

from the South China Sea sponge Aaptos aaptos. Four of the compounds: 

9-Amino-2-ethoxy-8-methoxy-3H-benzo[de][1,6]naphthyridin-3-one 25, 

3-isobutylaminodemethyl(oxy)aaptamine 26, 

3-(isopentylamino)demethyl(oxy)aaptamine 27, and 

3-(phenethylamino)demethyl(oxy)aaptamine 28 (Figure 8) revealed potent anticancer 

activity with IC50 values in the range of 0.03–8.5 μM against human cancer cell lines: 

HL60 leukemia, K562 erythroleukemia, MCF-7 breast cancer, KB epidermoid carcinoma, 

HepG2 hepatocellular carcinoma, and HT-29 colon adenocarcinoma [35]. 
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Figure 8. Structures of aaptamine derivatives 25–28. 

RANKL (Receptor Activator for Nuclear Factor κB Ligand) is a transmembrane 

protein that controls bone regeneration and remodeling. Wang et al. [36] performed bio-

logical examination of four 1,6-naphthyridines analogues, aaptodine A–D 29 (Figure 9), 

derived from Aaptos suberitoide. Aaptodine A–D 29 inhibited impressively 

RANKL-induced osteoclast formation and resorption, with the strongest effect for aap-

todine D 29D. Hence, aaptodines could be considered as candidates for drugs used in 

treating osteoporosis and hormone therapy-induced bone loss. 
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Figure 9. Structures of aaptodine A-D 29. 

Another rich source of 1,6-naphthyridine is constituted by Sophora derivatives. Trees 

and shrubs from genus Sophora, comprising approximately 62 species, are distributed in 

tropical and temperate zones in Eastern Europe; Asia; Australia; Pacific islands; and 

western, North, and South America. Natural alkaloids have been isolated from roots, 

seeds and epigeal parts of the plant. Sophora extracts have been used in traditional Chi-

nese medicine [37]. 

Matrine 30 (Figure 10) is considered as one of the most principal and widely studied 

Sophora alkaloid, and the number of publications regarding the compound are constantly 

growing. Molecular mechanisms of matrine 30 antitumor activity have been considerably 

researched. Recent studies confirmed the antineoplasm effect of matrine on MCF-7 breast 

cancer and A549 non-small cell lung cancer cell lines by inhibiting AKT/mTOR axis 

[38,39]. Additionally, it reduced tumor growth of ovarian cancer cells in vivo by inducing 

the expression of ERK and JNK (c-Jun N-terminal kinase) pathways [40]. Matrine 30 also 

exerted a significant effect in drug-resistant tumors by inducing apoptosis and inhibiting 

efflux-pump activity [41,42]. Beside anticancer properties, matrine 30 exerted cardiopro-

tective effects towards cardiomyocyte damage during hyperglycemia and sepsis [43,44]. 

Moreover, matrine 30 properties of protecting liver function resulted in several clinical 

trials. Intramuscular injections of matrine 30 caused improvement of condition in pa-

tients treated for chronic Hepatitis type B and patients suffering from primary hepatic 

carcinoma after trans-artery chemo-embolization [45,46]. Compound 30 was also re-

ported to decrease total bilirubin level and improve survival rates in liver transplant re-

cipients [47]. Matrine 30 is also considered a promising candidate as an immunosup-

pressive drug due to inhibiting autoimmune response in experimental models of multi-

ple sclerosis [48,49]. It also exerts antiviral activity [50,51]. 

Extract isolated from the seeds of Sophora alopecuroides matrine 30, sophocarpine 31 

and sophoramine 32 (Figure 10), with contents, respectively, of 32.85%, 26.55%, and 

6.91%, have alleviated morphine withdrawal in patients [52]. Moreover, these alkaloids 

30–33 displayed strong antitumor properties. Matrine 30, sophoridine 33 (Figure 10), and 

sophocarpine 31 exerted potent cytotoxic activity against HL-60 human leukemia, U937 

human myeloid leukemia, K562 human erythroleukemia, EC109 esophageal squamous 

cell carcinoma, A549 non-small cell lung cancer, and HepG2 hepatocellular carcinoma 

cell lines, with IC50 values in the range of 1.21–12.86 mM [53]. Matrine 30 and sophocar-

pine 31 decreased cachexia symptoms (induced by colon carcinoma) in mice, and the 

mechanism of action was related to the suppression of TNF-α and IL-6 production [54]. 

Additionally, sophoramine 32 and sophocarpine 31 displayed antinematicidal activity 

against Bursaphelenchus xylophilus, pine trees parasite, and it was observed that degree of 

unsaturation in the -lactam ring correlated with the strength of antinematicidal activity 

[55]. 
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Figure 10. Structures of the Sophora alkaloids 30–33. 

Sophora alkaloids have been tested worldwide for their anti-inflammatory proper-

ties. Tang et al. [56] evaluated the activity of five 1,6-naphthyridines analogues 34–36 

(Figure 11), derived from roots of Sophora tonkinesis. The agents 34–36 significantly re-

duced the secretion of cytokines TNF-α and IL-6 in LPS-stimulated murine macrophages 

RAW 264.7. The most potent effect, higher than that of matrine 30, was exerted by 

12,13-dehydrosophoridine 34 (TNF-α and IL-6 levels were 56.82% and 65.21%, respec-

tively) [56]. 
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Figure 11. Sophoridine derivatives 34–36. 

Li et al. [57] isolated 43 natural alkaloids from the seeds of Sophora alopecuroides. 

Assessment of anti-inflammatory efficacy was measured as suppression of NO produc-

tion in LPS-activated RAW 264.7 cells. Among Sophora alkaloids, 5,6-dehydrolupanine 37 

(Figure 12) exerted the most potent effect (IC50 value of 25.86 μM), higher than that of 

matrine. On the other hand, another 1,6-naphthrydidine derivative sophalode K 38 (Fig-

ure 12) decreased significantly the secretion of enzymes playing crucial role in develop-

ment of inflammation: iNOS (inducible nitric oxide synthase) and COX-2 (cyclooxygen-

ase 2). 
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Figure 12. Structures of 5,6-dehydrolupanine 37 and sophalode K 38. 

