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Abstract: Mammalian cell surfaces are modified with complex arrays of glycans that play major roles
in health and disease. Abnormal glycosylation is a hallmark of cancer; terminal sialic acid and fucose
in particular have high levels in tumor cells, with positive implications for malignancy. Increased
sialylation and fucosylation are due to the upregulation of a set of sialyltransferases (STs) and
fucosyltransferases (FUTs), which are potential drug targets in cancer. In the past, several advances
in glycostructural biology have been made with the determination of crystal structures of several
important STs and FUTs in mammals. Additionally, how the independent evolution of STs and FUTs
occurred with a limited set of global folds and the diverse modular ability of catalytic domains
toward substrates has been elucidated. This review highlights advances in the understanding of the
structural architecture, substrate binding interactions, and catalysis of STs and FUTs in mammals.
While this general understanding is emerging, use of this information to design inhibitors of STs and
FUTs will be helpful in providing further insights into their role in the manifestation of cancer and
developing targeted therapeutics in cancer.

Keywords: sialyltransferase; fucosyltransferase; glyocosyltransferases in cancer; drug design

1. Introduction

The glycome, the complex glycan repertoire of the cell, is involved in a myriad of
cellular events in health and disease [1–5]. Unlike the genome, transcriptome, and pro-
teome, glycan biosynthesis is not template-driven but is determined by the location and
coordinated activities of the glycan processing enzymes, glycosyltransferases (GTs) and
glycoside hydrolases (GHs), and the availability of their substrates. Structural analysis
of these two glycan-processing enzyme families highlighted that GHs exhibit a vast di-
versity of three-dimensional (3D) scaffolds, despite common features in their active sites,
indicating an independent convergence during evolution [6]. As for GTs, this trend seems
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divergent, and three general folds, named GT-A, GT-B, and GT-C, have been reported for
glycosyltransferases [7–10].

GTs are multi-substrate enzymes that transfer the donor’s sugar moiety, mostly an
activated nucleotide, to the acceptor molecule, which is a glycan, a protein, or a lipid
molecule. In eukaryotes, most GTs are type II transmembrane proteins with a short N-
terminal domain, a transmembrane domain followed by a stem region, and a large C-
terminal catalytic domain at the luminal side [8]. GTs are classified into 114 families in
the Carbohydrate-Active enZYme (CAZy) database (available at http://www.cazy.org/)
Accessed on 24 April 2021 [11]. This sequence-based classification intercalates structural
and mechanistic characteristics within each GT family and highlights that monofunctional
GTs have similarities in terms of amino acid sequences for the overall catalytic domain.
However, many GT families are polyfunctional, comprising different kingdoms of life, e.g.,
the GT2 family, which contains more than 2.4 × 105 sequences, originating from animal,
plant, yeast, and bacterial species, and exhibits sequence heterogeneity except for a portion
of the catalytic domain. It is noteworthy that the functional prediction of putative GTs (e.g.,
an open reading frame) can be challenging. This is because many closely related sequences
reported in the CAZy database, especially those related to polyfunctional GT families, may
perform different catalytic functions [12].

There are numerous challenges toward a structural understanding of GTs [13–16],
which include the following: (a) the crystallization process is demanding since GTs are
often multi-domain proteins and undergo considerable conformational changes; (b) it
is difficult to produce a high yield in the recombinant form, especially for integral and
membrane-bound GTs; (c) characterization is laborious as the identification of both donor
and acceptor substrates is required; and (d) GTs undergo a series of post-translational
modification events, such as N-glycosylation, disulfide bond formation, and proper folding
assisted by chaperonins. Such modifications require eukaryotic expression systems, posing
a big challenge to producing an enzyme in vitro. Recently, studies have attempted to solve
this challenge using HEK293 cells, and significant progress has been achieved [14].

Sialyltransferases (STs) and fucosyltransferases (FUTs) are two distinct classes of GT
in terms of structural fold architecture, substrate specificity, the nature of their interactions
with both donor and acceptor substrates, and catalysis. Intriguingly, the dysregulation of
both STs and FUTs results in the altered expression of sialylated and fucosylated epitopes,
which are hallmarks of cancer cells [17–25]. To date, their chemical biology and potential
for drug discovery in cancer have been relatively unexplored [15]. This is due, at least in
part, to the relative lack of ST- and FUT-specific inhibitors for structural, mechanistic, and
cellular studies. Furthermore, slow progress in inhibitors of STs and FUTs may be attributed
to the complexity of GTs in terms of their polyspecific nature, overlapping specificities,
and multi-substrate catalytic mechanism. Additional, relatively little 3Dstructural data is
available, and there has been limited understanding of their catalysis until the past few
years [15]. Thus, it is necessary to combine information on the structural fundamentals and
advances in the understanding of the nature of enzyme–substrate binding interactions of
mammalian STs and FUTs into a unified platform, which may be helpful for researchers
working toward ST-and FUT-targeted drug discovery in cancer.

2. ST and FUT Families
2.1. Twenty STs Are Arranged into Four Families

Depending on the regio-selectivity of the acceptor substrate in addition to N-Acetylne-
uraminic acid (Neu5Ac) as well as their linkages, STs are classified into four families:
ST3GAL; ST6GAL; ST6GALNAC; and ST8SIA. Each family consists of several STs (Table 1).
ST3GAL STs transfer Neu5Ac to the 3-OH of Gal residues of N-, O-linked glycans, and
glycolipids. Members of the ST6GAL family catalyze the addition of Neu5Ac to the 6-OH
of the Gal residue of N-glycans, while the STs of ST6GALNAC transfer Neu5Ac to the
6-OH of GalNAc residues of O-glycans and glycolipids. ST8SIA STs are the only STs that
promote the transfer of Neu5Ac to the 8-OH of another Neu5Ac residue in N-, O-linked
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glycans, and glycolipids [26] (see Figure 1). STs in mammals have been grouped into GT29
in the CAZy database (Table 1). The cell sialylation status, which is determined by the
extent and nature of sialic acid linkages, undergoes a transformation in cancer progression,
which is correlated with the upregulation of sialyltransferases [17,19,21–23] (Table 1).
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Figure 1. Sialylation and fucosylation sites of human STs and FUTs. (A) Sialylation site for STs including ST3GAL; 
ST6GAL; ST6GALNAC; and ST8SIA, which generates sialylated-tumor-associated carbohydrate antigens; (B) fucosylation 
site of human FUTs including α,2 FUT; α1,3/4 FUT; α1,6 FUT; and O-FUT. STs and FUTs transfer Neu5Ac and Fuc, re-
spectively, to different monosaccharide residues of O-glycans;N-glycans; EGF or TSR domains of proteins, e.g., Notch and 
thrombospondin 1; and glycolipids, as indicated by the arrows. Abbreviations: Glc: D-Glucose; Gal: D-Galactose; GlcNAc: 
N-Acetyl-D-glucosamine; GalNAc: N-Acetyl-D-galactosamine); Fuc: L-Fucose; Man: D-Mannose; Neu5Ac: N-Acetyl-D- 
neuraminic acid (or sialic acid); Ser/Thr: serine/threonine; Asn: asparagine; EGF: epidermal-growth-factor-like repeat; and 
TSR: thrombospondin type 1 repeat. R represents N- or O-glycoproteins or glycolipids. (C) Structural representation of 
the monosaccharide residues present in glycans.

