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Abstract: In the past decade, wearable biosensors have radically changed our outlook on contempo-
rary medical healthcare monitoring systems. These smart, multiplexed devices allow us to quantify
dynamic biological signals in real time through highly sensitive, miniaturized sensing platforms,
thereby decentralizing the concept of regular clinical check-ups and diagnosis towards more ver-
satile, remote, and personalized healthcare monitoring. This paradigm shift in healthcare delivery
can be attributed to the development of nanomaterials and improvements made to non-invasive
biosignal detection systems alongside integrated approaches for multifaceted data acquisition and
interpretation. The discovery of new biomarkers and the use of bioaffinity recognition elements like
aptamers and peptide arrays combined with the use of newly developed, flexible, and conductive
materials that interact with skin surfaces has led to the widespread application of biosensors in the
biomedical field. This review focuses on the recent advances made in wearable technology for remote
healthcare monitoring. It classifies their development and application in terms of electrochemical,
mechanical, and optical modes of transduction and type of material used and discusses the short-
comings accompanying their large-scale fabrication and commercialization. A brief note on the most
widely used materials and their improvements in wearable sensor development is outlined along
with instructions for the future of medical wearables.

Keywords: biosensors; wearable technology; biosensing materials; medical monitoring

1. Introduction

Biosensors are devices that utilize biomolecular cues from analytes to process and
produce quantifiable signals. The concept of “biosensing” surfaced around the early 20th
century with the simple concept of acid concentration in liquids showing proportionality
to the electrical potential across a membrane [1]. However, it was not until 1956 that a true
biosensor device was developed by Leland C. Clark, Jr. for oxygen detection [2]. Thus
began the evolution of an array of biosensor platforms ranging from fiber-optic-based
detection of CO2, oxygen [3], and glucose [4], to the use of surface plasmon resonance
(SPR) for gas detection [5], with the breakthrough of the first handheld blood biosensor
(i-STAT) developed in 1992 [3]. Today, 20 years later, biosensors have made their way into
our everyday lives in the form of wearable technology. Ranging from a simple fitness
band that counts our daily steps, to highly multiplexed devices that detect non-abundant
biochemical markers in body fluids, wearable biosensors have revolutionized our outlook
on healthcare monitoring. This means, nowadays, it is possible for us to sit home and get
real-time, dynamic information on our physiological functioning, just by a click, a tap, or a
scan. These devices can capture different types of biosignals like changes in temperature,
pulse, pH, motion, and biochemical composition of body fluids rapidly. In addition,
many biosensors are currently developed as rapid, point-of-care devices that can be used
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in large-scale population screening to detect several viruses, including the most recent
SARS-CoV-2 [6]. However, a sneak peak of the commercial market of wearable biosensors
revealed a battle among the tech giants. A recent post on CBINSIGHTS highlighted that
telehealth, wearables, and virtual reality will ace the battle of technologies and industries
that shape a post-pandemic world [7]. An economical, easy-to-fabricate, high-throughput
multimodal device with superior biocompatibility would naturally see a substantial growth
in the industry, if made readily available, and can thereby make an appreciable impact
on remote healthcare monitoring. For routine clinical applications, these materials should
be comfortable and compatible with human skin surfaces and living tissues to constantly
garner biosignals and generate computable results. In addition to ideal biointerfaces,
wearable biosensors demand the use of materials that have superior sensitivity for correct
recognition of analytes and high selectivity to identify specific types of environmental
stimuli at a given time [8]. From the era of stiff electrochemical devices to the development
of soft, flexible, and printable functional materials that adhere to jagged skin surfaces,
there has been a paradigm shift in the way these modern materials are fabricated and
utilized for biosensing applications [9]. In this narrative review, we will first describe an
ideal biosensor in terms of the key components and sensing mechanisms while defining
biointerfaces. We will then discuss the different types of wearable biosensors based on their
sensing platforms, with a focus on the electro-chemical, mechanical, and optical mode of
biosensing. We will mainly focus on the advances in biosensing materials and fabrication
strategies used for developing these devices, with a brief note on the current challenges
and future research focus in this area.

2. Design, Ideal Requirements, and Types of Wearable Biosensors

A biosensor is broadly made up of three main components: the biorecognition element,
the transducer, and the signal amplifier (Figure 1). The two main areas of focus in this
review are the biorecognition element and the transducer.
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by transducers and converted into displayable data.
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The success of biosensing lies within the recognition element. Typically, antibodies,
enzymes, whole cells, and polymers have been used as the biorecognition element, as they
allow for high specificity [10]. However, there are challenges when using such sensitive
biomolecules—for example, the stability of the proteins for use in wearable devices tend to
degrade over time and therefore can provide unreliable data. To overcome this challenge,
recent biosensors prefer the use of aptamers, which, in addition to providing that high
level of specificity and sensitivity, are also less prone to degradation [11]. These elements
are immobilized using several physical and chemical strategies on the sensor to capture
the target analyte. Biosensing materials such as hydrogels, graphene, and nanoparticles
have gained widespread attention recently for their use as biorecognition elements and
transducers [12]. Although biosensors have the same general mechanism for biorecognition,
it is in the mode of transduction that they differ. The transducer is responsible for taking
the reaction generated by the binding of the analyte to the biorecognition element and
converting it to a readout that is proportional to the concentration of the analyte. Using a
similar set of parameters as outlined by Luka et al. (2015) [13], this review will evaluate the
advances made in wearable biosensors on the three mainly applied modes of transduction:
electrochemical, electro-mechanical, and optoelectrical/photo-sensing platforms.

2.1. Ideal Requirements for Use as Wearable Biosensors

(a) Comfort: An essential element in the creation of a wearable biosensor is its flexibility
and stretchability [14]. The ability to withstand and sense the strain is an important aspect
of a device that will be subjected to constant strain and wear. With wearable biosensors
that are often worn directly on the skin, there is a significant need for the materials to
be adaptive and flexible. Materials that are not biocompatible with skin not only lead to
general discomfort for the user, but also to low accuracy, as the biosensor–skin contact
is not maintained for long periods due to the mechanical mismatch. Modifications such
as the development of skin-inspired and patterned mesh to adapt to the human body’s
curvilinear surface allows for better-adapted sensors [15]. Materials such as hydrogels,
textiles, and paper have been mainstreamed for the development of wearable biosensors,
as they provide a flexible, stretchable, and breathable platform for potential applications as
wearable biosensors [16–19].

(b) Monitoring several analytes/parameters: An ideal wearable biosensor also has the
capacity to monitor several biomarkers while maintaining physical properties. Different
biosensor platforms have varying efficiency in measuring the analytes and the type of
sample used. Some bioassays still use fluorescence or a colorimetric mode of detection,
which poses a challenge to detecting low-abundance analytes.

(c) Biocompatibility: It is essential to fabricate the wearable sensor in such a way that
the sensing surface that meets the skin is biocompatible and bioinert, and it must not cause
a leakage, release toxic chemical molecules, or degrade due to wear and tear, and must
provide adequate comfort while functioning accurately [15].

(d) Other considerations: Although not strictly a material requirement, there are
other important considerations for developing a wearable biosensor. Miniaturized design,
portability, scalability, and cost remain important factors in the creation of a wearable for
widespread use. Although several low-cost and scalable methods have been presented
in the literature, for example, devices made by screen-printing as a means of fabricating
multiplexed biosensors [20], there is still a knowledge gap between developing a novel
biosensor and actually applying it to large population groups.