Fan et al. [58] obtained five novel 1,6-naphthyridine alkaloid dimers, alopecuroides 

A−E 39–43 (Figure 13), from the aerial parts of Sophora alopecuroides. The study revealed 

strong anti-inflammatory properties of alopecuroides B 40 and C 41. TNF-α and IL-6 

levels were, respectively, 50.05% and 52.87% for alopecuroide B 35b and 49.59% and 

73.90% for alopecuroide C 41 in LPS-induced RAW 264.7 cells [58]. 
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Figure 13. Alopecuroides A−E 39–43. 
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Sophora alkaloids were also reported to exhibit immunosuppressive properties. Al-

opecines A-E 44–48 (Figure 14), isolated from the seeds of Sophora alopecuroides, were as-

sessed toward inhibiting proliferation of Concanavalin A-induced T lymphocytes and 

LPS-induced B cells [59]. Alopecine D 47 exerted the most potent effect, with IC50 = 3.98 

μM for inhibiting proliferation of T lymphocytes and 3.74 μM for B lymphocytes (SI ra-

tios respectively 8.0 and 8.5). 
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Figure 14. Alopecines A-E 44–48. 

Pan et al. [60] evaluated antiviral activity of 16 natural alkaloids, obtained from 

rhizomes of Sophora tonkinensis. 12α-Hydroxysophocarpine 49 (Figure 15), 

12β-hydroxysophocarpine 50, and sophoranol 52 inhibited Influenza Virus 

A/Hanfang/359/95 replication with IC50 values in the range of 63.07–242.46 μM (SI ratios 

3.1–5.7). 12β-Hydroxyoxysophocarpine 50, 9α-hydroxysophocarpine 51, sophoranol 52, 

and 14β-hydroxymatrine 53 (Figure 15) exerted the most potent activity against Cox-

sackie Virus B3 with IC50 values in the range of 26.62–252.18 μM (SI ratios 3.0–6.8) [60]. 
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Figure 15. Structures of 12-hydroxyoxysophocarpine 49–50, 9α-hydroxysophocarpine 51, sopho-

ranol 52, and 14β-hydroxymatrine 53. 

2.3.1,7-. Naphthyridine Derivatives 

Bisleuconothine A 54 (Figure 16), determined as 1,7-naphthyridine alkaloid, was 

derived from the bark of Leuconotis griffithii—a species of plant with native distribution 

in southern Asia [61]. The agent 54 was shown to exert antineoplasm potency by inhib-

iting WNT signaling pathway, and to induce G0/G1 cell cycle arrest in cancer cells. It 

displayed significant antiproliferative properties against SW480, HCT116, HT29, and 

SW620 colon cancer cells in vitro (IC50 values respectively 2.74, 3.18, 1.09, and 3.05 μM), 

and reduced tumor growth in mice carrying HCT116 Xenograft [62]. Research conducted 

by Wong et al. [63] in A549 non-small cell lung cancer and MCF-7 breast cancer cell lines 

showed that bisleuconothine A 54 ows its cytostatic properties to inducing autophago-

some formation. Additionally, the compound 54 could also play a protective role in per-

iodontitis. Bisleuconothine A 54 was determined to reduce RANKL expression and di-

minish periodontal tissue infiltration by pro-inflammatory polymorphonuclear cells [64]. 
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Figure 16. Bisleuconothine A 54 and 

1-N-methyl-3-methylamino-[N-butanoicacid-3-(9-methyl-8-propen-7-one)-amide]-benzo[f][1,7]nap

hthyridine-2-one 55. 
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Streptomyces albogriseolus is a mangrove bacterium species, widely known for pro-

ducing aminoglycoside antibiotics neomycin B and neomycin C. Streptomyces albogriseolus 

has also been reported to be the source of 1,7-naphthyridine compound, 

1-N-methyl-3-methylamino-[N-butanoic ac-

id-3′-(9′-methyl-8′-propen-7′-one)-amide]-benzo[f][1,7]naphthyridine-2-one 55 (Figure 

16) [65]. Cytotoxic evaluation performed by Tian et al. revealed that 55 displayed anti-

cancer potency against HGC-27 human stomach carcinoma cell line [66]. 

2.4.2,6-. Naphthyridine Derivatives 

4-Methyl-2,6-naphthyridine 56 (Figure 17) is an alkaloid isolated from the dried 

plant of Antirrhinum majus by Harkiss and Swift in 1970 [67]. 

N

N

CH3

56
 

Figure 17. 4-Methyl-2,6-naphthyridine 56. 

Some indolo[2,6]naphthyridine alkaloids were obtained from plants of Erythrina 

spp. The seeds of these tropical trees contain erythrina alkaloids of varying degrees of 

toxicity. Some of them are used by indigenous peoples for medicinal purposes. They 

have an effect on the central nervous system and exhibit hypnotic, curare-like effects and 

neuromuscular inhibition, as well as sedative and hypotensive activity [68,69]. 

Erymelan-

thine-methyl(2R,13bS)-2-methoxy-2,6,8,9-tetrahydro-1H-indolo[7a,1a][2,6]naphthyridine-

12-carboxylate 57 (Figure 18) was isolated from Erythrina melanacantha and E. velutina 

[70]. This alkaloid 57 was also obtained from Erythrina merilliana seeds by Jackson et al. 

[71]. Erymelanthine 57 was evaluated regarding its TRAIL (tumor necrosis factor-related 

apoptosis-inducing ligand) enhanced activity, and this alkaloid showed no cytotoxicity 

[72]. 

N

N

O

O

O
CH3

O

CH3

N

NO

O
CH3

O

CH3
57 58

 

Figure 18. Erymelanthine 57 and melanacanthine 58. 

An example of Erythrina alkaloid containing indolo[2,6]naphthyridine scaffold is 

also 8-oxoerymelanthine 58, known as melanacanthine (methyl 

(2R,13bS)-2-methoxy-6-oxo-1,2,8,9-tetrahydroindolo[7a,1a][2,6]naphthyridine-12-carboxy

late) 58 (Figure 18). This alkaloid 58 was isolated from E. melanacantha by Redha in 1983 

[73]. Melanacanthine 58 inhibits thrombocyte agglutination and can be used in the 

treatment of hypertonia. The erythrina alkaloids 57–58 exhibited paralyzing activity 

[70,74]. 

Calycanthine 59 (Figure 19) was the first alkaloid isolated from the plants Calycan-

thaceae [75]. Calycanthine 59 was also isolated from Meratia praecox [76]. Toxic doses of 
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calycanthine 59 cause excitation in mice, rats, and rabbits. After injection, calycanthine 

hydrochloride induces hyperglycaemia in rabbits and lowers blood pressure in cats or 

dogs [77]. Calycanthine 59 acts on peripheral motor nerves to cause muscle weakness 

associated in lower animals. In mammals, calycanthine causes seizures. The alkaloid 59 is 

also a strong depressant on the heart. It was reported that the anticonvulsant effect of 

calycanthine 59 is mainly caused by the inhibition of the release of the inhibitory neuro-

transmitter GABA (gamma-aminobutyric acid) [78]. 
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Figure 19. Calycanthine 59, isocalycanthine 60, and calycanine 61. 