Figure 1. Sialylation and fucosylation sites of human STs and FUTs. (A) Sialylation site for STs including ST3GAL;
ST6GAL; ST6GALNAC; and ST8SIA, which generates sialylated-tumor-associated carbohydrate antigens; (B) fucosylation
site of human FUTs including α,2 FUT; α1,3/4 FUT; α1,6 FUT; and O-FUT. STs and FUTs transfer Neu5Ac and Fuc,
respectively, to different monosaccharide residues of O-glycans;N-glycans; EGF or TSR domains of proteins, e.g., Notch and
thrombospondin 1; and glycolipids, as indicated by the arrows. Abbreviations: Glc: D-Glucose; Gal: D-Galactose; GlcNAc:
N-Acetyl-D-glucosamine; GalNAc: N-Acetyl-D-galactosamine); Fuc: L-Fucose; Man: D-Mannose; Neu5Ac: N-Acetyl-D-
neuraminic acid (or sialic acid); Ser/Thr: serine/threonine; Asn: asparagine; EGF: epidermal-growth-factor-like repeat; and
TSR: thrombospondin type 1 repeat. R represents N- or O-glycoproteins or glycolipids. (C) Structural representation of the
monosaccharide residues present in glycans.

2.2. Sequence Analysis and Conserved Patterns in STs

The catalytic domain of all STs is characterized by four conserved peptide sequences,
termed sialylmotifs: large (L), small (S), 3rd (III), and very small (VS) [27–29]. Human ST
sequences have low sequence similarity but share 10 invariant residues—five in motif L, two
in motif S and VS, and one in motif III [23,27]. Motif L is mainly engaged in binding donor
substrates, while sialylmotifs S, III, and VS are involved in binding acceptor substrates
or both substrates [23,27,30,31]. Both L and S contain an invariant cysteine residue and
participate in the formation of an intramolecular disulfide linkage essential for the active
conformation of the enzyme [32,33]. Mutational analyses with motifs III and VS highlighted
the involvement of motif VS in catalysis. The sequence consensuses of motifs III and VS in
human STs are ((H/y)-Y-(Y/W/F/h)–(D/E/q/g)) and H-x4-E (where lowercase/capital
letters imply low/strong occurrence of the amino acid), respectively [28,34].
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Table 1. Features of known STs and FUTs in humans and upregulated expression in cancers.

Enzyme Family Enzyme CAZy Family Global Fold Donor Substrate Preferred Acceptor Substrate Upregulated Expression in Cell Lines or Tissues

ST3GAL

ST3GAL1

GT29 GT-A CMP-Neu5Ac

Galβ1, 3GalNAc Melanoma, breast, ovarian, and liver cancers

ST3GAL2 Galβ1, 3GalNAc -

ST3GAL3 Galβ1, 3(4)GlcNAc Melanoma, glioma, breast, and pancreatic cancers

ST3GAL4 Galβ1, 4(3)GlcNAc Gastric cancer

ST3GAL5 Galβ1, 4Glc-ceramide -

ST3GAL6 Galβ1, 4GlcNAc Multiple myeloma and gastric cancer

ST6GAL
ST6GAL1 Galβ1, 4GlcNAc Liver, gastric, colon, bone, pancreatic, lung, prostate,

breast, and ovarian cancers

ST6GAL2 Galβ1, 4GlcNAc Breast cancer

ST6GALNAC

STGALNAC1 GalβNAc-Ser/Thr and Galβ1,3GalNAc- Ser/Thr Liver and gastric cancers

STGALNAC2 Galβ1, 3GalNAc-Ser/Thr Thyroid and colorectal cancers

STGALNAC3 Siaα2, 3Galβ1, 3GalNAc-ceramide
Siaα2, 3Galβ1, 3GalNAc-Ser/Thr -

STGALNAC4 Siaα2, 3Galβ1, 3GalNAc-Ser/Thr -

STGALNAC5 GM1b -

STGALNAC6 All α-series gangliosides -

ST8SIA

ST8SIA1 Siaα2,3Galβ1,4Glc-ceramide Breast cancer

ST8SIA2 (Siaα2,8)nSiaα2,3Gal -

ST8SIA3 Siaα2,3Galβ1,4GlcNAc -

ST8SIA4 (Siaα2,8)nSiaα2, 3Gal Breast cancer, acute myeloid leukemia

ST8SIA5 GM1b, GT1b, GD1a, GD3 -

ST8SIA6 Siaα2, 3Gal Breast, lung, and liver cancers
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Table 1. Cont.

Enzyme Family Enzyme CAZy Family Global Fold Donor Substrate Preferred Acceptor Substrate Upregulated Expression in Cell Lines or Tissues

α1,2 FUT
FUT1

GT11

GT-B GDP-Fuc

Galβ1, 4GlcNAc Bladder, breast, epidermoid, ovarian, and prostate
cancers

FUT2 Galβ1, 3GlcNAc -

α1,3/4 FUT

FUT3

GT10

(Both sialyl- and non-sialyl-) Galβ1,3GlcNAc and Galβ1,4GlcNAc Pancreatic, gastric, colorectal, oral, and head and
neck cancers

FUT4 Galβ1, 4GlcNAc Melanoma, breast, and lung cancers

FUT5 (Both sialyl- and non-sialyl-) Galβ1,3GlcNAc and Galβ1,4GlcNAc Colorectal and gastric cancers

FUT6 (Both sialyl- and non-sialyl-) Galβ1, 4GlcNAc Liver, colorectal, prostate, oral, andhead and neck
cancers; prostate cancer metastasis to bone