2.2. Types of Wearable Biosensors

Within the literature, wearable biosensors are classified under several categories
depending on their design and utility, material of choice, type of bioanalyte/biofluid used,
or the transduction platform. Based on their design and utility, they can be divided into
biosensors for the head and face or oral cavity, wrist- and arm-based wearables, textile
based, and food mounted (Figure 2). Wearable biosensors can also be categorized based on
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the material they are made of, such as carbon based, inorganic biomaterials, or polymers,
or categorized as flexible, biocompatible, or biodegradable sensors. Many authors tend to
classify biosensors based on the biofluid/bioanalyte used, such as tear-, saliva-, sweat-, or
interstitial fluid-detecting sensors, or based on invasiveness, such as subcutaneous and
implantable sensors that utilize other physiological biomarkers to monitor health.
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3. Electrochemical Biosensors

Biosensors that convert highly specific biologic information into electrical signals are
an attractive tool in remote healthcare monitoring. Electrochemical biosensors were one of
the earliest biosensor platforms to revolutionize wearable technology, as they use a fairly
simple sensor setup and hence are cost efficient [31]. These benefits are associated with
large-scale, low-cost electrical microcircuit production along with technology that allows
easy readouts and data processing in these biosensors [31]. In addition, electrochemical
biosensors have robust detection limits; even with limited analyte volume, they can pro-
duce accurate measurements due to their high specificity and binding affinity with the
bioreceptors (e.g., enzyme–substrate or antigen–antibody interactions). These reactions,
when converted into electrical signals, typically generate measurements as either (a) a
current (amperometric), (b) a voltage or potential (potentiometric), or (c) a difference in
conductivity of the electrolyte (conductometric) [32]. Other detection techniques described
in the literature include impedimetric techniques, which combine both resistance and
reactance [33] and the use of transistors to measure the current due to the potentiomet-
ric effect on the electrodes [31,34]. The most significant component of electrochemical
biosensors is the electrode that holds the bioreceptor of interest. Therefore, it is crucial to
employ a biocompatible and functional yet supportive material for their fabrication that
allows for proper orientation, immobilization, and detection of analytes [35]. To fulfill these
objectives, a variety of materials are tested across the labs to develop biosensors with the
best performance. More insights on the available materials and their modifications are
discussed under Section 7 (Material Considerations for Wearable Biosensors). In this sec-
tion, we will mainly focus on the most recent developments in the field of electrochemical
wearable biosensors and critically evaluate the possible future applications, and discuss
the limitations that need to be overcome for their successful commercialization.

As described previously, depending on the type of analyte, different biosensing mecha-
nisms and interfaces are used for their detection. Lei et al. (2019) described an MXene-based
non-invasive, multifunctional, wearable sensor that uses a highly selective screening panel
of biomarkers present in sweat [36]. They used a 2D MXene (Ti3C2Tx) Prussian blue (PB)



Molecules 2022, 27, 165 5 of 29

composite electrode design that has superior conductivity and electrochemical detection
due to the solid–liquid–air tri-phase interface that combines with a hydrophobic substrate.
The design of the biosensor is unique, as the tri-phase allows for better oxygen supply
and thus increased stability of the sensor (Figure 3A). The sensors are designed to detect
three main analytes: glucose, lactate, and pH levels, and the measured pH values are
calibrated and plotted against the glucose and lactate concentrations to determine final
results. They also conducted an in-vitro perspiration test on a human subject by connecting
the wearable patch to an electrochemical analyzer and successfully measured the glucose,
lactate, and pH changes during an intensive cycling session before and after meals. Results
from this study show a promising wearable device with high performance owing to the 2D
morphology and superior conductivity of the MXene/PB composite, stretchable and skin-
integrating design of the patch with better oxygen supply, and the ability to analyze three
different parameters simultaneously [36]. However, the fabrication and assembly of such a
multiphase, multifunctional device might pose a challenge in terms of cost and commercial
dissemination. In the same line, Yang et al. (2019) used a polyethylene terephthalate (PET)-
based gold electrode (PGE) to develop an electrochemical sensor that also uses sweat as an
analyte to detect glucose levels [37]. They used a UV-based chemical plating technique with
a simple, cost-efficient, and easy-to-assemble sensor platform with a reliable amperometric
output and high glucose sensitivity. This strategy overcomes the limitations of the previous
generation of PET-based sensors that used a complex fabrication process and expensive
techniques like photolithography and oxygen plasma etching, among others [38]. They
also tested the efficiency of the PGE sensor with commercial glucose detection assays in
testing sweat samples and observed comparable glucose concentrations [37]. Recently, an
advanced, self-powered, sweat-based glucose-monitoring smartwatch was reported by
Zhao et al. The smartwatch used flexible photovoltaic cells and batteries attached to a
strap to generate a real-time, dynamic display of sweat glucose levels [39]. However, the
complexity in designing a smartwatch with self-powering technology not only requires
successful assembling of sensitive sensors and integrated display but also should align
with current fashion trends while considering the cost. Lactate is another key bioanalyte
used for fabricating electrochemical sensors due to its unprecedented role in monitoring
several physiological and disease states.
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in contact with skin along with on-top openings for a sufficient supply of oxygen. Images reprinted
with permission from [36], Copyrights (2019), John Wiley and Sons. (B) Image of a flexible
graphene oxide (Flex-Go) biosensor in comparison to the size of a coin. (C) Schematic repre-
sentation of the Flex-Go biosensor showing the electrodes (top—palladium and bottom—porous
polyamide) with graphene oxide nanosheets embedded in between, along with 1-pyrenebutyric
acid-N-hydroxysuccinimide ester (PANHS) and lactate oxidase (LOD) to detect lactate from sweat
samples. Image reprinted with permission from [40], Copyrights (2021), Elsevier. (D) Schematic
representation of a microneedle-based wearable patch for L-dopa detection from interstitial fluid
(ISF) transmitting data to a wireless portable electrochemical analyzer sensed using square wave
voltammetry (SWV) and amperometry. Reprinted with permission from [41]. Copyright (2019),
American Chemical Society.

Recently, Lin et al. (2020) developed a flexible graphene oxide (Flex-Go)-based biosen-
sor for electrochemical lactate monitoring with sweat volumes as low as 1–5 Ul [40]
(Figure 3B,C). Their research outcomes demonstrated that the dynamic range of a lactate
biosensor is between 1–100 mM, which corelates to the physiological lactate levels in sweat
and with comparable performance to their biosensor with a commercially available Lactate
Plus meter [40]. However, although they established a benchmark for small-volume analyte
detection, there are still several challenges that need solutions in terms of modulating the
pH, dielectric strength, and conductivity of body electrolytes analyzed prior to focusing
on the mass production and disposition of these wearables. Similar studies using lactate
detection in sweat were performed by Wang et al. (2020) and Zhang et al. (2020), where
both teams focused on developing flexible, non-invasive electrochemical sensors [42,43].
The Wang group developed a stretchable gold-fiber-based sensor integrated into a wearable
textile that combined the high biocompatible, conductive properties of gold with superior
lactate sensitivity in addition to high resistance against tensile strain [42]. Zhang et al., on
the other hand, proposed the use of Ag nanowires (AgNWs) and molecularly imprinted
polymers (MIPs) and showed the novelty by showing high detection limits of lactate of up
to 0.22 µM in addition to reliable electrochemical response and stable electrode structure
that can withstand repeated bending and twisting forces [43]. Despite their mechanical
properties, compliance with the skin surface, and ease of mountability, they are still for
proof of concept, but under appropriate technological guidance and marketing can pave
the way to real-life applications.