Gordin [75] isolated a second alkaloid, isocalycanthine 60 (Figure 19), from the seeds 

of Chimonanthus genus. This tetradehydroisomer of calycanthine was also isolated from 

the leaves of Psychotria colorata, the plant used in folk medicine to relieve pain [79], and 

from Psychotria forsteriana [80]. 

Dibenzo[c,h][2,6]naphthyridine named calycanine 61 (Figure 19) was isolated from 

the seeds of Chimonanthus praecox [81]. This alkaloid 61 was also obtained by Zn dehy-

drogenation of calycanthine 59 [82]. Calycanthine 59 and calycanine 61 were evaluated 

for their antifungal activities. Bipolaris maydis was susceptible to calycanthine (EC50 = 29.3 

μg/mL) [83]. Calycanthine 59 was evaluated for its potent melanogenesis inhibitory ac-

tivity, but showed cytotoxicity at 10 µM [84]. 

2.5.2,7-. Naphthyridine Derivatives 

Compounds containing the 2,7-naphthyridine scaffold were isolated from plants 

and various marine organisms. Naturally occurring bicyclic 2,7-naphthyridine deriva-

tives are known as polycyclic compounds with the 2,7-naphthyridine ring in their 

structures. 

2.5.1. Bicyclic Alkaloids 

Some of the monoterpenoid alkaloids of 2,7-naphthyridine structure were isolated 

from Oleaceae species [85]. Jasminine 62 (Figure 20) was obtained from the leaf of 

Ligustrum novoguineense by Hart et al. [86]. Jasminine 62 at a dose of 300 mg/kg causes a 

slight decrease in motor activity in mice. Cardiovascular activity of this alkaloid 62 was 

also evaluated, but it showed no significant effects [87]. 

Jasminidine 63 was isolated from Syringa Vulgaris [88], and dihydrojasminine 64 

(Figure 20) was isolated from Osmanthus austrocaledonica [89,90]. 
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Figure 20. Jasminine 62, jasminidine 63, and dihydrojasminine 64. 

Benkrief et al. [89] also isolated jasminine 62, dihydrojasminine 64, and a new copy-

rine alkaloid—austrodimerine 65 (Figure 21) from O. austrocaledonica. 
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Figure 21. Austrodimerine 65. 

Powel et al. [91] reported antileukemic activity of extracts from seeds of Sesbania 

drummondii. Three years later, scientists described the isolation of alkaloid ses-

banine—(3’R,4R)-3’-hydroxyspiro[2,7]naphthyridine-4,1’-cyclopentane-1,3-dione 66 

(Figure 22) from the ethanol extract of Sesbania drummondii seeds, which are poisonous 

[92]. The extract containing sesbanine 66 showed cytotoxic activity (KB assay) and was 

active in vivo in the P-388 lymphocytic leukemia system [93]. 
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Figure 22. Sesbanine 66, 3-acetyl-2,7-naphthyridine 67, and neozeylancine 68. 

3-Acetyl-2,7-naphthyridine 67 (Figure 22) was isolated by Janot et al. [94] from the 

roots and rhizomes of Valeriana officinalis. This compound 67 exhibited sedative and 

tranquilizer activity [94]. 

Neozeylancine 68 (Figure 22) was isolated in 1988 from Neonauclea zeylanica by At-

ta-ur-Rahman [95]. 
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Bioactive alkaloids Lophocladine A 69 and lophocladine B 70 (Figure 23) were iso-

lated from the marine red alga Lophocladia sp. by Gross et al. [96]. 

4-Phenyl-2,7-naphthyridin-1-one 69 exhibited antagonistic activity against δ-opioid re-

ceptors, and 1-amino-4-phenyl-2,7-naphthyridine 70 showed cytotoxic activity against 

human lung tumor and breast cancer cell lines [96]. 

N NH

O

N N

NH2

69 70
 

Figure 23. Structure of lophocladines 69–70. 

2.5.2. Tricyclic Alkaloids 

Some alkaloids containing a diazaphenanthrene (benzo[2,7]naphthyridine) scaffold 

were discovered in some plants and marine organisms. 

8-Bromo-4,5,5-trimethyl-5,6-dihydrobenzo[c][2,7]naphthyridine named Veranamine 71 

(Figure 24) was isolated from the ethanol extract of the marine sponge Verongula rigida. 

Veranamine 71 had a moderate affinity for serotonin receptors and was therefore as-

sessed for antidepressant activity in mice using the forced swim test. This alkaloid 71 

showed antianxiety and antidepressant activity and selective affinity for 5HT2B and 

sigma-1 receptors [97]. 

Alkaloids: 6-(3,4-dimethoxyphenyl)-3H-benzo[f][2,7]naphthyridin-6-ium-4-one 

called Perloline 72 and benzo[f][2,7]naphthyridin-4(3H)-one called perlolidine 73 (Figure 

24) were isolated from the perennial rye grass Lolium perenne [98]. These alkaloids 72–73 

inhibit in vitro cellulose digestion. Perloline 72 is slightly toxic after oral administration 

to mice and sheep [99]. 
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Figure 24. Structures of benzo[2,7]naphthyridine alkaloids 71–74. 

Subarine-methyl 2-(5-oxo-6H-benzo[f][2,7]naphthyridin-4-yl)pyridine-3-carboxylate 

74 (Figure 24) was isolated from Singaporean ascidian by Nilar et al. [100]. This marine 

alkaloid 74 was evaluated by in vitro screening against yeast and many Gram-positive 

and Gram-negative bacteria, but it exhibited no significant activity. Subarine 74 was also 

tested for in vitro cytotoxic activity on 60 human tumor cell lines, but did not show an-

tiproliferative effect [101,102]. 

2.5.3. Tetracyclic Alkaloids 

The extract of the plant Alangium lamarckii has been used by Indians to treat many 

human disorders [103]. In Thailand, it is useful in the treatment of asthma, coughs, 

hemorrhoids, diarrhea; and in India to treat leprosy, fever, or as an anthelmintic agent 

[104,105]. Pakrashi et al. [106,107] isolated tetracyclic alkaloids from the seeds of A. la-

marckii. This alangium alkaloids namely: alamaridine 75, alangimaridine 76, dihydro-

alamarine 77, alangimarine 78, alamarine 79, alangimarinone 80, isoalangimarine 81 iso-

alamarine 82, and dihydroisoalamarine 83 (Figure 25) contain the isoqui-

no[2,1-b][2,7]naphthyridine scaffold [108,109]. 
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Figure 25. Structures of alangium alkaloids 75–83. 