FUT7 (sialyl-) Galβ1, 4GlcNAc Liver, prostate, and lung cancers

FUT9 Galβ1, 4GlcNAc -

FUT10 GlcNAc β1, 4GlcNAc-Asn -

FUT11 GlcNAc β1, 4GlcNAc-Asn -

α1,6 FUT FUT8 GT23 GlcNAcβ1, 2Manα1,
6[GlcNAcβ1,2Manα1,3]Manβ1,4GlcNAcβ1,4GlcNAc-Asn

Melanoma, lung, liver, breast, prostate, ovarian,
cervical, and colorectal cancers

O-FUT POFUT1 GT65 EGF-like repeats Liver cancer

O-FUT POFUT2 GT68 Thrombospondin type 1 repeats
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Multiple sequence alignment of STs in vertebrates revealed the presence of family
motifs containing four to twenty amino acids specific to each ST family, thus implicating
another level of amino acid conservation among STs [29,31,35]. Except for ST6GALNAC,
all STs contain four common amino acid sequences located eight amino acids down-
stream of the 3′-end of sialylmotif L, termed motif “a”. The seven amino acids containing
ST6GALNAC motif “a” are located four amino acids closer to sialylmotif L. Another family
motif, “b”, lies 20 amino acids downstream from sialylmotif L and is present between sialyl-
motifs L and S. Interestingly, motif “b” is highly variable in length among ST families. Motif
“c” is the another family motif with two amino acids overlap at the 3′-end of sialylmotif S a
The family motif “d” is located downstream from sialylmotif III in ST6GALs while motif
“e” is found downstream from sialylmotif VS in the ST8SIA and ST6GALNAC families.

2.3. Thirteen FUTs Are Organized into Four Families

Depending on their linkage specificities and acceptor substrates, 13 human FUTs are
organized into four families—α1,2 FUT; α1,3/4 FUT; α1,6 FUT; and O-FUT (Figure 1).
The α1,2 FUT family contains FUT1 and FUT2. α1,3/4 FUTs are classified into eight
enzymes—FUT3, FUT4, FUT5, FUT6, FUT7, FUT9, FUT10, and FUT11. Interestingly, α1,6
FUT contains only FUT8, whereas the O-FUT family includes the O-fucosyltransferases
POFUT1 and POFUT2 [25]. FUTs in mammals have been classified into four distinct fam-
ilies in the CAZy database (Table 1). FUT1 prefers type II (Galβ1,4GlcNAc) acceptors,
while FUT2 has a specificity for type I (Galβ1,3GlcNAc) glycans [36,37]. FUT3 and FUT5
can utilize both type I and type II acceptors, and modification of an amino acid can al-
ter their relative α1,3 or α1,4 specificities [38–40]. FUT3, FUT5, and FUT6 can transfer
L-fucose (L-Fuc) to both non-sialylated and sialylated acceptors. FUT4 and FUT9 prefer
non-sialylated type II acceptors, while FUT7 is specific for the sialylated type II accep-
tor [31,41,42]. FUT10 and FUT11 add L-Fuc onto the innermost GlcNAc residue of the
chitobiose unit of biantennary N-glycans and are clearly distinguishable from the classi-
cal α1,3 FUTs (i.e., FUT3, FUT4, FUT5, FUT6, and FUT7), which utilize short and linear
lactosamine-related acceptors [25,43].

The preferred site for fucosylation varies considerably among α1,2 and α-1,3/4 FUTs,
which has a remarkable impact on the synthesis of terminally fucosylated epitopes, such
as blood antigens (H1 and H2) and Lewis antigens (Lex, Ley, Lea, Leb, sLex, and sLea),
thus contributing toward the complexity of fucose-containing Lewis epitopes in naturally
occurring glycoconjugates [24,44]. Pronounced over-expression of Lewis epitopes has
been reported in the manifestation of cancer [17–25] (Table 1). SialylLewis (sLex and sLea)
epitopes are selectin ligands that are overexpressed in cancers due to the upregulation
of FUT4, FUT5, FUT6, and FUT7 [45]. sLex/sLea contribute to cancer dissemination and
metastasis [46] FUT8 promotes core fucosylation, which is ubiquitously present in N-
glycans [47], whereas POFUT1 and POFUT2 catalyze the transfer of fucose to O-glycan and
selectively fucosylate epidermal-growth-factor-like (EGF) repeats and thrombospondin
type 1 repeats (TSRs) (Figure 1), respectively, present in the extracellular domain of several
proteins such as Notch and thrombospondin 1 [48,49]. Aberrant core fucosylation is also
reported to contribute to malignancies [50] (Table 1).

2.4. Sequence Analysis and Conserved Patterns in FUTs

Hydrophobic cluster analysis performed on FUTs from vertebrates, invertebrates,
plants, and bacteria revealed conserved peptide sequences termed as FUT motifs—three in
the catalytic region common to α1,2 and α1,6 FUTs [51,52]; two specific to α1,3/4 FUTs;
one for α1,2 FUTs; and one unique to α1,6 FUTs. Interestingly, three motifs are shared by
α1,2 FUTs, α1,6 FUTs, and O-FUTs that are common among the sequences of these families,
including residues involved in binding the nucleotide of the sugar donor [52–54]. The α1,2,
α1,6, O-FUTs, and α1,3/4 families of FUT are likely descended from a common progenitor.
Interestingly, α1,3/4 FUTs have emerged as distant to the rest of the families [52,55].
Sequence alignment of α1,3FUTs revealed that 17 amino acids, FxL/VxFENS/TxxxxYxTEK,
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commonly referred to as the α1,3 motif, are highly conserved among species [41]. In the
past few years, impressive progress has been made in the elucidation of structures of FUTs
in eukaryotes, including mammals [56–63]. Boruah et al. performed structural alignments
of FUTs and reported structural similarities far beyond the three previously identified
motifs, α1,2 FUTs, α1,6 FUTs, and O-FUTs [52–54]. Furthermore, thirteen amino acids were
identified that are the most conserved among these structures, few of which were noted in
a more focused comparative analysis of the sugar donor binding region [51].