Electrochemical sensors have recently seen increased growth as a drug-screening
platform from body fluids, both for therapeutic and drug abuse. Barfidokht et al. (2019)
developed the first “Lab-on-Glove” concept for rapid on-site detection of fentanyl with
an electrochemical sensor integrated into the glove fingertips. The glove design utilizes
the thumb to collect drug residues along with the index finger, which has printed carbon
electrodes with an ionic liquid carbon nanotube composite film [44]. Voltametric outputs
are generated on joining the thumb and index fingers, closing the electrical circuit, which
results in anodic peaks that correspond directly to fentanyl oxidation levels. A similar
strategy using carbon-based screen-printed electrodes (SPEs) has been used for other foren-
sic applications, as they are cheap, disposable and have good compatibility with several
electrochemical analyzers [45]. Several authors have used this technique to detect cocaine
from body fluids and samples by targeting tertiary amine moiety of cocaine, which re-
quires no incubation and has a rapid response [46–48]. Carbon-paper electrodes, including
molecularly imprinted ones, have been widely used to develop electrochemical sensors
for tetrahydrocannabinol (THC) sensing [49,50]. However, most of these sensors used for
drug-abuse detection are still more focused on the “sensitivity” aspect of the assembly than
the more futuristic wearable translation. Several electrochemical biosensors are gaining
attention for use as therapeutic drug monitoring (TDM) to improve the pharmacokinetics
of drugs with sensitive therapeutic ranges and poorly understood target doses. Takeda et al.
(2020) developed a single-use, ceramic-based MIP using a carbon-paste electrode for moni-
toring drugs, including vancomycin, meropenem, theophylline, and phenobarbital. The
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relationship between drug concentration and response current was obtained using differen-
tial pulse voltammetry (DPV) [51]. Although the sensor was not fully non-invasive, owing
to the requirement of blood as a sample to detect the drug of interest, their results suggest an
efficient, cost effective, sensitive biosensor for remote (bedside) drug monitoring with mini-
mal assistance. An example of a minimally invasive wearable electrochemical biosensor for
monitoring levodopa was described by Goud et al. (2019). The multimodal microneedle
patch works on two simultaneous parallel reactions: the enzymatic–amperometric and
nonenzymatic–voltametric detection of L-dopa [41] (Figure 3D). Such a biosensor with
superior analytical performance not only provides dynamic, accurate results due to its
multidimensional data acquisition and processing, but also has potential to work with skin-
like surfaces based on the results of tests on mouse-skin surfaces [41]. Such an orthogonal
microneedle-sensing platform can be used for the detection of other biomarkers in intersti-
tial fluids if the patch design is optimized to perform similarly on human skin. “The Lancet
Digital Health” published in 2019 the first in-human evaluation of a microneedle-based
biosensor for monitoring phenoxymethylpenicillin [52]. This proof-of-concept study tested
real-time TDM in 10 healthy volunteers and concluded that a microneedle beta-lactam
biosensor is highly effective and tolerated by healthy individuals. Evidence also shows
that the pharmacokinetic profiles of phenoxymethylpenicillin were similar in microdialysis
and microneedle methods. This study facilitates future research on microneedle ECF as a
cornerstone in antibiotic drug monitoring. Although most of these studies show remark-
able advances in terms of device form, flexibility, and well-integrated sensing modules,
there are some noteworthy barriers that limit their application. We have yet to utilize the
wide potential of new biomaterials used to develop these sensors due to lack of effective
ways to fabricate and tune them to our needs. In addition, to utilize the potential of each
material under various situations, we trail years of research in order to translate their use
for health-monitoring purposes. More importantly, once these challenges are overcome,
research focus should then be pointed towards making them safe to use, wear-resistant, and
reusable, and possibly recyclable to meet the environmental regulations set in the future.

4. Electromechanical Biosensors

An electromechanical biosensor works quite similarly to an electrochemical sensor in
terms of the sensing principle; however, it varies in terms of how the electrical response is
generated, which is chiefly due to a mechanical force or alternatively the strain recorded
due to an electrical bias. A significant advantage of this type of transduction as opposed to
electrochemical and optical sensors is the lack of dependence on the labeling of molecules.
This can allow for the identification and quantification of a wide range of biomolecules,
including unknown ones without the concern of lack of sensitivity or degree of analyte–
bioreceptor interaction. Skin or epidermis is a soft and stretchable surface, and thus one
of the most important mechanisms dictating the functioning of mechanical biosensors is
their ability to sense the physical changes occurring on the skin surface at a macroscale,
like arm, wrist, or leg movements or changes as small as a stretch or dampening of the epi-
dermis like while breathing [53]. The electromechanical transduction mechanism is usually
based on either (a) piezoelectric, (b) piezoresistive, (c) piezocapacitative, (d) iontronic, or I
triboelectric nanogeneration (TENG) effects [8,54] (Figure 4).
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Strain sensors function by quantifying mechanical deformation with corresponding
changes to the electrical signals, which can be either piezoelectric (captures changes in
surface potential due to polarization) or piezoresistive (captures changes in resistance
caused by external forces) [53,55]. Capacitive sensors have superior sensitivity and react
to changes in capacitance due to forces causing geometrical deformations; however, they
are affected by surrounding noise, which may influence their performance [56]. Iontronic
sensors utilize a supercapacitance platform that is about 1000 times larger than a metal
oxide capacitor platform by forming an ion–electric interface between the electrodes and
electrolytes, leading to ion accumulation on the electrodes and high capacitance per unit
area [8]. Triboelectric transduction utilizes the simple principle of frictional charges that
results from the interaction of two different materials. This was the principle used for the
development of the TENG by Fan et al. (2012) [57]. When the friction is interrupted, the
separation of the surfaces produces a difference in potential that is often used to develop
sensors without use of external power [58]. Stretchable strain sensors require a high
gauge factor to detect these minor movements, which occur on irregular skin surfaces
and hence need to be designed with flexibility along with functionality. For example,
Tang et al. (2020) designed a strain biosensor based on aligned nanowire with a high
surface-to-volume ratio to monitor subtle human motion [59]. They were able to achieve a
gauge factor of nearly 35.8 with the ability to detect a stimulus of a deformation of less than
200 µm in under 230 ms. The results were five times better when compared to a similar
biosensor using microwire-based sensors [59]. In another study, Wang et al. (2020) created
a stretchable ion-based sensor based on the surface strain redistributed elastic fiber (SSRE-
fiber) that uses a wrinkle structure to improve surface area along with an island bridge
design [60]. Although this principle does not use an electromechanical mode of sensing,
the minimized strain on large amounts of stretching makes the SSRE platform an excellent
choice for a textile-based wearable biosensor. Textile-based mechanical biosensors are an
attractive tool in human motion detection and pave the way for personalized healthcare
by functioning analogously to how we choose an outfit that conforms to our physical
attributes. However, it is still a challenge, as such a technology would require the fabric
to be highly conductive and equally resistant to strain. Usually, carbonization is the first
line of choice to improve conductivity in textiles either by dip-coating, vacuum filtration,
or the addition of metal nanoparticles [61–65]. Such an example of a wearable biosensor
was developed using commercially available spandex by Yang et al. (2020), wherein they
dipped the polyamide into carbonic pigment inks to fabricate a high-fidelity, conductive
strain sensor [66] (Figure 5). Their work points to the potential application of these smart
textiles by (i) mounting them to different joints (fingers, wrist, arm) to collect pulse rates,
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(ii) printing or sewing the strain sensors onto fabrics to capture functions like breathing
and respiration, or (iii) utilizing them to generate protective devices for monitoring joint
movements in sports medicine and posture-related diseases like Parkinson’s [66].
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First, the fabric is washed three times with deionized water, followed by dip coating in commercial
ink, which is absorbed and dried in an oven at 60 ◦C for 1 h. Next, two copper wires are mounted
onto the two ends of the fabric strip using silver paste to improve integration, which is dried again
and ready for use with textiles. Reprinted with permission from [66]. Copyrights (2020), American
Chemical Society.

