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Abstract: The adenosine monophosphate activated protein kinase (AMPK) is critical in the regulation
of important cellular functions such as lipid, glucose, and protein metabolism; mitochondrial biogen-
esis and autophagy; and cellular growth. In many diseases—such as metabolic syndrome, obesity,
diabetes, and also cancer—activation of AMPK is beneficial. Therefore, there is growing interest
in AMPK activators that act either by direct action on the enzyme itself or by indirect activation of
upstream regulators. Many natural compounds have been described that activate AMPK indirectly.
These compounds are usually contained in mixtures with a variety of structurally different other
compounds, which in turn can also alter the activity of AMPK via one or more pathways. For these
compounds, experiments are complicated, since the required pure substances are often not yet iso-
lated and/or therefore not sufficiently available. Therefore, our goal was to develop a screening tool
that could handle the profound heterogeneity in activation pathways of the AMPK. Since machine
learning algorithms can model complex (unknown) relationships and patterns, some of these meth-
ods (random forest, support vector machines, stochastic gradient boosting, logistic regression, and
deep neural network) were applied and validated using a database, comprising of 904 activating and
799 neutral or inhibiting compounds identified by extensive PubMed literature search and PubChem
Bioassay database. All models showed unexpectedly high classification accuracy in training, but
more importantly in predicting the unseen test data. These models are therefore suitable tools for
rapid in silico screening of established substances or multicomponent mixtures and can be used to
identify compounds of interest for further testing.

Keywords: AMPK activator; machine learning; random forest; support vector machine; logistic
regression; deep learning; QSAR

1. Introduction

The adenosine monophosphate (AMP) activated protein kinase (AMPK) plays a mas-
ter role in regulating cellular metabolism [1]. Its regulation is critical for many cellular
functions, such as lipid, glucose, and protein metabolism; cellular growth; and mitochon-
drial biogenesis and autophagy [2]. The cellular mode of action suggests a beneficial
clinical effect in various metabolic and degenerative diseases, ageing, as well as diabetes,
cancer, and viral infection [3].

AMPK adapts cellular metabolism and cell growth to the supply of energy at two
levels: At the central level, its hypothalamic activity is regarded as the key negative
regulator of sympathetically activated thermogenesis, integrating different peripheral
hormonal signals as well as drugs such as thyroid hormone, estrogens, and metabolites
with different hypothalamic networks and food signals [4–7]. In peripheral cells, AMPK
senses the loss of cellular energy as an increasing AMP/ATP ratio. AMPK is activated
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and in turn activates catabolic pathways, improves cellular glucose uptake, and inhibits
anabolic reactions [3].

Numerous clinical studies showed the efficacy of metformin—an indirect AMPK
activator—in type 2 diabetic patients, resulting in its clinically acceptance as first line initial
pharmacologic management of increased blood glucose in adults with type 2 diabetes
mellitus (American Diabetes Association [8]). AMPK inhibits the mTOR (mechanistic target
of rapamycin) complex 1, a nutrient sensitive master regulator of cell growth, angiogenesis,
and metabolism that is activated by growth factors especially in tumors [9]. Several in vitro
studies with the AMPK activator metformin showed the induction of cell cycle arrest
in different tumor models (among others in breast cancer [10], and prostate cancer [11]).
Therefore, the indirect activator metformin has been investigated in many clinical studies
in patients with different types of cancer [12].

For a variety of different compounds, direct and/or indirect AMPK activation has
been described: direct activators bind to the catalytic α subunit of AMPK allowing it to
be phosphorylated at Thr172 or to the regulatory γ-subunit for allosteric activation [1].
Physiological direct activators are AMP, to a smaller extent ADP; pharmacological direct
activators comprise among others AICAR (5-aminoimidazole-4-carboxamide ribose), A-
769662 and salicylate and a variety of newly synthesized compounds.

Indirect activation is controlled by upstream kinases (such as liver kinase B1 (LKB1),
calcium/calmodulin-dependent protein kinase kinase (CaMKKβ), or transforming growth
factor-β (TGFβ-activated kinase 1 (TAK1))), which phosphorylate Thr172 of the α-subunit [1,13].
In general, a multitude of compounds may indirectly activate AMPK by virtue of di-
verse mechanisms, which lower cellular levels of ATP. Examples are drugs, such as
metformin, and also a variety of natural compounds [14]—in particular, constituents
of Cimicifuga racemosa (black cohosh) [15].