3. Cellular Localization of STs and FUTs

As of 30 January 2021, the CAZy database annotated 242 GT sequences in the human
genome organized into 47 GT families (http://www.cazy.org/) Accessed on 24 April 2021.
Both STs and FUTs present a complex tissue-, cell-type-, and stage-specific expression
pattern, and are expressed as both membrane-bound and soluble proteins [64]. Analogous
to the other Golgi-resident GTs, all human STs and FUTs cloned to date typically share
a type II architecture, containing an N-terminal transmembrane domain anchored at the
Golgi membrane and a C-terminal catalytic region exposed to the Golgi lumen present in
the late cisternae of the Golgi [40,65]. O-FUTs, on the other hand, are ER-localized soluble
proteins which fucosylate Notch and TSR domains of proteins [66] (Figure 2). POFUT1
first fucosylates EGF domains in the ER and acts as a chaperone to aid protein secretion to
the cell surface. Proteins with TSR domains are fucosylated by POFUT2, but whether this
occurs in the ER requires further investigation [40]. Mollicone et al. [43] cloned three active
isoforms of the human FUT10 gene and investigated their subcellular distributions. The
FUT10-319 isoform encodes a soluble protein expressed in human embryos. FUT10-419
and FUT10-479 are reported to be co-localized with calnexin (Figure 2), be retained in the
ER, and be expressed in the human embryo and brain, respectively.
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4. Global Fold Architecture

Emerging structural information on GTs in the past two decades has been consol-
idated into three catalytic domains of GTs, organized as GT-A, GT-B, and GT-C, while
unresolved folds are characterized as orphans. GT-A and GT-B folds primarily consist of
α-β-α sandwiches, analogous to the Rossmann fold. However, the third fold, GT-C, is the

http://www.cazy.org/
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characteristic lipid-phosphate-dependent GT fold, containing multiple transmembrane
α-helices [12,67–69]. Both GT-A and GT-B folds employ analogous approaches to interact
with nucleotide sugar donor substrates, a similarity that is attributed to the constraints of
the interacting loops that extend from the Rossmann fold. However, they vary considerably
in terms of their interactions with acceptor substrates.

The architecture of GT-A is reminiscent of two tightly associated β/α/β Rossmann
domains, the sizes of which vary, leading to the formation of a continuous central β-
sheet to create the N-terminal donor and C-terminal acceptor binding regions [8]. Most
GT-A enzymes display a DxD motif signature, where “x” represents any amino acid
that coordinates divalent cations (typically Mn2+ or Mg2+) to the phosphate group of the
nucleotide. It is noteworthy that the DxD motif is not a conserved feature of the GT-A fold,
since there are examples of enzymes containing this fold that lack this motif [8].

The GT-B fold, on the other hand, consists of two separate β/α/β Rossman domains,
i.e., an N- and a C-terminal domain separated by a large cleft where the active site is located
and stabilized by two long C-terminal-helices. The GT-B fold lacks the DxD motif and
generally does not require metal ions for catalysis. Donor and acceptor substrates bind to
the C- and N-terminal regions of GT-B, respectively [8].

4.1. STs Display Variants of the GT-A Fold

Although mammalian STs belong to the GT29 family, intriguingly, they have been
predicted to be similar to the CstII fold, a GT-A variant (i.e., variant 1) from Campylobacter
jejuni, belonging to the GT42 CAZy family [27]. CstII is comprised of two closely associated
domains. One domain has a mixed α/β fold with a central, parallel, seven-stranded,
twisted β-sheet, flanked by helices on either side. The other domain is composed of a long
coil and two helices forming a lid-like structure folded over the catalytic site, to shield the
donor substrate from hydrolysis and create an acceptor binding site [67] (Figure 3). The
N-terminal domain of CstII ST possesses some sequence similarity with sialylmotif L of
the eukaryotic ST [27]. This prediction was later reinforced by the elucidation of the 3D
structure of the first mammalian ST, i.e., porcineST3GAL1 [33] (also named SsST3GalI),
whose catalytic domain displays a mixed α/β fold with a seven-stranded parallel β-sheet
flanked by 12 α-helices. PorcineST3GAL1 exhibits a modest 10% sequence identity with
CstII but contains a β-sheet core and a lid-like structure analogous to the CstII fold. Porcine
ST3GAL1 is speculated to be a second distinct GT-A variant (i.e., variant 2) (Figure 3),
which displays a disulfide bond linking two conserved Cys residues of sialylmotifs L and S
and mirrors the signature structure of the eukaryotic ST family [36,37,40]. Crystal structures
of human STs have revealed that HsST3GAL1 [70], HsST6GAL1 [71], HsST6GALNAC2 [14],
and HsST8SIA3 [72] adopt a GT-A variant 2 topology (Figure 3) and broadly resemble
the fold ofporcineST3GAL1 [36,37,40] and ratST6GAL1 [73], i.e., a seven-stranded β-sheet
flanked by multiple helices. Intriguingly, STs of the GT29 family have a histidine residue as
acatalytic base, e.g., His-319 in porcineST3GAL1 [33], His-367 in ratST6GAL1 [73], His-316
in HsST3GAL1 [70], His-370 in HsST6GAL1 [71], His-351 in HsST6GALNAC2 [14], His-346
in HsST8SIA2, His-354 in HsST8SIA3, and His-331 in HsST8SIA4 [72] (Figure 4).

4.2. FUTs Display the GT-B Fold and Variations of It

Based on crystallographic data available for FUTs in mammals, FUTs appear to adopt
variations of the GT-B fold. However, there are examples of FUTs that utilize residues
from both domains to interact with acceptor substrates [59–61]. Strikingly, the geometry
of the cleft has also been found to be modulated in order to accommodate extended
branched-glycan structures.
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Crystal structures of FUTs in Caenorhabditis elegans and Homo sapiens illustrated that
POFUT1 and POFUT2 display the GT-B fold and variations of it [61,74] (see Figure 5).
In CePOFUT1, the residues from the active site that interact with GDP-Fuc are mainly in
the C-terminal domain together with those from the N-terminal domain [74]. The overall
structure of HsPOFUT1 closely resembles that of CePOFUT1; however, HsPOFUT2 has a
variant of the GT-B fold in which the N- and C-terminal domains interact closely with each
other to form an extended protein unit [59–61]. Li et al. reported the crystal structure of the
mouse POFUT1 in a complex with both donor and acceptor substrates, i.e., GDP/GDP-Fuc
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and EGF-like domains (LDs), respectively [60]. EGF-LDs lie in the wide groove between
the N- and C-terminal domains of the canonical GT-B fold in the ternary complex of
MmPOFUT1:GDP:EGF-LD. Similarly, in another ternary complex between CePOFUT2,
GDP, and HsTSR1 (the first TSR identified as human thrombospondin 1), GDP is found
in a shallow cavity of the C-terminal domain. In contrast, half of HsTSR1 is embraced by
a cleft formed between both domains [61]. Intriguingly, the apo and complex structures
of HsFUT8 revealed that the GT-B fold contains only one Rossman fold (Figure 5), which
contains a series of loops and an α-helix that contribute toward forming the ligand binding
region [75].
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5. Binding Interactions of STs with Natural Donor Substrate CMP-Neu5Ac