Tactile sensors, on the other hand, use the same transduction mechanisms but are
fabricated to respond to external stimuli like pressure, touch, force, etc. [67]. These sen-
sors are able to maintain their functional properties both in the native form and under
deformation, which is mainly due to the bending (deflection) abilities and the high shape
memory in response to multiplanar strains [67]. Our routine physiological response re-
leases signals to the skin surface ranging from low frequency (~0.1–1 Hz) for respiration,
facial expressions, and hand gestures to high-frequency acoustic signals (10–100 Hz) for
speech and heart movements, utilizing the skin–air interface [68–70]. Jang et al. (2020)
did a comprehensive update on pressure and tactile sensors for motion detection using
field-effect transistors (FETs), which utilize the advantages of collecting and processing data
in an array rather than individual sensors, allowing for high uniformity and spatial contrast
to improve gesture recognition [71]. Such sensing mechanisms are essential to locate and
collect large amounts of data from micro-expressions and split-second movements that
occur on skin and superficial muscles and find key applications for the clinical diagnosis
of several medical conditions. Ozioko et al. (2020) developed a piezoresistive wearable
assistive tactile communication interface with vibrotactile feedback based on finger braille,
a tactile communication platform used by deafblind people [72]. This work overcomes
many challenges portrayed in the previous work on tactile braille-based communication
where the sensors and actuators are isolated, making it difficult for users to interpret
messages. The sensor showed maximum stability at 2.5 Hz cyclic loading, whereas the
actuator can provide uniform vibrations with input signals of frequencies ranging from
10 Hz to 200 Hz, making the user feel and distinguish between messages [72]. On a dif-
ferent spectrum, pressure sensors are being widely used for applications in biomedical
monitoring. Qi et al. (2020) reported the use of a core-sheath nanofiber yarn-based textile
pressure sensor with superior sensitivity of 16.52 N−1, a wide sensing range (0.003–5 N),
and rapid response time (~0.03 s) [73]. These properties will allow such pressure sensors to
integrate into skin surfaces to accurately monitor human movements, from pulsations to
tremors and high-intensity activities. Similar studies were reported elsewhere by Yi et al.
(2021), wherein they used an all-3D-printed, flexible, and wearable hybrid bioelectronic
tactile sensor fabricated using biocompatible nanocomposites. They show comparable
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results to the previously discussed studies with advantages of low detection limits, quick
response rates, excellent biocompatibility, better compressibility, and a matching modulus
of elasticity with human skin [74]. Developments in strain and tactile sensors have a multi-
tude of applications, like monitoring general physical health, social interactions, assistance
to specially abled populations, improving athletic performance and rehabilitation, and
measuring sleep quality, among other applications. However, the human body releases
an array of mechanical and/or acoustic signals for each action or physiological function,
which sometimes occur simultaneously and are often superimposed, making it challenging
to compute such high-frequency data signals. Although newer approaches like machine
learning and advanced algorithms seem to overcome some of these concerns, the practical
application and scope of wearable tactile sensors still requires a multimodal recognition
approach to engineer precise gesture-control systems.

5. Optoelectronic Biosensors

Optical biosensors detect or respond to analytes by undergoing optical changes like
absorption, emission, reflection, refraction, or an interference [75]. These optical signals
supersede the previously discussed physico-mechanical signals for transduction in terms
of their high sensitivity, low noise, fewer surrounding disturbances, and long-term stabil-
ity [76]. These advantages have led to several significant studies of applications in the field
of diagnosis and drug discovery, health, and environmental monitoring [76,77]. In terms of
optical transduction, sensor performance (sensitivity) is evaluated in terms of light-matter
interaction, which corresponds to changes in optical signals and analyte changes. A large
number of these biosensors exploit the evanescent wave phenomenon and can be routinely
seen as a principle used in SPR-based biosensors (discussed in the next section), where they
detect the changes in the refractive index on the sensor surface and appear as a shadow
angled from the surface, depending on the mass of the material [78]. One of the main con-
siderations while fabricating such optical biosensors is to focus on the biofunctionalization
of the receptor on the sensor surface, which requires proper immobilization techniques for
successful detection [79,80]. Usually, the first step in biofunctionalization is the cleaning
of the sensor surface; next is the chemical activation of sensor surface; and third is the im-
mobilization of the known specific biorecognition element, followed by the final detection
stage, when target molecule attaches to the receptor (Figure 6). The immobilization may
occur by simple physical adsorption, covalent bonding to the biomolecule, non-covalent or
electrostatic interactions, or physical entrapment [81,82].

Several types of optical detection methods are described in the literature, but it is
outside the scope of this review to detail them all. Thus, in this section, we will mainly
discuss the most recent developments in SPR biosensors with potential remote healthcare
applications, wearable fiber-based label-free and photoplethysmography (PPG)-based
optical biosensors.
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detection. Image adapted with permission from [81], Copyrights (2011), John Wiley and Sons.

5.1. SPR-Based Optical Sensors

The past decade has seen tremendous growth in label-free SPR-based biosensor tech-
nology for biomarker detection and discovery due to its rapid, accurate, and versatile mode
of action [83]. SPR is said to be the gold-standard transducer in the detection of several key
biomarkers of heart disease, cancer, viral and bacterial antibodies, markers of hormonal reg-
ulation, renal function, and liver disease [84,85]. Although this technology has existed for
decades, advancements in nanomaterials and fabrication strategies have seen newer sensors
with enhanced sensitivity and a range of applications. Some SPR sensitivity improvements
have been discussed recently [86–89]. Glucose monitoring has been quite successfully
achieved using optical biosensors, as with the previously discussed electro-chemical and
mechanical biosensors, and has been recently investigated by Zhang et al. (2021) [90].
However, this is achieved in a rather non-invasive and self-assisted manner with the optical
transducers. Koushki et al. (2020) investigated the efficiency of optical glucose sensing
in saliva using the SPR effect on gold nanoparticles (AuNPs) with a 10–13 nm diameter.
They tested the effect of glucose and glucose oxidase (GOD) on the UV-vis spectrum of
AuNps by either adding glucose solution to AuNps, followed by the addition of GOD or
by the addition of glucose and GOD simultaneously, and measured the optical properties
of both solutions. The glucose concentration in the tested solutions followed the sugar
levels present in normal saliva [91]. The study concluded that the AuNP diameter is a
key aspect in modulating SPR values, which suggests high glucose detection accuracy.
These results can open potential applications of plasmonic nanometals in wearables like
mouthguards and retainers for self-monitoring glucose levels in diabetic patients. On a
similar note, with the aim of improving optical glucose detection, Yadav et al. (2020) did
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a comparative study by angle modulation for reflectance values in metamaterial (MM)
SPR and SiO2-based SPR (Si-SPR) by fixing the wavelength and thickness constant [92].
They used urine samples to detect the sugar levels and found that the reflection dip angle
varies between the urine of diabetic and non-diabetic patients with an angle of incidence
at 50.7 and 60.1 deg between nondiabetic MM-SPR and Si-SPR. They further discovered
the reflection angle to be different for diabetic patients with varying sugar concentrations.
These data suggest progress towards the development of optical biosensors with specific
sensor-surface modifications personalized to patients with different types of diabetic value
ranges. More recently, Mostufa et al. (2021) developed a graphene-coated SPR biosensor
for the detection of hemoglobin and glucose levels in blood and urine samples, respectively.
The multilayered sensor was built with an initial layer of prism (BK7), followed by gold, a
transition-metal dichalcogenide (TMDC) layer of PtSe2, and lastly, graphene (Figure 7A).
Upon placing blood samples on the sensing layer, hemoglobin levels were detected by a
0.001 variation in a refractive index proportional to 6.1025 g/L hemoglobin in the sample.
These values were used for analysis using COMSOL Multiphysics software and plotted
using MATLAB software. Urine samples were analyzed by monitoring the SPR angle
shift, and for a 0.001 refractive index change, the angular shift sensitivity was found to be
200 deg/RIU [93]. This multilayered–multianalyte detection SPR-based sensor can pursue
a practical application in the bedside, remote monitoring blood hemoglobin levels and
urine glucose simultaneously. A combination of 2D photonic crystal fiber (PCF) with SPR
was developed by Mitu et al. (2021) for pregnancy testing by analyzing pregnant urine
samples [94]. The approach was similar to the previous study using the finite element
method (FEM) to numerically calculate the refractive indices, sensitivity, and resolution.
Although SPR-based optical transducer modification and combinations have seen potential
application in sensing applications, there is still a long way to go before making these
advanced technical modifications into practical wearable sensors for remote healthcare
monitoring.