Some tetracyclic alkaloids possess 2,7-naphthyridine ring in the structure of 

azaaporphine: eupomatidines 1–3 84–86 and imbilines 1–3 87–89 (Figure 26) were iso-

lated from Eupomatia bennettii and E. laurina [110]. 
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Figure 26. Eupomatidines 1–3 84–86 and imbilines 1–3 87–89. 

Kitahara et al. [111] synthesized eupomatidines 1–3 84–86 and evaluated their anti-

fungal activity against Candida albicans, Paecilomyces variotii, and Trichophyton men-

tagrophytes. Eupomatidine-1 84 exhibited activity against those tree fungi with EC50 val-

ues of 50 μg/mL, 6.25 μg/mL, and 0.4 μg/mL, respectively. Eupomatidine-2 85 and 

eupomatidine-3 86 were active only toward T. mentagrophytes with EC50 values 3.1 μg/mL 

and 6.25 μg/mL, respectively. Khan et al. [112] evaluated eupomatidine-1 84 against over 

a dozen Gram-positive and Gram-negative bacteria strains, a protozoan and nine fungi. 

This alkaloid 84 turned out to be much better than the applied standard (ketoconazole 
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and griseofulvin), both in terms of scope and level of antifungal activity. Eupomatidine-1 

84 showed comparable antimicrobial activity to chloramphenicol. 

Imbiline-1 87 (Figure 26) was also isolated from a large tree Duguetia hadrantha and 

then evaluated for its antimalarial and antimicrobial activity [113]. Imbiline-1 87 showed 

a weak antimalarial potency, but it was more active against chloroquine-resistant than 

chloroquine-sensitive Plasmodium falciparum clones. Imbiline-1 87 was found to be inac-

tive against C. albicans, C. neoformans, and S. aureus. This alkaloid 87 exhibited cytotoxic 

activity in vitro against human malignant melanoma and human ovary carcinoma cell 

lines with IC50 values of 2 μg/mL and 5 μg/mL, respectively [113]. 

The scientists [113] isolated also new imbiline-type alkaloids: hadranthine A 90a and 

hadranthine B 90b from the ethanolic extract of Duguetia hadrantha (Figure 27). 
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Figure 27. Hadrantines A 90 and hadranthine B 91, and sampangines 92–96. 

Hadranthine A 

(7,10-dimethoxy-6-methyl-4,5-dihydronaphthol[1,2,3-ij][2,7]naphthyridine-4,5-(6H)-dion

e) 90 showed in vitro antimalarial activity against chloroquine-resistant P. falciparum with 

IC50 = 120 ng/mL. This alkaloid was active against C. albicans with MIC = 20 μg/mL. 

Hadranthine B 

(7-methoxy-4,5-dihydronaphthol[1,2,3-ij][2,7]naphthyridine-4,5-(6H)-dione) 91 did not 

show antimalarial activity, but it exhibited in vitro cytotoxic activity against human ma-

lignant melanoma, epidermoid carcinoma, ductal carcinoma, and ovary carcinoma cell 

lines with IC50 values between 3–6 μg/mL [113]. This alkaloid 91 was also evaluated for 

its in vitro effects on immune response and inflammation, but did not show significant 

potency [113]. 

Sampangines 92–96 (Figure 27) also are tetracyclic alkaloids containing the 

2,7-naphthyridine scaffold. Sampangine 92 was isolated first from the stem bark of plant 

Cananga odorata by Rao et al. [114]. 3-Methoxy derivative 93 was isolated from Cleis-

topholis patens by Liu et al. [115]. 

Sampangine 92 and 3-methoxysampangine 93 were also isolated from Duguetia 

hadrantha and then evaluated for their antimalarial, antifungal, and cytotoxic potency 

[115]. Both alkaloids 92–93 exhibited activity against P. falciparum with no cytotoxicity 

toward VERO cells. Sampangine 92 showed cytotoxicity to human malignant melanoma 

with IC50 = 0.37 μg/mL and inhibited cell aggregation (MIC < 0.15 μg/mL) [113]. Sam-

pangine 92 isolated from the stem bark of Anaxagorea dolichocarpa by Lucio et al. [116] 

demonstrated antitumor activity against human leukemic strains with IC50 values of 



Molecules 2021, 26, 4324 20 of 43 
 

 

10.15–11.80 μg/mL. Sampangine 92 and 11-methoxysampangine 94 isolated from the 

roots of Ambavia gerrardii were evaluated for their antiproliferative activity [117]. Alka-

loids 92 and 94 showed strong activity against human non-small cell lung cancer cell line 

with IC50 values of 0.57–0.58 μM, but sampangine 92 was more active against human 

ovarian cancer cell line (IC50 = 0.60 μM) than its 11-methoxy derivative 94 (IC50 = 10.30 

μM) [117]. Research by scientists under Kluza [118] directions has shown that sampan-

gine 92 induces apoptosis in HL-60 cells. In low concentrations, it caused G1 arrest and at 

the same time induced mitochondrial hyperpolarization. At higher concentrations, it 

elicited mitochondrial depolarization [118]. The treatment of human leukemia cells with 

sampangine 92 (40 μM) induced apoptosis due to an oxidative stress [119]. The ability of 

sampangine 92 to produce reactive oxygen species was confirmed by using an in vitro 

biochemical assay, and the participation of this alkaloid 92 in binding and damaging 

DNA was excluded [120]. 

Sampangine 92, and two derivatives: 9-methoxysampangine 95 and 

8,9-dimethoxysampangine 96, were isolated from the barks of Polyalthia nemoralis [121] 

and evaluated for their cytotoxic activity. Obtained alkaloids 92, 94, 95 exhibited signifi-

cant cytotoxicity against human carcinoma in the mouth, human breast cancer, human 

lung cancer, human hepatoma cancer, human prostate cancer, human ovarian adenocar-

cinoma, and human colon adenocarcinoma [121]. 

Sampangines 92–93 exhibited antimicrobial activity against C. albicans, C. neoformans, 

and S. aureus [113,122]. Sampangine 92 was found to be a strong antifungal agent against 

Paecilomyces variotii, and Trichophyton mentagrophytes with EC50 = 0.2 μg/mL [111]. Scien-

tists reported that the antifungal activity of sampangine 92 may be due to perturbations 

in heme biosynthesis or metabolism [123]. 