Meng et al. [73] crystallized the structure of ratST6GAL1 and described several con-
served features shared by ratST6GAL1 with CjCstII [76], porcineST3GAL1 [36,37,40], and
HsST6GAL1, including the sialylmotif region involved in binding the donor substrate, i.e.,
CMP-Neu5Ac. Despite the fact that they were predicted to be similar to the CStII fold, the
binding regions of mammalian ST structures display considerable variability with minimal
conservation in the residues that directly interact with CMP-Neu5Ac regarding the C. jejuni
CstII structure. CjST contains anNH2-terminal end that starts at the equivalent of sialylmo-
tif L with an extended COOH-terminal sequence beyond the final β-strand, contributing
to the catalytic domain and membrane tethering [76]. In contrast, the COOH-termini of
mammalian STs terminate almost immediately after the final β-strand but display extended
sequences on the NH2-terminal side of the sialylmotif, which contribute to both the cat-
alytic domain and membrane tethering [36,37,40]. However, the sialylmotif sequences,
which comprise the underlying scaffold of the Rossmann fold and adjoining loop regions,
have been found to be conserved and are engaged in stabilizing the residues of the donor
binding region within the Cj and mammalian STs [73].

It has been observed that CMP and CMP-Neu5Ac form multiple noncovalent interac-
tions with the active site residues comprising the GT-A-defining nucleotide-binding Ross-
mann fold in HsST6GALNAC2 and HsST8SIA3, respectively. These interactions are similar
to those observed for donor binding in bacterial CstII and other human STs, affirming
that the sialylmotif scaffold underlying the CMP-NeuAc binding site is conserved [72,76].
Structural superimposition of HsST3GAL1, HsST6GAL1, and HsST8SIA3 clearly indicates
that the donor substrate displays a similar orientation within the binding cleft and that the
residues interacting with CMP or CDP are variable, while highly conserved amino acid
residues are involved in recognizing the CMP or CDP of the donor substrate (Figure 6A).
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id: 4AP6), with the aligned GDP-fucose donor substrates and surrounding residues shown in sticks. Zoomed views of
bound ligands with their interacting residues are displayed in the right panel.

Recently, Harrus, et al. solved the crystal structure of HsST6GAL1 in the apo- and
CMP-Neu5Ac-bound states and reported on the flexibility of the catalytic loop [32]. The apo
structure contains Tyr354, which interacts with the CMP-Neu5Ac at both the phosphate and
Neu5Ac moieties, implying that the unliganded enzyme has an inherent interaction with
the donor substrate. However, the bound state displays an alternate conformation, which
prepares HsST6GAL1 to perform the hydrolysis step. Comparison of this new liganded
structure [32] with the previously reported HsST6GAL1 [71] revealed the following differ-
ences: (a) the region 366–372, corresponding to motif “d” and sialylmotif VS, is unstable;
however, binding to either (i) the acceptor substrate or (ii) α-helix 100–121, irrespective
of the acceptor interaction, is speculated to stabilize this region; (b) the disulfide bond
C353–C364 exists in a different orientation in the new structure, implying a movement
in this region upon binding the acceptor; and (c) binding of CMP-Neu5Ac involves the
side chain at C-5 of the sugar residue, which is directed toward empty space at the sur-
face of HsST6GAL1. Interestingly, the exact binding mode of Neu5Ac directly involves
thesialylmotifs L, S, and III, and transfers the sialylmotif VS into the immediate vicinity.
Hydrophobic interactions, π-alkyl and amide π-stacking, and a multitude of hydrogen
bonds stabilize the overall structure of HsST6GAL1 [32].
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6. Binding Interactions between FUT and Its Natural Donor Substrate GDP-Fucose

Despite significant differences in sequence and domain architecture, the interaction
of FUT with its donor substrate, GDP-Fuc, is analogous among the different human FUTs
with solved structures to date. Interestingly, the residues interacting with the fucose moiety
are variable, while highly conserved residues are involved in recognizing the nucleotide
moiety of the donor substrate. For instance, in both HsPOFUT1 and HsPOFUT2, most
residues interacting with the GDP of the donor fucose are conserved [74]. β-phosphate of
GDP-Fuc interacts with Arg240 and Arg294 through hydrogen bonding and electrostatic
interactions in both HsPOFUT1 and HsPOFUT2. Furthermore, the residues Asn46/Asn57,
His238/His292, Asp340/Asp371, Ser356/Ser387, Ser357/Thr388, and Phe358/Phe389
interact with GDP in HsPOFUT1/HsPOFUT2, contributing to the tethering of the donor
substrate (Figure 6B). However, the residues responsible for recognizing and stabilizing
the fucose moiety, namely Arg43/Asp244 of HsPOFUT1 and Pro53/Gly55 of HsPOFUT2,
are variable [74].

The binding interaction of HsFUT8 with GDP-fucose was studied using computa-
tional techniques based on the binary complex of CePOFUT1-GDP-fucose [77]. Since the
binding sites of the donor molecule in CePOFUT1 and HsFUT8 are structurally similar,
the investigators placed the donor molecule into the HsFUT8 using the same positioning
as seen in the structural relative CePOFUT1. Analogous to HsPOFUT1 and HsPOFUT2,
Arg365 interacts with the β-phosphate of GDP. Strikingly, Arg365 interacts with the fucose
moiety in HsFUT8, which has not been observed in human POFUTs. Further, Arg365 is
speculated to assist the release of GDP and confer proper orientation of the fucose residue
for the nucleophilic attack of the acceptor [77]. Jarva et al. solved the ternary complex of
GDP:HsFUT8:GlcNAc2Man3GlcNAc2-Asn(A2-Asn) and revealed another unique property
of FUT8 in mammals, which is that it undergoes a conformational change upon binding
to GDP [51]. Loop A (Arg365–Ala375) and loop B (Asp429–Asn446) are disordered in the
unliganded HsFUT8 structure but become ordered upon binding GDP. This transformation
leads to the formation of new interactions between loops A and B; in particular, the electro-
static interactions between Asp368 and Arg365 of loop A and Arg441 of loop B are involved
(see Figure 7). Arg365 forms a salt bridge with the β-phosphate of GDP. These findings
imply that the binding of the GDP moiety with FUT8 reorganizes the encapsulating loops
around the nucleotide. Additionally, the interactions involving the Asp453/His363-guanine
base and the Tyr250-ribose hydroxyl groups are reported to contribute toward reorganizing
both loops [51]. Later, Boruah et al. reinforced these findings that the loop regions are
extended away from the donor binding site in the absence of GDP; however, the loops are
flipped in to enclose the donor analog in the GDP:FUT8 complex [78]. It is notable that
despite displaying this novel feature once the substrate is bound to FUTVIII, the spatial
orientation and interactions with FUTVIII are nearly identical for other FUTs reported in
mammals. These findings suggest that a common scaffold seems a promising approach to
target human α1,6 FUT and O-FUTs [62].
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respectively, upon binding of GDP.