5.2. Optical Fiber-Based Biosensors

There is a constant growth in fiber-optic technology across the industry and health-
care [95,96]. They have several merits, like compact size, low weight, immunity to elec-
tromagnetic radiation, robust and safe mode of action, superior sensitivity, and precision
to function as wearables, among others [97,98]. These intrinsic characteristics of optical
fibers have been well exploited by the developing wearable biosensing paradigm. Medical
monitoring is the field that has benefitted the most due to this surge of interest and a great
number of studies ae now focused on fiber-optic wearables.

Several commercial products have been developed, and many proof-of-concept stud-
ies have been conducted—for example, Li et al. (2020) devised an optical fiber-based,
wrist-wearable, continuous and accurate blood-pressure monitor fabricated using a poly-
dimethylsiloxane (PDMS) + Ag composite diaphragm and tested its functionality in 17 clin-
ical subjects. The phase variation of the light reflected from this diaphragm surface was
used to measure the blood pressure from the radial arterial pulse. The blood pressure
values were obtained using the pulse transmit time (PTT), which was derived from the
pulse waveform. On comparing the results with a routine sphygmomanometer, they found
an error of 0.24 ± 2.39 mmHg and 0.12 ± 2.62 mmHg in the systolic and diastolic blood
pressure, respectively, which is an acceptable variation in commercial BP monitors [99]. The
proposed wrist band with optimized wearable design and display can work as a simple
economic version compared to expensive smartwatch brands, and is a user-friendly device
to continuously monitor BP and can replace current available commercial devices. Optical
fibers using impact-detection systems usually use either a distributed or quasi-distributed
approach to assess disturbances, and do so in the range of kilometers [100]. Distributed
detection systems are either based on optical time-domain or optical frequency-domain
reflectometry and are considered to have lower spatial resolution due to large distance
range, in addition to expensive and nonportable components for sensor fabrication [101].
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The quasi-distributed system, on the other hand, is based on the fiber Bragg gratings (FBGs)
and provides a better spatial resolution due to shorter distance range, as low as centimeters
between the FBGs, but still remains commercially inapplicable due to its bulky nature.
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Figure 7. Optical biosensing technologies. (A) Schematic illustration of the multilayered SPR sen-
sor made of BK7/Au/PtSe2/graphene layers for monitoring blood Hb and urine glucose levels.
A monochromatic light source with a wavelength of 628.8 nm is applied to BK7 with a 60 deg to
89 deg angular range and the detector measures the sensor sensitivity based on the shifting of dip
in reflectance intensity (%) based on variation in the refractive indices of blood and urine samples.
Image reproduced with permission from [93], Copyrights (2021), Optical Society of America under
the terms of the OSA Open Access Publishing Agreement. (B) Photographic representation of the
multifunctional smart textile showing the LPS-POF sensor placement and schematic representation of
the acquisition matrix due to sensor responses. Image reproduced with permission from [102], Copy-
rights (2020), Springer Nature. (C) Fabrication of optical microfibers: (a) Preparation of aqueously
dispersed single-stranded DNA–single-walled carbon nanotubes (ssDNA-SWCNTs) by probe-tip
sonication of SWCTs in the presence of ssDNA; (b) core-shell electrospinning setup for the fabrication
of optical microfibrous textiles. Image reproduced with permission from [103], Copyrights (2021),
John Wiley and Sons.

An alternative to this impact-based detection was proposed by Leal Junior et al.
(2020) using transmission-reflection analysis (TRA) to develop a fully portable, wearable
smart garment. Magnesium- and erbium-coated optical fibers in the sensor improve the
challenges in spatial resolution reported previously due to low Rayleigh scattering when
using single-mode fibers (SMFs) by increasing the Rayleigh scattering and, in turn, causing
higher backscatter and better spatial resolution in TRA systems. Based on this approach,
they developed a nanoparticle optical fiber (NPF)-integrated smart textile, which, along
with TRA, allows for simultaneous detection of perturbation and fiber displacement due to
external forces [104]. This is an excellent approach to developing a compact, portable system
with low electromagnetic interference for continuous gait or natural posture monitoring
in patients with movement or gait dysfunctionalities. The same group, Leal Junior et al.
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(2020), reported on the development of a multiparameter, quasi-distributed smart textile
using highly stretchable polymer optic fiber (POF) fabricated using the light polymerization
spinning (LPS) approach (Figure 7B). The textile was made of neoprene fabric comprised of
LPS-POF along with three light-emitting diodes (LEDs) to sense variations in temperature,
transverse force, and angular displacements [102]. The multiplexed sensor is capable of
monitoring more than one parameter while maintaining its stretchable properties due to
the LPS fabrication technique allowing for accurate movement detection without affecting
the range of movements. More recently, Safaee et al. (2021) showed the fabrication of
an optical core-shell microfibrous textile material incorporated with single-walled carbon
nanotubes (SWCNTs) for real-time monitoring of reactive oxygen species (oxidative stress)
in wounds by tracking the hydrogen peroxide concentration in wounds (Figure 7C). The
SWCNTs have fluorescent properties that allow for continuous monitoring of oxidative
species without succumbing to decay of signals [103]. Their application in textiles will allow
for novel wound-dressing fabrics with the ability to monitor healing without degradation
in optical properties. A similar stretchable, wearable, ultrathin sensor was developed by
using a wavy optical microfiber by Zhu et al. (2021) using the bottom-up approach and
was capable of successfully monitoring BP via wrist pulses [105]. Some other optical micro-
and nanofiber-based wearable optical sensors used for monitoring respiration and bodily
movements can be found in these papers [106,107].

Fiber-free optical sensing and detection systems exist, including near-infrared spec-
troscopy to probe skin tissues to measure and analyze tissue oxygen saturation and blood
flow [108,109]. A pulse oximeter is one such device, which is a non-invasive optical sensor
working on the photoplethysmogram (PPG) technique used for blood volume (Hb) and
blood oxygen (HbO2) changes [110,111]. In simple terms, the oximeters function by using
two wavelengths of adequate path lengths to differentiate between absorption peaks of
Hb and HbO2. Using this difference, measured as the ratio of light absorbed by each
factor, the concentration or saturation of Hb and HbO2 is determined by the Beer–Lambert
law [111]. A comprehensive literature review on the current developments in PPG-based
label-free optical biosensors was discussed by Dhanabalan et al., 2020 [84]. A recent lit-
erature search also uncovered the potential of PPG in accurate heart activity monitoring,
which is a searing topic among researchers for its use in remote evaluation of cardiac health.
Recently Boukhayma et al. (2021) designed an earbud-embedded and a ring-embedded
micro-powered millimeter-sized optical sensor for accurate heartbeat monitoring [112,113].
The monolithic optical sensor-based earbud uses a low-powered PPG chip fabricated in
a 180 nm CMOS image sessor (CIS) with an area of 1.5 mm × 1.5 mm, which, due to the
low dark current and noise, confers high sensitivity. The sensor module only utilizes a
low 60 µA current at 122 Hz frequency and enables a high signal-to-noise ratio of PPG
with an LED current of less than 10 uA. The ergonomic earbud design was tested clinically
in human subjects and the accuracy was compared to a commercial electrocardiogram
(ECG), which showed a 98.47% accuracy [112]. A similar module design strategy was
employed to fabricate the ring-based sensor featuring the same quantum efficiency (QE) of
85%, and the detection rate was 97.87% for 72.21 h for heartbeat monitoring compared to
the ECG [113] (Figure 8A,B). The miniaturized structure and low-power, long battery-based
ergonomic design paves the way for such technology to be translated into commercially
available medical sensors for remote medical care. However, there are still missing pieces
to the puzzle in terms of design optimization and cost-effective fabrication of these optical
sensors, alongside the practicality of device support while translating this technology to the
commercial market. In this past section, we discussed the examples of most recent advances
made in electrochemical, mechanical, and optical wearable devices. Table 1. provides an
overview of these examples based on the type of biomolecule used, platform of wearable
device, material and transduction platform, in addition to their intended applications and
current challenges.
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Table 1. Selected examples of recently developed wearable biosensors.