These natural compounds are usually contained in mixtures of a large number of
structurally different chemical compounds which can directly or indirectly activate AMPK.
Therefore, our goal was to develop a screening tool that could handle the heterogeneity of
different activation pathways complementing in vitro assays that provide information on
direct influence on the enzyme.

Frequently, (quantitative) structure–activity analyses are performed to predict the
pharmacological or toxicological activity of new compounds. Nowadays, this is often done
in vitro in extensive high-throughput experiments, where the desired pharmacological
effects are measured in specialized cell culture assay systems. Molecular modeling of the
target structure itself has also been used to investigate the structural requirements for
binding to the target. However, machine learning-based QSAR methods are also able to
more quickly and with less effort linking structural information to more general questions:
e.g., an effect caused by different mechanisms, such as AMPK activation, but also more
complex effects such as toxic adverse drug reactions [16–20], drug–drug interactions [21,22]
or to predict clinical therapeutic effect. Last but not least, these machine learning methods
could be used to screen on a large-scale drugs approved for a different indication for new
indications in a repurposing approach [23].

Since machine learning algorithms can model complex (unknown) relationships and
patterns, we used these methods to model the structural requirements for the pharmaco-
logical effect of AMPK activation.

2. Results

The activators of AMPK and controls (either no activation or inhibition of AMPK)
were compared by the t-distributed stochastic neighbor embedding (tSNE) analysis to
graphically assess the applicability domain of the database compounds (Figure 1).
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Figure 1. t-distributed stochastic neighbor embedding (tSNE) analysis: AMPK activators and con-
trols.

In this comparison, the controls appeared to be mainly distributed in the center
of the plot, while activators were preferentially distributed in the periphery, indicating
different clusters (Figure 1). The chemical characterization of activators and inhibitors
was done according to suggestions by Sharma and Kumar [14], who described groups
of chemical compounds that were frequently associated with AMPK activation in the
literature (Figure 2). The visualization of these proposed chemical groups showed clear
qualitative differences between the activators and the controls.

Figure 2. tSNE analysis of chemically classified activators and controls separated by chemical structure. (A) AMPK
activators (N = 904); (B) AMPK control (N = 799).

2.1. Similarity of Groups

The mean standardized distances (mean; standard deviation) was higher (45.8; 18.8)
within the activators than within the controls (40.2; 22.2), indicating a higher heterogeneity
in the former group. This reflects the most diverse activation pathways of the AMPK.

2.2. Statistical Comparison of Datasets

As described in the method section, for each database instance (compound), 1445 chemical
descriptors (PaDEL) have been calculated. All descriptors (features) have been compared
between controls and activators by unpaired t-tests assuming unequal variances. From
all 1445 features, 835 were significantly different between the two groups. Among others,
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selection of intuitive features is reported in Table 1. Compared to the controls, the activators
had on average more acidic groups (p < 0.001), more aromatic atoms and aromatic bonds
(both p < 0.001) and a higher number of nitrogen atoms (p < 0.02). In addition, they had a
significantly (p < 0.001) smaller number of 5- to 7-membered rings containing heteroatoms
(N, O, P, S, or halogens).

Finally, activators had a significantly smaller molecular weight (p < 0.001) and a higher
lipophilicity (p < 0.001). Both, controls and activators had on average less than one failure
of the Lipinski’s rule of five, which qualify them as drug-like compounds.

There were also large differences between features in classification, as demonstrated,
for example, in the random forest classification (Figure 3).

Figure 3. Feature importance (standard deviation) of the first 10 features for random forest classifi-
cation; nAcid = number of acidic groups; ALogP = Ghose-Crippen LogKow; ALogP2 = square
of ALogP; AMR = molar refractivity; apol = sum of the atomic polarizabilities (including im-
plicit hydrogens); naAromAtom = number of aromatic atoms; nAromBond = number of aromatic
bonds; nAtom = number of atoms; nHeavyAtom = number of heavy atoms; nH = number of hydro-
gen atoms.

2.3. Random Forest Classification (RFC)

The following hyperparameter settings were found to be optimal by grid-search
analysis with a mean accuracy of 91.6% on the training set: using the Gini impurity
criterion; determined minimal samples split = 6; minimal samples leaf = 2; the number of
estimators (created trees) was set to 100. The bootstrap option was set to “False”. Finally,
the maximum number of features was determined by the square root of the number of
features. For all other settings, default values were used, including automatic calculation
of weights to account for different class sizes.