3-Methoxysampangine 93 showed significant in vitro antifungal activity against C. 

albicans and C. neoformans and A. fumigatus, better than amphotericin B [115]. These al-

kaloids 92–93 also showed excellent antimycobacterial activity against Mycobacterium in-

tracellulare, comparable to rifampin [124]. The dependence of the activity of sampangine 

derivatives 92–96 on the type of substituents in the naphtho[1,2,3-ij][2,7]naphthyridine 

scaffold is presented in Table 1. 

Table 1. The dependence of the activity of alkaloids 92–96 on the types of substituents. 

Activity 
Substituents 

R R1 R2 R3 

anticancer H H, OCH3 H, OCH3 H, OCH3 

antimalarial H, CH3 H H H 

antifungal H, CH3 H H H 

antibacterial H, CH3 H H H 

Eupolauridines are tetracyclic alkaloids containing the 2,7-naphthyridine scaffold 

condensed with an indene ring (Figure 28). 
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Figure 28. Structures of eupolauridine analogs 97–101. 

Eupolauridine (indeno[1,2,3-ij][2,7]naphthyridine) 97 was isolated from Cananga 

odorata [125] and from Eupomatia laurina [126]. Pan et al. [117] isolated eupolauridine 97, 

8-hydroxyeupolauridine 98, 9-methoxyeupolauridine-1-oxide 100, and eupolauridine 

N-oxide 101 from Ambavia gerrardii. Alkaloids were screened for their in vitro antiprolif-

erative activity. Among eupolauridine analogues, compound 101 was the most active 

against human ovarian cancer cell line with IC50 = 3.5 μM, and only this derivative 101 

showed antitumor activity against non-small-cell lung cancer cell line (IC50 = 1.77 μM) 

[117]. 7-Methoxy-8-hydroxyeupolauridine 99 isolated from Polyalthia nemoralis by Oanh 

et al. [121] did not show cytotoxicity against seven tested cancer cell lines (human carci-

noma in the mouth, human breast cancer, human lung cancer, human hepatoma cancer, 

human prostate cancer, human ovarian adenocarcinoma, and human colon adenocarci-

noma). Eupolauridine 97 extracted from the root bark of Cleistopholis patens by Hufford et 

al. [127] exhibited a significant activity against C. albicans with MIC = 1.56 μg/mL. 

2.5.4. Pentacyclic Alkaloids 

Pentacyclic derivatives of indolo[2′3′:3,4]pyrido[1,2-b][2,7]naphthyridine (Figure 29) 

were isolated from different plants. Alkaloids: nauclefine 102, naucletine 103, angustine 

105, angustoline 106, and angustidine 107 isolated from Neuclea officinalis [128], and ne-

onaucline 104 and cadamine 109 isolated from Ochreinauclea maingayii exhibited potent 

vasorelaxant activity on isolated rat aorta [129]. Neuclefine 102 isolated from the bark of 

Nauclea subdita also induced apoptosis of diverse cancer cells and inhibited tumor xeno-

graft growth [130]. Normalindine 111 and norisomalindine 110 were isolated from 

Strychnos johnsonii [131]. Isomalindine 113 and normalindine 111 were isolated from 

Ophiorrhiza sp. [132]. 19-O-ethylangustoline 99 and other alkaloids were isolated from the 

stem bark of Sarcocephalus latifolius [133]. Malindine 112 and isomalindine 113 were iso-

lated from the stem bark of Strychnos usambarensis [134]. 
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Figure 29. Structures of indolo[2′3′:3,4]pyrido[1,2-b][2,7]naphthyridine derivatives 102–113. 

2.5.5. Polycyclic alkaloids—Pyridoacridine Analogs 

Pyridoacridines are polyheterocyclic compounds containing pyri-

do[4,3,2-mn]acridine skeleton (Figure 30) and are a large number of marine-derived al-

kaloids. 

NH

N

pyrido[4,3,2-mn]acridine
 

Figure 30. Structure of pyrido[4,3,2-mn]acridine. 

Pyridoacridine alkaloids possess 2,7-naphthyridine scaffold in their structures and 

can be classified into tetracyclic, pentacyclic, hexacyclic, heptacyclic, and octacyclic 

compounds due to the number of rings attached to the pyrido[4,3,2-mn]acridine skeleton. 

Calliactine 114 (Figure 31) was the first pyridoacridine derivative that was obtained. 

This alkaloid 114 was isolated from the sea anemone Calliactis parasitica in 1940 by E. 

Lederer et al. [135]. 
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Figure 31. Calliactine 114. 

Since then, about a 100 pyridoacridine analogs have been found in many marine 

organisms. They have been isolated from ascidians, sponges, anemone, and certain 

mollusks. Most pyridoacridine derivatives were reported to possess significant phar-

macological activities, including anticancer, antimicrobial, and antiparasitic activities 

[136–139]. 

Tetracyclic Pyridoacridine Derivatives 

The first tetracyclic members of pyridoacridines were cystodytines 115–125 (Figure 

32). These alkaloids 115–125 were isolated from the yellow tunicate Cystodytes dellechiajei 

by Kobayashi et al. [140,141]. Cystodytines A–K 115–125 were found to be cytotoxic. 

Cystodytine A–C 115–117 showed in vitro potent cytotoxicity against mouse leukemia 

cell lines with IC50 values of 0.22–0.24 μg/mL [140] and Cystodytines D–I 118–123 against 

murine lymphoma and human epidermoid carcinoma KB cells with IC50 values of 0.068–

1.4 μg/mL [141]. Cystodytine J 124 isolated from Cystodytes sp. exhibited cytotoxic activ-

ity in vitro against the human colon tumor cell line with IC50 = 1.6 μM and inhibited the 

topoisomerase II with IC50 = 8.4 μM. The DNA binding ability of Cytodytine J 124 has also 

been reported [142]. 12-Methoxy derivatives 125 of cytodytine J were isolated from the 

ascidian Lissoclinum notti. Cystodytine K 125 showed cytotoxic activity in vitro against a 

murine leukemia cell line (IC50 = 1.3 μM) [143]. 
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Figure 32. Cystodytines A–K 115–125. 

Styelsamines A–D 126–129 (Figure 33) were isolated from the ascidian Eusynstyela 

latericius [144]. Obtained alkaloids 126–129 showed cytotoxicity toward the human colon 

tumor cell line with IC50 values of 33, 89, 2.6, and 1.6 μM, respectively [144]. Styelsamines 

C 129 and D 128 were also isolated from the purple morph of the ascidian Cystodytes 

dellechiajei [145]. 
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R
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N

OH
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Figure 33. Styelsamines A–D 126–129. 