Analyte,
Parameter

Wearable
Platform

Mode of
Transduction Materials Application Challenges Ref.

Glucose, lactate,
pH Patch Electrochemical

MXene
(Ti3C2Tx)—Prussian

blue
Sweat monitoring

Fabrication and
assembly due to its

multiphase–
multifunctional

nature

[36]

Glucose Mountable chip Electrochemical Polyethylene
terephthalate (PET) Sweat monitoring

Proof-of-concept study,
needs optimization and
validation to integrate

into wearables

[37]

Glucose Smartwatch Electrochemical PET Sweat monitoring

Complex design and
high cost of fabricating

smartwatch
components

[39]

Lactate Mountable chip Electrochemical Graphene oxide Sweat monitoring

Modulation of pH,
dielectric strength, and

conductivity of
electrolyte and

integration of wearables
need validation

[40]

Lactate Textile-based Electrochemical Gold fibers Sweat monitoring
Textile shelf-life, fiber

displacement, cleaning
difficulties

[42]

Lactate Skin-mountable
chip Electrochemical

Ag nanowires
(AgNWs) and
molecularly

imprinted polymers
(MIPs)

Sweat monitoring

Still a proof-of-concept
study, needs validation

studies for
commercialization

[43]

Fentanyl Gloves Electrochemical

Printed carbon
electrodes with an
ionic liquid carbon

nanotube composite
film

Drug monitoring

Main focus on drug
sensitivity, translation
to wearable design at

infancy

[44]

Vancomycin,
meropenem,
theophylline,
phenobarbital

Bedside monitor Electrochemical Ceramic-MIP, carbon
paste electrodes

Therapeutic drug
monitoring

Partially invasive due to
drug monitoring in

blood
[51]

https://creativecommons.org/licenses/by/4.0/
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Table 1. Cont.

Analyte,
Parameter

Wearable
Platform

Mode of
Transduction Materials Application Challenges Ref.

Levodopa Microneedle
patch Electrochemical

Tyrosinase modified
carbon-paste
microneedle

electrodes

Drug monitoring
Lack clinical validation

and human skin
biocompatibility tests

[41]

Beta-lactam Microneedle
patch Electrochemical Polycarbonate

microneedles
Therapeutic drug

monitoring
Proof-of-concept study,

minimally invasive [52]

Surface
deformation

Mountable
sensor Electromechanical Aligned nanowires Motion detection

Proof-of-concept sensor,
needs integration into

wearable device
[59]

Sodium Textile-based Electrochemical–
mechanical Ion-based SSRE-fiber Sweat monitoring

Lack of on-body trials,
needs optimization for
integration to textiles

[60]

Strain and
conductivity Textile-based Electromechanical

Commercial spandex
and carbon ink
pigment-coated

polyamides

Pulse rate, motion
detection, and

breathing

Textile/coated ink shelf
life, cleaning, and

multistep fabrication
process

[66]

Vibro-tactile
feedback

Finger–hand-
based Electromechanical

Velostat-polymer
impregnated with

carbon black

Tactile
communication

Lacks longitudinal
study to predict the

interface success
[72]

Pressure
sensations Textile-based Electromechanical

Ni-coated
core-sheath

nanofiber yarn with
CNT-embedded

polyurethane

Motion, pulse
detection

Proof-of-concept design,
needs optimization and

validation for textile
integration

[73]

Tactile sensations Skin-mounted Electromechanical 3D-printed
nanocomposites Motion detection

Proof-of-concept study;
needs miniaturization

to develop
skin-compatible,

compressible devices

[74]

Glucose, glucose
oxidase In-vitro model Optical (SPR) Au nanoparticles Saliva monitoring

Proof-of-concept study,
lacks integration into

wearable device
[91]

Glucose Bedside
monitoring Optical (SPR) Metamaterial and

SiO2-based SPR Urine monitoring

High reliance on
reflective dip angles,

competing assays
already in market

[92]

Hemoglobin and
glucose In-vitro model Optical (SPR) Prism (BK7), gold,

PtSe2, and graphene
Blood and urine

monitoring

Invasiveness,
proof-of-concept

studies, lacks
integration into

wearable devices

[93]

Reflectance due to
pulse deformation Wristband Optical fiber

Polydimethylsiloxane
(PDMS) + Ag

composite
diaphragm

Blood pressure
monitoring

Optimization and
display integration into
wrist devices could be

expensive

[99]

Perturbation and
fiber displacement
by external forces

Textile-based Optical fiber

Magnesium- and
erbium-coated

nanoparticle optical
fiber (NPF)

Motion and
movement
detection

Textile shelf-life,
cleaning challenges [104]

Temperature,
transverse force,

and angular
displacements

Textile-based Optical fiber

Polymer optic fiber
(POF) using light
polymerization
spinning (LPS)

Motion and
movement
detection

Textile shelf-life, fiber
disturbance during
usage, and cleaning

challenges

[102]

Hydrogen
peroxide and ROS
(reactive oxygen

species)

Textile-based Optical fiber
Optical core-shell

microfibrous textile
with SWCNTs

Wound monitoring

Novel design but
patient comfort and

wearable design
considerations for site

of wound

[103]
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Table 1. Cont.

Analyte,
Parameter

Wearable
Platform

Mode of
Transduction Materials Application Challenges Ref.

PPG-based tissue
oxygen/blood

saturation
Earbud Optical fiber free

CMOS image sessor
(CIS) with Bluetooth,

power unit, and
microcontroller

Heart rate
monitoring

Commercialization and
cost factors due to

competing tech, and
communication/power
drawbacks needs to be

addressed

[113]

PPG-based tissue
oxygen/blood

saturation
Ring Optical fiber free

CMOS image sensor
with Bluetooth,
power unit, and
microcontroller

Heart rate
monitoring

Communication/power
drawbacks and cost

needs to be addressed
for large-scale

commercial applications

[108]

6. Material Considerations in Wearable Biosensors
6.1. Carbon-Based Sensors
6.1.1. Graphene-Based Sensor Materials

Graphene has a honeycomb-like hexagonal carbon lattice arranged in sp2 hybridiza-
tion, with sheets stacked in layers with van der Waals forces. Its peculiar structure gives
it unique properties, like high electron mobility, good thermal conductivity, remarkable
mechanical strength, and broad band light absorption. Graphene arranged in cylinders
forms carbon nanotubes, and a in hollow sphere forms fullerenes. Limitations remain
with its use given its low throughput yield and high cost, making its use restricted to
research labs and academia [114]. Thus, there is a constant effort to build its hybrids, the
most common being graphene oxide (GO) and reduced graphene oxide (RGO). Various
sensing technologies developed using such hybrids include electrical sensors (resistive and
FET (field-effect transistor)-based), electrochemical sensors, and optical sensors, including
fluorescence-based sensors. A field-effect transistor (FET), as the name implies, functions
by changes in the electrical current in the semiconductor channel in the presence of an
ion on the sensor surface. The use of graphene in biosensors showed improved detection
and sensitivity when compared to traditional bioassays [115]. Fu et al. (2017) achieved a
detection level in picomolar concentration by the non-covalent functionalization of GO
using HIV-related DNA hybridization [116]. Fluorescence-based sensors have also been
explored for the detection of biomolecules. GO offers the dual advantage of being a fluores-
cent chromophore and a fluorescence quencher. A novel strategy was developed by Dong
et al. (2010), where they utilized the interaction of GO with quantum dots (QD). Natively
fluorescent QDs, functionalized with complementary DNA fragments, were quenched
of their fluorescence upon their interaction with the GO surface. In the presence of the
target DNA, this interaction was lost due to an increase in distance, thus sustaining the
fluorescence [117].