2.4. Support Vector Machine Classification (SVM-C)

The following hyperparameter settings were found to be optimal by grid-search
analysis with a mean accuracy of 91.0% on the trainings set: the regularization parameter
C = 10. The strength of the regularization is inversely proportional to C. This value is
strictly positive. The penalty is a squared l2 penalty. The radial basis function (RBF) kernel
was chosen with kernel coefficient gamma = “scale”. That means that the program uses
1/(n_features × X.var()) as value of gamma. Finally, the class weight was set to “balanced”
to include automatic calculation of weights to account for different class sizes.

2.5. Stochastic Gradient Boosting (SGB) Analysis

The following hyperparameter settings were found to be optimal by grid-search
analysis with a mean accuracy of 99.3%: the optimal loss function was “exponential” that
recovers the AdaBoost algorithm. The optimal learning rate was 0.1, maximum dept was
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3, the number of estimators 1000 and the fraction of samples to be used for fitting the
individual base learners was 0.7. Furthermore, the class weight was set to “balanced” to
include automatic calculation of weights to account for different class sizes.

2.6. Logistic Regression Classification (LRC)

Different optimizers (“Newton- cg” (Newton conjugate gradient optimizer), “lbfgs”
(limited memory Broyden-Fletcher-Goldfarb-Shanno optimizer)—a quasi-Newton method
and “liblinear”—a linear classifier for smaller datasets) have been tested. The following
hyperparameter settings were found to be optimal by grid-search analysis: the regular-
ization parameter C was set to 0.1; for regularization, the penalty by the l2-norm and
as optimizer the Newton-cg was applied. The class weight was “balanced” to include
automatic calculation of weights to account for different class sizes.

2.7. Deep Neural Network (DNN) Analysis

As the last approach, a deep neural network analysis was performed using tensorflow
and its API keras. The following sequential model approach was applied: The opti-
mum hyperparameter were: Adams optimizer with learning rate = 0.001, batch size = 128,
and 50 learning epochs. The input layer used 1000 units (neurons), three hidden lay-
ers with neurons, and the activation function Elu. The code of the model is given in
Best_DNN_model.pdf in https://github.com/cptbern/QSAR_AMPK, accessed on 27 Oc-
tober 2021.

2.8. Test Performance

The performance of these models is given in Table 1. The ROC-curves for all models
are given in Figure 4.

Table 1. Summary of results of classification of different machine learning methods.

Method Training Accuracy
(%)

Test Accuracy
(%)

Y-Randomization **
(%)

Test Precision
(%)

Sensitivity
(%)

Specificity
(%) AUC *

RFC 91.6 92.6 52.7 ± 2.3 90.3 91.2 94.0 0.968 ± 0.013
SVM-C 91.0 93.0 53.2 ± 2.2 90.1 93.5 92.4 0.962 ± 0.009

SGB 91.3 93.0 52.8 ± 2.2 90.7 92.0 94.0 0.968 ± 0.012
LRC 90.8 91.0 52.6 ± 2.1 89.2 97.4 94.8 0.948 ± 0.014
DNN 91.6 90.6 53.0 ± 1.8 87.6 90.2 91.1 0.970 ± 0.002

Test set (number): activator (262), control (249); * AUC = Area under the receiver operating characteristics curve. ** N = 100 permutations.

All investigated models showed an unexpectedly high accuracy in the training but
more importantly in the unseen test data set. The accuracy of all models was comparable
between 91.0% and 93.0%. No clear advantage of one method over the others could be
identified.

To rule out overfitting of the data, Y-randomization of the response variables was
applied, achieving only about 52% accuracy for all methods (an indication that final models
have picked up on actual patterns rather than statistical noise). In addition, a 5-fold cross-
validation was performed, which confirmed the good predictivity. ROC curves confirmed
the high accuracy of the models.

https://github.com/cptbern/QSAR_AMPK
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Figure 4. Receiver operating characteristic (ROC) of the investigated methods. (a) Random Forest
classifier, (b) Support Vector Machine classifier, (c) Stochastic Gradient Boosting classifier, (d) Logistic
Regression classifier, and (e) Deep Neural Network classifier.

3. Discussion

All models showed very good performance in discriminating AMPK activators from
controls. The 5-fold cross-validation and the Y-randomization of the response variable
makes it unlikely that the high accuracy of all methods used is due to overfitting of the
data or to chance.

However, the DNN model appeared to have lower variability compared to the others
(Figure 4). It can be speculated that deep learning networks cope better with complex,
heterogeneous datasets than the other machine learning methods.