Fong and Copp [146] evaluated styelsamines 126–129 and cystodytines 115–125 for 

their DNA binding affinity and cytotoxic activity towards a panel of human tumor cell 

lines. Tested compounds showed moderate antiproliferative activity. Styelsamines B 127 

and D 128 have particularly high affinity for calf thymus (CT)DNA, but cystodytines ex-

hibited lower affinity [146]. 

Methylsulfanyl derivative of cystodytine J was isolated from the tunicate Diplosoma 

sp. by Charyulu et al. and named diplamine 130 [147]. Diplamine 130 and its isomer iso-

diplamine 131 (Figure 34) were also isolated from the ascidian Lissoclinum notti and were 
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tested for their cytotoxicity against murine leukemia, human colon tumor, and 

non-malignant African Green Monkey kidney cell lines. Diplamine 130 was more cyto-

toxic towards BSC-1 cells than isodilamine 131. Diplamine 130 turned out to be a stronger 

topoisomerase II inhibitor than etoposide and showed the ability to intercalate into DNA 

[142]. 
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Figure 34. Diplamines 130–132. 

Diplamines 130–131 also exhibited moderate antimicrobial activity towards Bacillus 

subtilis, Escherichia coli, Candida albicans, and Trichophyton mentagrophytes [143]. Diplamine 

B 132 was isolated from the ascidian Lissoclinum badium and tested by immunoblotting 

for its effects on cellular p53 and Hdm2 in the tert-immortalized human retinal pigment 

epithelial cells (the potency was similar to proteasome inhibitor 

N-acetyl-leucyl-leucyl-norleucinal) [148]. 

The dependence of the activity of diplamine derivatives 130–132 on the type of sub-

stituents in the pyridoacridine scaffold is presented in Table 2. 

Table 2. The dependence of the activity of alkaloids 130–132 on the type of substituents. 

Activity 
Substituent 

R R1 R2 

anticancer H, COCH3 SCH3 H 

antimicrobial COCH3 H, SCH3 H, SCH3 

Another pyridoacridine alkaloid containing thiomethyl substituents—varamine A 

133, veramine B 134, lissoclin A 135, and lissoclin B 136 (Figure 35)—was isolated from 

the ascidian Lissoclinum sp. [149,150]. Varamines 133–134 showed cytotoxicity towards 

L-1210 murine leukemia cells with IC50 values of 0.03 and 0.05 μg/mL, so they proved to 

be more toxic than cystoditines, which have the same skeleton but without the thiome-

thyl group [150]. 
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Figure 35. Veramines 133, 134 and lissoclins 135 and 136. 

Norsegoline 137 (Figure 36) was isolated from tunicate Eudistoma sp. [151,152]. Einat 

et al. [153] evaluated the inhibitory effect of norsegoline on the growth of myeloid pro-

genitors obtained from bone marrow and peripheral blood of chronic myelogenous leu-

kemia (CML) patients. Norsegoline 137 showed antiproliferative activity and may be an 

effective agent for use in removing ex vivo Philadelphia-positive cells from peripheral 

blood of CML patients in conjunction with autologous bone marrow transplantation 

[153]. 

N
H
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CH3

O O

CH3
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N

N
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Br

138
 

Figure 36. Norsegoline 137 and Pantherinine 138. 

Kim et al. [154] isolated a brominated alkaloid pantherinine 138 (Figure 36) from the 

ascidian Aplidium pantherinum, which showed cytotoxic activity against murine leukemia 

cells (ED50 = 4.5 µg/mL). 

Penta- and Hexacyclic Pyridoacridine Derivatives 

Lissoclinidine 139 (Figure 37) was isolated from the ascidian Lissoclinum notti [143]. 

This pentacyclic alkaloid 139 is a product of diplamine photoreduction, where the thi-

omethyl group is cyclised into a 1,3-oxathiolane ring. Lissoclinidine 139 showed moder-

ate antiproliferative activity [143]. 

Deacetyl derivative, lissoclinidine B 140, was isolated from Lissoclinum cf. badium 

[155]. Lissoclinidine B 140 selectively induces cell apoptosis in a p53-dependent manner 

with IC50 values of 98.1 ± 6 μM and a dose-dependent increase in luciferase activity. The 

results of the studies showed that lissoclinidin B 140 is an inhibitor of Hdm2 au-

to-ubiquitylation and stabilizes p53 and Hdm2 in cells [148]. 
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Figure 37. Lissoclinidines 139–140. 

Kuanoniamine alkaloids 141–149 contain a thiazole ring fused to pyridoacridine 

scaffold (Figure 38). Kuanoniamines A–D 141–144 were first isolated from the mollusk 

Chelynotus semperi [156], and kuanoniamines E–F 145–146 were isolated by Nilar et al. 

[100] from Singaporean ascidians. N-Deacetylkuanoniamine C 147 was isolated from the 

Micronesian sponge Oceanapia sp [157]. Dehydrokuanoniamine B 148 and F 149 were 

isolated from South-Pacific Ocean ascidian Cystodytes violatinctus [158]. 
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Figure 38. Kuanoniamines 141–149. 

Cytotoxicity of kuanoniamines C 143 and D 144, and N-deacetylkuanoniamine C 147 

were studied in vitro, using two human cell lines (HeLa cells and MONO-MAC 6 cells) 

and exhibited similar activity with IC50 values of 1.2–2.0 μg/mL [157]. 

Kuanoniamine D 144 exhibited affinity to A1- and A2A-adenosine receptors (Ki 

values of 2.94 and 13.7 μM, respectively), and all derivatives showed moderate affinity to 

benzodiazepine binding sites of GABA-A receptors [157]. Dehydrokuanoniamine F 149 

showed cytotoxic activity toward the SW480 colon cancer cell line with IC50 values of 3.30 

μM [158]. 

Sagitols are hydroxy analogs of kuanoniamines (Figure 39). Sagitol 150 and sagitol C 

151 were isolated from the Indonesian sponge Oceanapia sp. [159,160]. Sagitol C 151 ex-

hibited antiproliferative activity towards mouse lymphoma, human cervix carcinoma, 

and rats brain tumor cell lines in MTT (the microculture tetrazolium) assay [161]. Sagitol 

D 152 was isolated from Vietnamese ascidians and showed a weak antioxidant activity 

with IC50 values of 92 μM in the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay 

[160]. 