Surface-enhanced Raman scattering sensing (SERS) is another optical sensing mecha-
nism widely used in biosensors (Figure 9). The addition of graphene to SERS substrates
provides better stability, sensitivity, and biocompatibility. Duan et al. (2015) developed
a multilayered PEGylated (PEG: polyethylene glycol) nanosheet for multiplexed DNA
detection, in particular for bacterial pathogens. Even with the wide range of research
available on graphene-based sensors [118], there is still a long way ahead before they can
be popularly integrated into day-to-day life, given the complexity, cost, and optimization
required. Nonetheless, graphene-based materials offer high-quality sensing, which is worth
the investment in terms of time, money, and resources.
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Figure 9. Mechanistic illustration of graphene-based substrates for SERS optical sensing. Image
reprinted with permission from [119], under https://creativecommons.org/licenses/by-nc/3.0/,
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6.1.2. Carbon Dots

Carbon dots are an invention discovered serendipitously [120]. They are a zero-
dimensional carbon-based material with a dimension of less than 10 nm. They have a
tunable fluorescence emission, which makes it possible to adapt them to function in visible
light and the non-infrared (NIR) region. This property is indispensable in biological envi-
ronments, as this range is not damaging, as opposed to the UV spectrum. Their surface
has oxygen-containing functional groups that allow for easy modification and molecule
integration [121]. Their inert nature and stability in biological systems provide excellent
biocompatibility and low toxicity. Generally, CDs can be classified into four categories:
graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs),
and carbonized polymer dots (CPDs). CPDs are the newest inclusion, owing to the advent
of organic monomer-based production of CDs using citric acid, urea, etc. CDs can be
simultaneously used for imaging as well as drug-releasing pharmacologic functions [122].
The electrochemical-sensing mechanism utilizes the high electron transport capability of
CDs for the sensitive detection of metabolites and ions [123]. Jiang et al. (2015) developed
a dopamine biosensor, where dopamine reacted with the multiple carboxyl groups on
the sensor surface, leading to a change in the electrical signal detected even at nanomo-
lar concentrations [124]. Buk et al. (2019) immobilized glucose oxidase on a CQD–gold
nanoparticle hybrid for highly sensitive glucose detection [125]. The optical sensing mech-
anism is also highly utilized in CDs, where they can be merged with nanoparticles like
gold for increased signal production. CDs derived from phenylboronic acid utilized the
interaction of glucose with surface boric acid to quench the fluorescence. It provided a
sensitivity 250 times higher than previous boric acid nano-sensing detection systems [126].
Highly specific uric acid detection was utilized by Wang et al. (2016) with sulfur-nitrogen
co-doped carbon dots [127].

In addition to direct detection, enzymatic activity can also be detected using substrate
reactions rather than the target molecule itself. Such biosensors have been developed
using both electrochemical [128] as well as optical-sensing mechanisms [129,130]. Other
methodologies like antigen–antibody interaction [131] and nucleic acid [132] integration
have also been explored using these highly versatile nano dots. HIV detection was achieved
at a femtomolar level using this technological advancement [132].

6.1.3. Carbon Nanotubes

Carbon nanotubes (CNTs) are an allotrope of carbon, which can be summarized as
a cylindrical graphene. They have high mechanical strength, a large surface area, and
excellent electrical and thermal conductivity [133]. However, there are strong π–π surface
interactions, which makes them highly hydrophobic, limiting their functionality. Thus,
activation is carried through various ways to increase their electrochemical properties,
which in turn increase the sensitivity and often the specificity of the sensor [134]. They have
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been functionalized with various small molecules and enzymes for target-specific analyte
detection, like nicotinamide adenine dinucleotide (NAD) [135], glucose oxidase [136],
cholesterol oxidase [137], urease [138], and lactic-acid oxidase [139] (Figures 10 and 11).
CNTs are a vast field of research that cannot be covered completely in our review. More
detailed discussions on CNTs, both single and multiwalled (MWCNTs), can be found in
these papers [140,141].
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6.2. Non-Carbon-Based Sensor Materials
Metal-Based Ceramics

(a) Silicon-based sensors: Silicon-based sensors include electrochemically active Si
nanowires, optical porous silicone [142], photonic crystals, and luminescent quantum dots
and wires. Their role in microfluidics for electrical, optical, and piezoelectric sensors has
been studied and applied [143]. Electrical sensors are fabricated more commonly using Si
nanowires and porous silicone. Porous silicone of 50–200 µm is used. Nanomolar levels of
lipopolysaccharides (LPS) for bacterial presence along with high specificity was achieved
by using an LPS-specific polymyxin B receptor probe. Song et al. (2007) developed a
point-of-care cholesterol, bilirubin, and glutamate biosensor for liver diseases utilizing
the increase in surface area of the porous silicone [144]. Meanwhile, the silicon nanowires
provide a passive microfluidic-like structure due to capillary action, bringing down the
detection limits to picomolar and femtomolar levels [145]. Optical sensing is also performed
by the nanoporous silicone particles [146]. Photonic crystals (PhC) and silicon nanocrystals
primarily function through optical pathways. FRET-based detection of Staphylococcus aureus
was performed with a detection limit of 8 × 10−14 M using porous photonic crystals [147].
Silicon-based materials provide one of the most sensitive platforms for biosensing, but their
manufacturing process and integration with other metal and non-metallic components
remains highly demanding, thus limiting their largescale production and use.

(b) Zinc oxide (ZnO): Given the wide bandgap (3.37 eV) and high exciton-binding
energy (60 meV) at room temperature, ZnO is one of the most ideal semiconductors
for biosensors. Its high performance is owed to its excellent optical, piezoelectric, and
electrochemical properties, along with the large surface area [148]. It is used in various
shapes and sizes, ranging from zero dimensional QDs, one-dimensional wires and needles,
and two-dimensional films, to three-dimensional porous materials and nanoclusters. There
is a proof of concept for its use in neural [149], amino acid [150], and glucose-level [151]
detection, as well as DNA hybridization [152].
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(c) Aluminum oxide (Al2O3): Aluminum oxide-based materials are used in bioconduc-
tors due to their high dielectric constant, hardness, thermal stability, uniform pore size, and
high pore density. Moreover, they are relatively less costly and the synthesis procedures are
simple [153]. A CNT/Al2O3/chitosan hybrid was used to measure serotonin levels, which
is an indicator of neural activity [154]. It has been used with GO [155], gold [156], polyly-
sine [157], and titanium oxides [158] for various degradable as well as non-degradable
biosensors.

6.3. Organic Materials

Natural biopolymer-based conductors mainly have two components: conductive fillers
and an elastomeric polymer. Conductive fillers can be carbon based (graphene, CNT, CDs),
metallic (metal oxides or noble metals), polymers and ionic liquids, or salts. The polymeric
part can include synthetic polymers such as polydimethylsiloxane (PDMS), aka Ecoflex;
polyurethane; polystyrene; or natural biopolymers—silk, gelatin, alginate, cellulose, or
chitosan [159]. They have an advantage over other biosensing materials by being highly
stretchable, mimicking biological tissues; are biocompatible; and are sustainable due to
their biodegradability and natural abundance. The addition of conductive fillers imparts
the required conductivity for imbibing electrical or optical properties. They provide wide
applications from on-skin, textile wearable to implantable. They can be either bioinert or
biodegradable, depending on the required conditions.
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vide wide applications from on-skin, textile wearable to implantable. They can be either 
bioinert or biodegradable, depending on the required conditions. 