It is obvious that activation of AMPK is obtained via different (direct and indirect)
mechanisms (Figure 4) explaining the structural heterogeneity (Figure 2). In order to
achieve comprehensive prediction, it is therefore also necessary to have a sufficient number
of different activators in the database acting through any of these mechanisms.

Although we had an excellent prediction of our unseen test data set, we could not
exclude missing mechanisms. Furthermore, we have to consider that machine learning
modeling always carries the limitation that classification provides only probabilities which
require verification by direct in vitro or in vivo experiments. However, these experiments
are time- and resource-consuming. Therefore, one goal of machine learning prediction is to
facilitate the selection of suitable candidates from a range of possible candidates.
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In the literature (PubMed search with terms “AMPK” and “QSAR”), several QSAR
models for prediction of AMPK activation have been published so far [24–30]. However, all
of these models used pharmacophore docking analyses or homology models or structure-,
ligand-, or fragment-based design and focused exclusively on direct AMPK activators. In
contrast to these approaches, as far as we know, we were the first to explicitly extend our
models by including all compounds that showed evidence of AMPK activation, regardless
of the activation pathway, whether direct or indirect. Therefore, our approach is more
general and better accounts for the well-described heterogeneity of AMPK activation
(Figure 4). Finally, it is easily adaptable to unseen data. However, there is also a limitation
of our approach, because it does not provide information about the activation pathway
and the type of activation (direct or indirect).

Only a smaller fraction of activators interacts directly with AMPK by binding to
specific activating or allosteric binding sites of the enzyme. The majority of activators act
indirectly. They bind to upstream regulatory sites that, when activated, in turn phosphory-
late and activate AMPK. This places structural requirements on these activators to bind to
these sites, contributing to the structural diversity of these compounds (Figure 2).

AMPK is an important enzyme sensing and controlling energy supply and differ-
ent cellular functions—e.g., carbohydrate cellular entry and metabolism, reactive oxygen
species (ROS) generation, apoptosis, cellular growth, and mitochondrial biogenesis and au-
tophagy [1]. Since the enzyme is at the intersection of several important cellular pathways,
it is obvious to assume the existence of different modes of activation (Figure 5).

Figure 5. Activation pathways of AMPK.

Machine learning methods for AMPK activation are important: the relevance of AMPK
in the pathogenesis of different diseases and their treatment was discussed above and new
and old treatment modalities will be assessed with regard to their potential to modulate
AMPK activity in the sense of repurposing of established (herbal) drugs.

To investigate herbal drugs, experiments are complicated by the fact that extracts
are multi-substance mixtures and the required pure substances are often not sufficiently
isolated and/or therefore not sufficiently available. Therefore, our extended method offers
attractive new applications in the extended screening of these multi-substance mixtures to
identify lead substances of interest for further intensified testing.

4. Materials and Methods
4.1. Data

The AMPK data set was based on extensive literature search of AMPK activators and
inhibitors that was performed in PubMed (https://pubmed.ncbi.nlm.nih.gov/, accessed
on 27 October 2021) using search terms:

• “AMPK AND activation”
• “AMPK AND inhibition”

https://pubmed.ncbi.nlm.nih.gov/
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In addition, the Bioassay database of PubChem Substance and Compound databases (
https://pubchem.ncbi.nlm.nih.gov/, accessed on 27 October 2021) was used when EC50
was ≤0.1 µM to identify proven activators. In addition, compounds were included that
were confirmed activators by at least one PubMed-listed publication. On the other hand,
tested compounds shown to be inactive for AMPK activation or showing inhibitory function
or compounds described in the literature as inhibitors of AMPK formed the control group
for this analysis.

4.2. Data Preprocessing

Chemical structures were coded by the Simplified Molecular-Input Line-Entry Sys-
tem (SMILES; isomeric if available, canonical otherwise) that were taken directly from
PubChem or when no PubChem ID was available were determined by MarvinSketch
version 19.22 (ChemAxon). SDF Files were generated by Open Babel (version 2.21)
https://openbabel.org, accessed on 27 October 2021. These files were used to calculate
physicochemical descriptors with PaDEL descriptor software http://www.yapcwsoft.com/
dd/padeldescriptor/, accessed on 27 October 2021. We computed the entire range of
available 1D and 2D descriptors [31] for all compounds.