Molecules 2021, 26, 4324 28 of 43 
 

 

N

N

S

N

NH

OR

OH
150) R = C

2
H

5

151) R = CH(CH
3
)
2

152) R = CH
3

 

Figure 39. Sagitols 150–152. 

Other pyridoacridine alkaloids containing a thiazole ring fused with pyridoacridine 

skeleton are Dercitin 153 isolated from Dercitus sp. sponges and its analogs isolated from 

Stelletta sp. sponges (Figure 40) [162–164]. Dercitin 153 exhibited in vivo antitumor activ-

ity. This alkaloid 153 inhibited the proliferation of murine leukemia and human leuke-

mia, and lung, melanoma, and colon tumor cells with IC50 values of 63–150 nM. Dercitin 

153 was a potent inhibitor of DNA polymerase I and showed an effect on the stabilization 

of protein–DNA complexes [165]. Dercitine analogs: nordecitine 154, dercitamide 155, 

dercitamine 156, cyclodercitine 157, dehydrocyclodercitine 158, and stellettamine 159 

also showed antiproliferative activity, but were less potent than dercitine 153 (Table 3.) 

[166]. 

Table 3. Antiproliferative activity of dercitine analogs 153–159. 

Alkaloid Activity IC50 

153 

antiproliferative 

inhibition of polymerase I  

stabilization of protein-DNA complexes  

63–150 nM 

154 antiproliferative 4.8 μM 

155 antiproliferative 26.7 μM 

156 antiproliferative 12.0 μM 

157 antiproliferative 1.9 μM 

158 antiproliferative 9.9 μM 

159 antiproliferative 60.0 μM 
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Figure 40. Dercitin analogs 153–159. 

Sebastianine A 160 has a pyrrole ring and sebastianine B 161 has a pyrrolidine ring 

fused with the pyridoacridine scaffold (Figure 41). These alkaloids 160–161 were isolated 

from the ascidian Cystodytes dellechiajei and showed cytotoxic activity against the 

HCT-116 colon carcinoma cells, indicating a p53-dependent mechanism [167]. 
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Figure 41. Sebastianine A 160 and B 161. 

Arnoamines 162–165 have a pyrrole ring fused to the pyridoacridine scaffold (Figure 

42). These cytotoxic alkaloids 162–165 were isolated from the ascidian Cystodytes sp. 

[158,168]. Arnoamine A 162 showed good antitumor activity against breast cancer cell 

lines with GI50 value of 0.3 μg/mL and weak activity against lung and colon cell lines with 

GI50 of 2.0 and 4.0 μg/mL, respectively. Arnoamine B 163 exhibited weak antiproliferative 

activity against the same cancer cell lines (GI50 of 2.0–3.0 μg/mL) [168]. Cytotoxic activity 
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of arnoamine C 164 and arnoamine D 165 were evaluated against melanoma and colon 

cancer cell lines. Arnoamine D 165 was found to be more active than arnoamine C 164 

(with IC50 values of 4.32–8.48 μM) [158]. 
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Figure 42. Arnoamines 162–165. 

The first analog of pyridoacridine obtained from marine organisms was amphime-

dine 166. This alkaloid 166 containing a pyridoquinoline skeleton was isolated from an 

Amphimedon sp. sponge [169]. Later, more amphinedine-type alkaloids (Figure 43) 166–

178 were isolated from the marine sponge Xestospongia sp. and the ascidian Cystodytes 

dellechiajei [145,155]. 
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Figure 43. Alkaloids 166–178. 

Amphimedine analogs: amphimedine 166, neoamphimedine 168, deoxyamphime-

dine 170, 1-hydroxy-deoxyamphimedine 171, 3-hydroxy-deoxyamphimedine 172, and 

debromopetrosamine 176 were evaluated in a zebrafish phenotype-based assay and only 

amphimedine 166 caused embryo necrosis, pericardial edema, and an enlarged yolk with 

a thin extension at 30 μM [170]. Amphimedine 166 exhibited cytotoxic activity toward 

P388 murine leukemia cells, but it did not inhibit topoisomerase II [169,171,172]. Neo-

amphimedine 168 was cytotoxic toward normal CHOAA8 cells and deoxyamphemidine 

170 against human colon tumor cells [173]. Neoamphimedine 168 also showed antitryp-

anosomal activity against T. brucei with IC50 = 0.21 μM, but amphimedine 166 was inac-

tive [173,171]. Demethyldeoxyamphimedine 173 showed antibacterial activity against L. 

anguillarum and M. luteus [145]. 

The presence of a bromine atom on the benzene ring determines the activity of these 

derivatives (Table 4). Petrosamine 177 isolated from Petrosia sp. sponge was found to be 
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about six times more potent an AChE inhibitor than galanthamine (IC50 = 0.091 μM) [174]. 

Petrosamine B 178 weakly inhibited the Helicobacter pylori aspartyl semialdehyde dehy-

drogenase (IC50 = 306 μM) [175]. 

Table 4. The dependence of the activity of petrosamine analogs 176–178 on the type of substituents. 

Activity 
Substituent 

R R1 

AChE inhibitor H Br 

antibacterial (H. pylori) Br H 

inactive H H 

Ascididemin analogs also possess a pyridine ring fused to the pyridoacridine scaf-

fold (Figure 44). Ascididemin 179 was isolated from the tunicate Didemnum sp. and the 

ascidian Cystodytes dellechiajei [155], and later with 12-deoxyascididemin 181 from the 

ascidian Polysyncraton echinatum [176]. These alkaloids 179 and 181 showed potent activ-

ity against T. brucei with IC50 values of 0.077 and 0.032 μM, respectively [176]. Ascidide-

min 179 also exhibited antimicrobial activity against C. resinae, E. coli, and B. subtilis [177], 

and very good potency against M. tuberculosis (MIC = 0.35 μM) [178]. Ascididemin 179 

causes release of calcium ions in the sarcoplasmic reticulum seven times more than caf-

feine [140]. Ascididemine analogs showed cytotoxic activities. Ascididemin 179 and 

12-deoxyascididemin 181 exhibited cytotoxic activity toward the human embryonic 

kidney cell line with IC50 values of 1.48 and 7.63 μM, respectively [176]. Ascididemin 179 

showed cytotoxic effects against murine leukemia cells (IC50 = 0.39 μg/mL) [140]. 

11-Hydroxyascididemin 180 showed cytotoxic activity against the human prostate cancer 

(PC3) cell line with IC50 = 1.9 μM [179]. 
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Figure 44. Structures of ascididemin analogs 179–186. 