7. Binding Interactions of STs and FUTs with Their Acceptor Substrates

Based on the nature of the acceptor substrate (i.e., glycan or protein), STs/ FUTs can
be classified as glycan- or protein-modifying GTs. Glycan-modifying GTs include all ST
and FUT subfamilies except the O-FUTs, which are protein-modifying GTs in humans.

7.1. Glycan-Modifying STs and FUTs

Glycan-modifying GTs include mammalian GT29 sialyltransferases that employ anal-
ogous conserved sugar donors but recognize diverse acceptor substrates. The acceptor
binding regions of STs have shown striking differences in their sequence, secondary struc-
ture, and position among the members of the GT29 family [73]. The crystal structure of
HsST6Gal1 bound to the Gal2GlcNAc2Man3GlcNAc2-Asn acceptor illustrates that the C6-
OH group of the terminal Gal residue from the Gal-β-1,4-GlcNAc moiety of the acceptor is
adjacent to the His catalytic base [72,73] (Figure 8). Interestingly, the HsST3Gal1-Gal-β-1,3-
GalNAc-oNP binary complex revealed that the plane of the terminal Gal acceptor residue
is rotated by 180◦, which ultimately positions its C3-OH group adjacent to the catalytic His
residue for glycan transfer [73] (Figure 8). This flipped geometry alters the nature of the
interaction with the acceptor in HsST3Gal1. In fact, extensive hydrogen bonding stabilizes
the complex while taking advantage of the down-facing axial hydroxyl groups of the
disaccharide acceptor. These interactions are quite different from the mode of hydrophobic
stacking and hydrogen bonding that is common among Gal-specific binding proteins,
including HsST6GAL1 [73]. The ternary complex of CMP-3F-NeuAc-HsST8SIA3-NeuAc-
α-2,3-Gal-β-1,4-GlcNAc-6-SO4 showed that the acceptor NeuAc of ST8SIA3 primarily
forms hydrogen-bonding interactions by positioning the nucleophilic C8-OH group of
NeuAc adjacent to the His catalytic base [72] (Figure 8). The crystal structure of the CMP-
HsST6GALNAC2 binary complex, but without an acceptor, revealed minimal sequence and
structural similarity in the primary sequence of the loop regions and secondary structural
elements involved in acceptor substrate recognition compared to HsST6GAL1, HsST3GAL1,
and HsST8SIA3, implying the presence of significant diversity in the acceptor binding
region among members of the GT29 family [14].
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Figure 8. Three sialyltransferase structures with a GT-A fold (variant 2) shown in the circles with
the bound donor analogs (white sticks) and acceptor analogs (yellow sticks). Structures include
HsST6GAL1 (PDB id: 4JS2), HsST3GAL1 (PDB id: 2WNB), and HsST8SIA3 (PDB id: 5BO9). Close-up
views of the bound donor and acceptor ligands are displayed in the same orientation and coloring as
highlighted in the circled structures.

The crystallization of the GDP:FUT8:GlcNAc2Man3GlcNAc2-Asn ternary complex
was a milestone toward understanding the interaction of FUT8 with its substrates and
catalysis in humans. FUT8, a GT involved in the core fucosylation of mammalian branched
N-glycans, has been extensively explored to identify conserved and divergent structural fea-
tures for acceptor recognition employing the ternary complex. FUT8 features an N-terminal
coiled-coil domain, a catalytic domain, and a C-terminal SH3 domain, a unique characteris-
tic among GT proteins [62]. The ternary complex of GDP:HsFUT8:GlcNAc2Man3GlcNAc2-
Asn (A2-Asn),investigated by Kotzler et al., displays that a hexasaccharide is required as a
minimal acceptor structure [79]. The 6-OH of the GlcNAc-1 of the hexasaccharide must be
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nearby the anomeric position of the Fuc residue of the bound donor for its transfer to the
6-OH of the GlcNAc-1 of the acceptor. The hydrogen bonds and hydrophobic interactions
of the acceptor with GDP-Fuc contribute significantly to the binding of the acceptor. The
branch at the 3-position mannose is bound through multiple hydrogen bonds between the
flexible loop and the C-terminal β-sheets. Despite being distant from the site of the fucosyl
transfer, GlcNAc-5 at the 3-mannose branch is essential for substrate specificity and exhibits
transient interactions with the Lys541 side chain and with the flexible loop. The carboxyl
group of Glu373 is essential for catalytic activity by engaging in interactions with the OH-3
and OH-4 of GlcNAc-5 [79]. Recently, novel insights have been made regarding HsFUT8 gly-
can acceptor recognition. Gracia et al. captured a ternary complex of GDP:HsFUT8:A2-Asn
and showed that the catalytic domain is connected to the N-terminal coiled-coil domain
by interdomain α3; however, the C-terminal SH3 domain is in contact with the catalytic
domain by the β10–β11 loop [75]. GDP is partly buried and confined within the catalytic
domain. GlcNAc-1 and -2 of the core region of A2-Asn are also present in the catalytic
domain. However, α3/α6-branches of A2-Asn are located in the exosite formed by the
β10–β11 loop and the SH3 domain. Interestingly, the β6–α8 loop (residues 365–378) is
partly disordered in the apo form, but undergoes a conformational change in the presence
of substrates; thus, the key residues Arg365, Lys369, and Glu373 not only recognize GDP
and A2-Asn, but also contribute to catalysis since Glu373 acts as the catalytic base for
the 6-OH group of the GlcNAc-1 of A2-Asn [75]. When the GDP:HsFUT8:A2-Asn ternary
complex is aligned with the GDP-Fuc:HsPOFUT2 binary complex, the fucose residue from
donor substrates occupies the appropriate position within the active site of FUT8 such
that C1 of the Fuc residue is directly aligned for nucleophilic attack by the OH-6 of the
GlcNAc-1 of A2-Asn (Figure 9A), as recently demonstrated [62].