Data preprocessing (curation) involved removing any double entries, salts and mix-
tures, and proteins from SMILES structures and focused on small molecular weight drug-
like compounds. Tautomers were not standardized. Compounds and/or descriptors
with empty descriptor values were excluded from analysis yielding N = 904 and N = 799
valid cases for activators and controls, respectively and N = 1445 features (descriptors). A
complete list of used activators and controls is given:

• with their names, smiles codes, PubChem IDs, and PubMed IDs (Compounds.csv);
and

• with all calculated PaDel descriptors (Data.csv) in https://github.com/cptbern/
QSAR_AMPK, accessed on 27 October 2021.

4.3. Validation

Validation of models were based on OECD Principles for (Q)SAR Validation [32].
Validation was based on the random split of data into training and test data. From the full
data set (N = 1703), 70% were randomly chosen for training (N = 1192) and 30% for the
final test data set (N = 511), respectively. From the training data, 80% (N = 953) of the data
were randomly chosen as validation training dataset and 20% (N = 239) as the validation
test dataset. Following internal validation, the final model was used on the full training
data set (N = 1192) to predict the previously unseen instances of the test data set (30% of
activators (N = 262) and controls (N = 249), each) as external validation.

Training data were used to optimize model hyperparameters and train the models.
After training hyperparameters were optimized on the training data set, final model
learning was performed using 5-fold internal cross-validation. Furthermore, the training
was repeated after randomization (N = 100) of the response variable (Y-randomization) as
additional validation [33].

4.4. Similarity

Similarity or heterogeneity within the activators and controls was calculated in each
case by mean Euclidean distance between each element to all other elements of the group
based on the standardized values of the descriptors

Mean standardised distance =

√
∑i,j
(
xi − xj

)2

S
(1)

where, xi and xj denote the i-th and j-th instance and each descriptor values of the respective
group, respectively (i, j = 0, . . . , N, the number of elements of the group, i 6= j), S denotes
the number of pairwise differences.

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://openbabel.org
https://openbabel.org
http://www.yapcwsoft.com/dd/padeldescriptor/
http://www.yapcwsoft.com/dd/padeldescriptor/
https://github.com/cptbern/QSAR_AMPK
https://github.com/cptbern/QSAR_AMPK
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For classification of data, different machine learning algorithms from the open scikit-
learn python-based machine learning framework (https://scikit-learn.org/stable/, ac-
cessed on 27 October 2021) were applied: tuning of hyperparameters was done by grid
search estimation (sklearn GridSearchCV) where relevant.

4.5. Machine Learning Models

All calculations were performed using Python 3.9.1 (https://www.python.org/,
accessed on 27 October 2021). Graphical analysis was done with OriginPro, Version
2021. OriginLab Corporation, Northampton, MA, USA and Matplotlib, version 3.3.3
(https://matplotlib.org/, accessed on 27 October 2021).

The structural relationship of the high dimensional data of activators, controls and
random samples were visualized by non-linear embedding into a two-dimensional space
by the t-distributed stochastic neighbor embedding technique (tSNE) to visualize the
applicability domain of the database [34]. In order to better visualize the structural diversity,
activators and controls were chemically classified similar to the suggestions of Sharma and
Kumar [14] as alkaloids; cinnamic acid derivatives (CAD); carbohydrates (CHO); flavonoid
derivatives (FLA); lignans, lipid-like structures (LLS: ≥ C8-chain); macrolides; metformin
derivatives; nitrogen-containing heterocycles (NCH); nucleotide/nucleoside derivatives;
organic sulfur-containing structures (OSC); saponins and their aglycons; sugar derivatives
(SD); stilbenes and terpenes.

4.6. Random Forest Classification (RFC)

Random forest is an ensemble method [35]. These methods combine several base esti-
mators in order to improve generalizability and robustness compared to single estimators
(decision trees). A sequence of base estimators is built and each of these estimators tries
to reduce the bias of the combined estimator. Random forests are a powerful decision
tree algorithm for classification. Hyperparameters were tuned by grid search analysis
on number of estimators, maximum features used, maximum depth of trees, minimum
samples split, minimum samples leaf, and impurity criterion. No bootstrap sampling was
performed.

4.7. Stochastic Gradient Boosting Classification (SGB)

Stochastic gradient boosting (SGB) classification [36] also belongs to the ensemble
methods. Hyperparameters were tuned by grid search analysis on number of estimators,
maximum depth of trees, the loss function (deviance (=logistic regression) or exponential
(=AdaBoost algorithm)), the learning rate, and the fraction of samples to be used for fitting
the individual base learners.