Meridine 182 (Figure 44) isolated from the ascidian Amphicarpa meridiana [180] and 

from the marine sponge Ecionemia geodides [181] also showed cytotoxic activity against 

the invasive bladder cancer cell lines (IC50 values of 3.76–4.56 μM) [181]. 

Ecionines A 183 and B 184 (Figure 44) possessing an imine moiety were isolated 

from Ecionemia geodides sponge [181]. Ecionine A 183 showed moderate cytotoxic activity 

against a panel of human bladder cancer cell lines with IC50 values of 3–7 μM [181]. 

Ancorine 185 and cnemidine A 186 are analogs of hydroxyascididemines (Figure 

44). Ancorine 185 was isolated from the sponge Ancorina geodides, and cnemidine A 186 

was isolated from the tunicate Cnemidocarpa stolonifera [182]. Cnemidine A 186 selectively 

inhibited PC3 with IC50 = 1.1 μM [182]. 

Shermilamines are alkaloids with the 3-thiomorpholinone ring fused to pyridoacri-

dine scaffold (Figure 45). These alkaloids 187–190 were first isolated from the tunicate 

Trididemnum sp. [183,184], and later also from the ascidian Cystodytes sp. [142,185]. 

Shermilamines A 187 and B 188 exhibited cytotoxicity to murine leukemia cells. Sher-

milamine B 188 showed in vitro cytotoxic activity against KB cells with IC50 = 5 μg/mL, 

and human colon tumor cells with IC50 = 13.8 μM [156]. Shermilamines B and C 188–189 

inhibit topoisomerase II and have the ability to intercalate into calf thymus DNA [142]. 

Shermilamine B 188 and N-deacetylshermilamine 190 were evaluated for their antibacte-

rial activity against E. coli and M. luteus, but they were found to be less potent than ref-

erence gentamicin [138]. 
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Figure 45. Shermilamines 187–190. 

Hepta- and Oxacyclic Pyridoacridine Derivatives 

Eilatin 191 is a symmetrical, heptacyclic alkaloid containing two pyridoacridine 

moieties (Figure 46). This alkaloid 191 was isolated from the tunicate Eudistoma sp. 

[151,152] and also from the ascidians Cystodytes sp. and Polysyncraton echinatum [142,169]. 

Eilatin 191 showed in vitro antiproliferative activity against the human colon tumor cell 

line and the human embryonic kidney cell line [176]. It also inhibited topoisomerase II 

and intercalated into DNA [142]. Eilatin 191 has two sets of nitrogen atoms capable of 

metal ion chelation. Complexes of eilatin–Ru(II) exhibited strong anti-HIV activity [186]. 
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Figure 46. Eilatin 191 and biemnadin 192. 

Biemnadin 192 is the octacyclic alkaloid containing the 2,7-naphthyridine ring in its 

skeleton (Figure 46). This alkaloid 192 was isolated from Biemna sp. sponges [187]. 

Biemnadin 192 showed weak cytotoxic activity toward the superficial bladder cancer cell 

line [181] and induced multipolar neuritogenesis [188]. 

2.6. Naphthyridines Molecular Mechanisms of Action—What Do We Know? 

Naturally occurring naphthyridines are characterized by diverse mechanisms of ac-

tion. Some of their biomolecular activities have been discovered, nevertheless there is still 

much to explore in this field. 

Naphthyridines obtained from natural sources are characterized by anticancer po-

tency. The compounds exhibit features of topoisomerase inhibitors and DNA intercala-

tors [142]. They were documented to induce apoptosis in cancer cells in both 

p53-dependent and p53-independent manner [23,25,148,167]. Moreover, the compounds 

interfere with procytotoxic signaling pathways, i.a., AKT/mTOR, ERK, JNK, WNT [38–

40,62]. Antineoplasm properties against drug-resistant tumors could be elucidated by 

inhibiting efflux-pumps activity, however, this topic requires further study [41,42]. 
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Anti-inflammatory activity of naphthyridines is based on reducing iNOS and COX-2 

release, decrease in NO production, and IL-6 and TNF-α secretion [7,15,54,56,57]. They 

suppress autoimmunity reactions through an IFN-β/IL-27/IL-10 pathway, and by tar-

geting proautoimmunity gene expression including angiogenin and stratifin [48,49]. 

The compounds modulate neurotransmission by affinity to GABA A and MAO A 

receptors, and inhibiting AchE activity [29,157,174]. 

Natural naphthyridines antiinfectious properties were widely screened against 

many infectious species [6,8,111,112,178]. However, molecular mechanisms of their ac-

tion are still poorly researched and described. This issue is an interesting target for 

deeper research. 

Natural naphthyridines have an extensive background of preliminary research, 

which is a solid foundation for molecular studies. Further investigations are still needed. 

3. Conclusions 

The natural environment, including marine and terrestrial organisms, should be 

considered as a rich source of bioactive substances. Naturally-derived naphthyridines, 

isolated mostly from sea species and terrestrial plants, have been shown as potent 

chemical compounds with multidirectional activity. Natural naphthyridines are most 

abundantly represented by 1,6- and 2,7-naphthyridine isomeric forms. Until now, re-

search studies revealed their impressive antimicrobial [6,8,177], antifungal [6,8,111,112], 

and antimycobacterial [10,178] effects, and some of them displayed activity superior or 

comparable to those presented by chloramphenicol [112], amphotericin B [115], and ri-

fampin [124]—drugs used in standard therapeutic regimens. Moreover, naphthyridines 

were shown to present significant properties including antiinfectious: antiviral 

[11,24,50,51], antiparasitic [9,176], and antimalarial [113]; anticancer [5,6,23,35]; influ-

encing cardiovascular system: hypotensive [16,27], cardioprotective [43,44]; neurological: 

sedative [94], analgesic [15], anticonvulsant [78], stimulating neuritogenesis [188]; psy-

chotropic: antianxiety [97], antidepressant [29,97]; and affecting immune system: an-

ti-inflammatory [7,56,57], immunosuppressant [48–50]. The spectrum of activity of nat-

urally-derived naphthyridines is wide, thus these compounds are undeniably fascinating 

subjects of research. An undoubted advantage of naphthyridines is their wide availabil-

ity thanks to the possibility of obtaining them both from natural sources and syntheti-

cally. The versatility of naphthyridines is expressed by the occurrence of multiple activi-

ties within a single compound. Moreover, many of the representatives are considered as 

safe and nontoxic, and constitute a great alternatives for standard therapies [9,48]. We 

strongly believe that this work will contribute to further exploration of naphthyridine 

derivatives—their natural sources and bioactive properties—and will result in the use of 

these chemical compounds for therapeutic purposes in the future. 
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