To further understand the preferences of the acceptor site, Jarva et al. solved the
ternary structure of FUT8 in both mice and humans. The SH3 domain emerged as con-
tributing toward the evolution of FUT8 as a dimer, which restricts the movement of the
SH3 domain and stabilizes the acceptor binding site [51]. Glu373 displays close hydrogen
bonding with the 6-OH group of the GlcNAc residue of A2-Asn, which interacts with
Lys369 and in turn is in close contact with the β-phosphate of GDP. Notably, the activity
of FUT8 depends on the terminal GlcNAc of the α3-branch since the intimate hydrogen
bonding between His353 and the 6-OH group of this GlcNAc contributes toward acceptor
binding. In another study, Boruah et al. performed kinetic studies on HsFUT8 with the
acceptor A2-Asn and its structural analogs to investigate the restricted substrate recogni-
tion of the enzyme [78]. The structural superimposition of HsFUT8 bound to the donor
substrate analog with four distinct glycans (i.e., A1-Asn, A2-Asn, A3′-Asn, and NM5N2-
Asn) corroborates their observation that the trisaccharide GlcNAc-β1,2-Man-α1,3-Man
moiety is the key determinant for the acceptor recognition of FUT8 [78] (Figure 9B,C). It
is notable that FUT8 displays a highly rigid active site that allows access to only a few
potential structures, despite having a common Man3GlcNAc2-Asn structure in the core
region of these acceptor substrates.

7.2. Protein-Modifying FUTs

Protein-modifying GTs target the hydroxyl group of Ser or Thr in proteins. They must
first bind to the acceptor protein to orient the respective Ser/Thr hydroxyl nucleophile
correctly for the transfer of a sugar moiety from the donor substrate. These include POFUTs,
which modify folded cysteine-rich domains [14]. POFUT1 transfers fucose to the Ser or
Thr residue of EGF repeats containing the consensus sequence C2-X-X-X-X-(S/T)-C3 [80].
However, POFUT2 glycosylates Ser or Thr residues in the consensus sequence C1-X-X-
(S/T)-C2 or C2-X-X-(S/T)-C3 of TSRs of groups 1 and 2, respectively (where X is any amino
acid) [80]. While disulfide bridges of group 1 TSRs follow the pattern C1–C5, C2–C6, and
C3–C4, the TSRs of group 2 are arranged as C1–C4, C2–C5, and C3–C6. Interestingly, the
binding region of each of these O-FUTs is complementary to the face of the domain of the
protein, which interacts with the cleft through multiple hydrogen bonds, especially within
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the loop with the consensus sequence. This orients the domain to transfer the OH-group of
the Ser/Thr acceptor substrate exactly in the correct position to perform the nucleophilic
attack on the anomeric C-1 of the Fuc residue of the donor substrate [60,61].
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Figure 9. (A) The molecular interaction of HsFUT8 with its substrates and its catalytic mechanism in humans. The
GDP:HsFUT8:A2-Asn ternary complex (PDB id:6X5R)is aligned with the GDP-Fuc:HsPOFUT2 binary complex (PDB id:
4AP6). The aligned structures overlay the nucleotide and ribose (cyan sticks for GDP bound to FUT8 and green sticks for
GDP-Fuc bound to POFUT2) in both structures and place the fucose (green-circled sticks) in the active site of FUT8 for the
fucose residue which is aligned for nucleophilic attack by the OH-6 of the GlcNAc-1 of A2-Asn. Both the fucose and OH-6
GlcNAc nucleophile are circled in red, and Glu373 is the catalytic base. (B) Alignment of human FUT8 in the presence of a
donor substrate analog and with four distinct glycan acceptors. Cyan represents no glycan, orange represents ASN-A2
glycan, green represents ASN-A3, red represents ASN-A3′, and blue represents ASN-NM5N2 glycan. (C) Close-up image
of the active site of FUT8 in the presence of a donor substrate analog and four distinct glycan acceptors (superimposed).
(D) Schematic representation of glycan acceptor structures.

Experimental structures of HsPOFUTs in complexes with their acceptor substrates
are not yet solved; however, the ternary complexes of O-FUTs have been crystallized
in mice and C. elegans. The ternary complex of GDP/GDP-Fuc:MmPOFUT1:EGF-LDs
revealed multiple points of interaction between POFUT1 and EGF-LDs. However, the
core of the interaction involves a conserved preformed cleft on POFUT1 and conserved,
sequence-independent structural elements on the fucosylation motif, which is common
to all EGF-LDs [60]. The interactions outside the core region display POFUT1 residues,
which are flexible, and EGF-LD residues that are highly variable among POFUT1 substrates.
Thus, the observed plasticity of MmPOFUT1 is an important feature, which enables the
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enzyme to accommodate the sequence diversity of its EGF-LD substrates. The structure
of CePOFUT2–GDP–HsTSR1 highlighted that the CePOFUT2 binding domain contains
large cavities that are filled by an intricate network of water molecules [61]. The complex is
stabilized by a limited number of direct hydrogen bonds and stacking interactions between
CePOFUT2 and HsTSR1 that are complemented by many water-mediated interactions. The
proactive role of these water molecules is speculated to bestow promiscuity to CePOFUT2
toward dissimilar TSRs, which might be claimed for similar GTs that modify a wide variety
of peptide sequences.

8. Mechanism of Catalysis

The catalytic mechanism is independent of the overall fold of GTs since both inverting
and retaining enzymes are common among the GT-A and GT-B superfamilies. Nucleotide-
dependent GTs catalyze a glycosyl transfer reaction either by retention or inversion of
stereochemistry at the anomeric reaction center of the donor substrate to generate diverse
biological glycans with distinct anomeric configurations [8] (Figure 10A). The orientation
of the acceptor hydroxyl group relative to the donor anomeric carbon is the critical step in
establishing the catalytic mechanism for GTs.

8.1. STs Display SN2 Catalysis

STs are classified as metal-ion-independent inverting enzymes that employ an SN2
single-displacement reaction mechanism (Figure 10B), in which the nucleophilic hydroxyl
group of the acceptor attacks the anomeric carbon of the donor sugar, i.e., sialic acid,
and a catalytic base assists in the deprotonation of the nucleophile; the nucleotide moiety
leaves from the opposite face, resulting in the inversion of the anomeric configuration of
the product [16]. As aforementioned, histidines appear to serve as catalytic bases for the
sialyltransfer reaction of GT29 STs, thus emphasizing the role of histidine as an important
base in their catalytic mechanism (Figure 4).