4.8. Support Vector Machine Classification (SVM-C)

Support Vector Machine Classification [37] tries to separate the two classes in the n-
dimensional feature space by constructing a (n-1)-dimensional hyperplane that maximizes
the margin between the two classes. Most important is the choice of the best kernel, a
function to transform the data to a higher-dimensional space: Here, grid search evaluated
the radial basis function (RBF, Gaussian kernel), the sigmoid and the polynomial kernels.
Furthermore, the regularization parameter C and the best the kernel coefficient gamma
were estimated.

4.9. Logistic Regression Classification (LRC)

Logistic Regression Classification [38] is used to estimate the probability p̂ that an
instance belongs to a class

p̂ = hθ(x) = σ
(
θT · x

)
, (2)

using the logistic function

σ(t) =
1

1 + e−t . (3)

https://scikit-learn.org/stable/
https://www.python.org/
https://matplotlib.org/
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Classification for two classes denotes with 0 and 1 will be obtained

ŷ = σ(t) =
{

0, p̂ < 0.5
1, p̂ ≥ 0.5

(4)

Different solvers (Newton-cg, lbfgs and liblinear), the regularization parameter C and
the penalty (l1-norm, l2-norm, and elastic net) were evaluated.

4.10. Deep Learning Neural Network (DNN)

As last approach, a deep neural network analysis was performed using tensorflow,
version 2.3.1 (https://www.tensorflow.org/, accessed on 27 October 2021) and its asso-
ciated neural networking API tensorflow.keras (https://www.tensorflow.org/api_docs/
python/tf/keras, accessed on 27 October 2021). The following sequential model approach
was applied: an input layer with 1000 units and “elu” activation and a variable number of
hidden dense layers with “elu” activation and finally a dense output layer with sigmoid
activation was used: The input layer was connected to one to three hidden dense layer
and these to an output layer giving the prediction of the model. An extensive grid search
was performed to estimate the unknown parameters (n_hidden: number of hidden dense
layers: 0, 1, 2, 3 for the number of hidden dense and dropout layers; number of neurons:
750, 500, and 250 units for the hidden dense layers; the Adams or RMSprop optimizers;
0.0001 to 5 for the learning rates of the optimizer and 16 to 1024 for the batch sizes). As
kernel initializer the HeNormal, and as bias initializer Constant(value = 0) were used.
Number of features (descriptors) was 1445 and the number of targets was 1. This search
was done using the tensorflow scikit learn wrapper and the GridSearchCV module from
scikit learn with 5-fold cross-validation. As activation functions the exponential linear unit
[ELU(z) = z, for z > 0 and alpha× (exp(x)− 1) if x < 0] and sigmoid [σ(z) = 1/(1 + exp(−z))]
functions were used for hidden and output layers, respectively and as loss function the
binary cross-entropy [39] was used.

4.11. Model Evaluation

To account for differences in class sizes between activators and controls the ‘balanced’
option was chosen, if available, to perform automatic calculation of class weights. Data
were divided into disjunct parts using the sklearn.model_selection preprocessing procedure
train_test_split using a test_size of 30% and 70% for training. A 5-fold cross-validation (CV)
was applied.

Activators and controls populations were compared with 100,000 random samples
drawn from PubChem database using PubChemPy tools that provide a way to interact
with PubChem in Python (https://pubchempy.readthedocs.io/en/latest/#, accessed on 27
October 2021). The data distributions were compared by t-distributed stochastic neighbor
embedding analysis using the sklearn.manifold.TSNE procedure. This method visualizes
high-dimensional data by a two-dimensional representation to graphically assess the
applicability domains. Goodness of machine learning modeling is reported as

accuracy =
TP + TN

TP + TN + FP + FN
(5)

precision =
TP

TP + FP
(6)

sensitivity =
TP

TP + FN
(7)

specificity =
TN

TN + FP
(8)

where TP = true positive (activator correctly predicted); FP = false positive (activator
incorrectly predicted); TN = true negative (control correctly predicted); FN = (false negative
control incorrectly predicted).

https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/keras
https://pubchempy.readthedocs.io/en/latest/#
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Validation was performed as 5-fold cross-validation using sklearn.KFold procedure.
To evaluate binary classifier output independently of thresholds the receiver operating
characteristic (ROC) and its area under the curve (AUC) scores [40] were calculated that
assesses the tradeoff between sensitivity by plotting sensitivity versus (1 − specificity).
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