8.2. FUTs Display SN1 or SN2 Catalysis

Analogous to the ST family, the SN2 single-displacement reaction mechanism is char-
acteristic of fucosyltransferases such as CePOFUT261 and HsPOFUT2 [59] (Figure 10B).
Despite the absence of ligands, FUTs utilizing an SN2 inverting mechanism usually contain
catalytic residues located in their binding pocket, such as Glu52 in CePOFUT2 [61] and
Glu54 in HsPOFUT2 [59]. Contrary to POFUT2, an SN1 mechanism involving the formation
of a close ion pair is postulated for POFUT1, in which the glycosidic bond is cleaved before
the nucleophilic attack [81](Figure 10C). In CePOFUT1, Asn43 may be positioned at the
hydroxyl group of the acceptor, close to the β-phosphate. However, Arg240 is the key
catalytic residue, through which hydrogen bonding with the glycosidic-bound oxygen
may facilitate the cleavage of the glycosidic bond. Additionally, in MmPOFUT1, Asn51 and
Arg245 are engaged in hydrogen bonding with acceptor molecules and the β- phosphate
group, respectively [60]. It is notable that no basic residues are present in the active sites
for CePOFUT1 and MmPOFUT1 that could act as assisting bases.

Based on in silico modeling of GDP-Fuc-bound HsFUT8 with A2Asn, an SN2-like
reaction is predicted for the enzyme, in which β-phosphate is speculated to play the
role of the catalytic base [77,79]. Subsequently, the GDP:HsFUT8:A2-Asn crystal structure
revealed that the motion of the β6–α8 loop brings the essential catalytic base Glu373 to
the binding site in the presence of ligands [75], information which was not evident from
previous computational studies [77,79], thus emphasizing the need to directly capture
donor-enzyme-acceptor ternary complexes to delineate the molecular basis of catalysis
for GTs.
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Figure 10. Reaction mechanism of STs and FUTs in mammals. (A) GTs catalyze the transfer of a sugar residue from a donor
substrate to an acceptor substrate either by retaining or inverting the anomeric stereochemistry with respect to the donor
sugar. (B) SN2 inverting mechanism of theGT29 family (e.g., HsST3GAL1, HsST6GAL1, HsST8SIA2, HsST8SIA3, HsST8SIA4,
and FUTs) (e.g., CePOFUT2, HsPOFUT2, andHsFUT8). (C) SN1 inverting mechanism for CePOFUT1 and MmPOFUT1.
The cyan E displays the enzyme (ST/FUT); the purple B represents the catalytic base, which deprotonates the acceptor
nucleophile; and the red O indicates the nucleophilic oxygen of the acceptor substrate. CMP, GMP, and GDP (blue) are
cytidine monophosphate, guanosine monophosphate, and guanosine diphosphate, respectively.

9. Molecular Interactions of Porcine ST3GAL1 with a Potent Inhibitor That Mitigates
Tumor Cell Metastasis

Cells treated with a lithocholic acid analog (Lith-O-Asp) revealed reduced activities
of ST3GAL1, ST3GAL3, and ST6GAL1 in in vitro and cell-based activity analyses [81].
Lith-O-Asp has been proposed to abrogate tumor cell metastasis, partly by inhibiting ST
activity to attenuate the expression of cell-surface sialylated antigens such as integrin-β1
and inhibit FAK/paxillin/Rho signaling activity in vivo [81]. To understand the nature of
the interaction between the mammalian ST and Lith-O-Asp, we performed a molecular
docking analysis between porcineST3GAL1 (PDB ID: 2WNB) and Lith-O-Asp that clearly
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revealed the strong binding affinity of Lith-O-Asp with active site amino acid residues with
an interaction energy of −8.75 kcal/mol (Figure 11). Our computational analysis revealed
major interactions stabilizing the enzyme-inhibitor complex, which include: (a) a close in-
teraction of the acidic end of Lith-O-Asp and His319, Thr 272, and Tyr233 of ST3GALI, and
(b) interaction of the amine end of Lith-O-Asp with Glu324. Recently, Ortiz-Soto et al. [70]
generated a model of HsST3GAL1 based on the ternary porcine ST3GAL1 complex and
investigated the molecular interactions between the enzyme and its substrates to further
understand the correlations among the structure, activity, and stability of ST3GAL1 in hu-
mans. The removal of hydrogen bonds and/or stacking interactions among both donor and
acceptor substrates and residues such as Tyr191, Tyr230, Asn147, Ser148, and Asn170 influ-
ences the activity of ST3GAL1 to different extents. Intriguingly, the removal of disulphide
Cys59–Cys64 reduces the activity of donor and acceptor substrates in vitro. Here, compu-
tational techniques could be employed to gain insight into the interactions of ST3GAL1
with its substrates to provide a theoretical model to further evaluate the interaction of
Lith-O-Asp and similar metabolic inhibitors with ST3GAL1 and other sialyltransferases in
humans. Thus, a computational biology approach toward developing selective therapeutic
targets may act as a catalyst for drug discovery in cancer.
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10. Structural Modeling of STs and FUTs

Molecular modeling of STs and FUTs is challenging since the number of available
crystal structures remains limited for humans. Previously, in the absence of crystal struc-
tures, homology modeling along with fold recognition or threading techniques were used
to predict structures. The first structural model for the mammalian FUT family, FUT4 in
mice, was developed using this technique [82]. Furthermore, homology models have been
proposed for HsFUT3 and HsFUT7, as described in detail by de Vries et al. [41]. Homol-
ogy models for HsST8SIA1 and HsST8SIA4 have also been developed with RosettaCM50
using a template alignment generated with Modeller [72]. Additionally, the interaction
of HsST8SIA4 with its acceptor substrate has been explored with RosettaDock [72]. The
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SWISS-MODEL server has been used to generate a homology model of HsST3GAL1using
the crystal structure of porcine ST3GAL [70]. Strecker et al. used Schrodinger’s Maestro
software to recreate a model of HsFUT8 for donor substrate binding using its crystal struc-
ture [83]. In addition, a molecular dynamic (MD) simulation has been performed with
Desmond v3 to explore the flexibility of HsFUT8 [83]. Since both STs and FUTs are inverting
glycosyltransferases that involve large conformational movements, we propose that the
MD simulation techniques could be useful to study the flexible loops that are proposed in
their catalysis.

11. Conclusions

STs and FUTs display conformational plasticity upon substrate binding and catalysis.
Notable progress has been made in the last decade in the successful crystallization and
molecular modeling of several STs and FUTs, which has opened new avenues to fill gaps in
our understanding of their structural architecture, interactions with substrates, and catalytic
mechanisms. This progress holds the promise to impact medical and biotechnological
development. Despite the remarkable breakthrough in the determination of high-resolution
crystal structures of mammalian STs and FUTs in both apo and binary complexes, very
few are available as ternary complexes. It is therefore essential to capture donor-enzyme-
acceptor ternary complexes to delineate the molecular basis of the catalytic mechanisms
of these glycosyltransferases, which are sought-after therapeutic targets in diseases such
as cancer.
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