 

Figure 11. Mechanistic illustration of glucose (left) and lactate (right) detection. On the left,
(a) schematic representation of a glucose sensor based on solution-gated graphene transistors (SGGT),
(b) a drop in potential across the two EDLs (electric di-layers), (c) the GO-x catalyzed oxidation of glu-
cose and oxidation of H2O2 on the electrode of the SGGT. Image reprinted with permission from [160],
licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/, accessed on 26 November
2021. On the right, (A) schematic illustration of the mechanism of lactate detection and (B) the
fabrication of a lactate biosensor. Abbr. EDC/NHS (ethyl(dimethylaminopropyl) carbodiimide/N-
Hydroxysuccinimide), TTABA monomer ((poly 3-(((2,2′:5′,2”-terthiophen)-3′-yl)-5-aminobenzoic
acid). Image reprinted with permission from [161] Copyrights (2020), Elsevier.

6.3.1. Natural Polymers

(a) Polysaccharides: Cellulose is one of the most abundant polysaccharides present in
nature, being present in early organisms like bacteria to more complex plants. It consists of
branched polyglucan chains with multiple sites for hydrogen bonding, which imparts low
solubility but high strength and flexibility at the same time. Cellulose-based biosensors
have been widely studied for the detection of small molecules, nucleotides and DNA,
proteins, glycoproteins, cancer and bacterial cells, and viruses. Chitin is the most abundant
amino polysaccharide, where the amino groups make it possible to modify its properties in
multiple ways. Chitosan is a deacetylated chitin derivative, with a more tunable structure,
due to which it has acquired popularity over chitin in the biomedical research field. It has

http://creativecommons.org/licenses/by-nc-nd/4.0/
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been used in conjugation with CNTs [162], graphene [163], and metals [164,165] for a wide
range of molecular and cellular detection (Figure 11).

Another polysaccharide, alginate, is derived from brown seaweed with abundant
use in biomedical applications. It can be modified into various forms, like fibers [166],
sheets [167], and gels [168], as well as non-woven fabrics [169]. Ultra-high stretchability
along with excellent fracture toughness is achieved by crosslinking with polymers like
polyacrylamide (PAAm) and polyethylene glycol diacrylate (PEGDA) [170]. The dual
detection of electrophysical and mechanical changes was achieved with the alginate PAAm
hydrogel and polydimethylsiloxane (PDMS) film, paving the way for their use in biological
situations involving coupled electromechanical reactions [171,172].

(b) Proteins: Protein-based natural polymers include silk and gelatin. Recently, silk
was given FDA IDE approval owing to its biocompatibility [173]. It consists of two types
of chains; one is fibrous, called silk fibroin (SF), and the other is stickier, called sericin. SF
is usually utilized in biomedical applications, where it can be used as a substrate as well
as a matrix for conductive filler materials. SF has hydrophilic amide groups, hydrophobic
areas, and multiple functional groups, giving it the versatility to be conjugated with various
filler materials. It has been integrated with gold nanoparticles [12], graphene(GO) [174],
CNTs [175], and polystyrene sulphonate (PEDOT: PSS) [176] for various applications—for
example, skin patches for electromyography (EMG) [177], cardiac mesh electrodes [178],
and textile electrodes for physiological monitoring [176]. Biocompatible and conductive
hydrogels crosslinked with gelatin have led to the development of biomimetic sensors
that exhibit the advantages of natural polymers with enhanced physical and electrical
properties. Gelatin meth acryloyl (GelMA) with DNA was used to conjugate with CNTs
for increased strain tolerance [179]. Similarly, cross linking with polyvinyl alcohol (PVA)
provided stretchability compared to natural skin, making it the ideal candidate for on-skin
biosensing patches [180]. Though natural polymers have high biocompatibility, their use
is not without drawbacks. Their complex structure and lot-to-lot variability limits their
widescale manufacturing and use.

6.3.2. Synthetic Polymers

Polymers can comprise a range of different functional moieties, like esters, urethane,
phosphate, carbonate, amide, anhydride, and imide, such as poly(α-esters), polycaprolac-
tone (PCL), polydioxanone, polyhydroxybutyrate, polyhydroxyvalerate, polyurethanes,
and polyphosphazenes. Amongst polymers, esters like PCL and poly-glycolide (PGA) have
been approved by the FDA due to their high biocompatibility [181]. Additionally, there is a
class called intrinsically conducting polymers (ICP) that have an inherent electrical con-
ductivity that can further be enhanced with organic and inorganic element addition. They
include polypyrrol (PPy), polyaniline (PAni), and poly(3,4-ethylenedioxythiophene) (PE-
DOT) [181,182]. As mentioned at various places above, synthetic polymers have been used
in conjugation with other conducting and optically active substrates to build a multitude of
biosensing units [183]. Synthetic polymers can be more expensive than naturally available
biodegradable polymers, but their advantage is a controlled synthesizing process. It en-
sures reproducible composition, electrochemical properties, and controlled degradation
rates [183].

7. Conclusions and Future Perspectives

As presented in this review, the development of nanomaterials has resulted in novel
ways to integrate biosensors into wearable devices while maintaining high selectivity of
analytes and accurate biosensing. However, there are still challenges that remain in the
development and eventual commercialization of such devices. The most significant hurdle
that remains in fabricating these devices is employing materials and methods that are
environmentally friendly, biocompatible, low-cost, and scalable. Although there has been
significant development of biocompatible platforms and materials in sensors, there are
still certain elements that limit the biocompatibility. Furthermore, some of these materials
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are prone to degradation over time and thus limit the life of the biosensor. With wearable
biosensors, the nature of the functioning on the human body brings with it complicating
factors such as temperature, moisture, and constant deformity. Each factor needs to be
considered in the design to ensure proper functionality and accurate readouts. Apart from
maintaining proper functionality, future wearable biosensors should incorporate additional
features to create a user-friendly experience. In this review, we have provided a brief
overview of the materials used in biosensing applications. Each material described has
undergone extensive research with a plethora of literature, which is beyond the scope
of our manuscript. Nonetheless, most important materials and their properties have
been highlighted, which will serve as an essential tool for early researchers as well as
other scientists. We can see how these materials can undergo various modifications and
combinations to achieve the desired material properties. The goal is ultimately to build the
most biomimetic tool possible that is biocompatible, highly sensitive, flexible, preferably
compact, and adaptive to the dynamic biological and physical environment. Although
there has been a great progress with respect to the materials, the cost and restricted access
to technologies involved often limit their presence in research labs.

In the future, focus on better comfort, wireless communication, and sustainable power
sources are a few of the challenges that need to be addressed to successfully integrate
wearable devices. For example, although some wearables are battery powered, some
take advantage of the energy generated by the human body that wears them to function.
Further investigation on the use of solar cells and kinetic energy for powering wearable
devices should be addressed. Another platform of recent interest is the rise of hydrogel-
based biosensors that are deformable, biocompatible, and have self-healing properties,
which addresses many of the challenges faced with stiffer 2D nanomaterials. Skin-printed
electronic biosensors are an alternate, upcoming platform of biosensors that provides a
viable solution to many of the issues discussed in our review, such as bulky sensor design,
poor skin-surface interaction, the inability to accurately collect readouts, etc. Recently, a
new wave of interest on wearable prosthesis has been largely welcomed by the medical
community, alongside the tech industry. Intelligent robotic devices such as prosthetic limbs
that can be gesture controlled or even respond to cerebral signals are being designed and
normalized. With the rapid assimilation of AI into wearable devices, there should a focus on
data collection and privacy policies that should be dealt with carefully to allow for safe and
practical utilization. However, all these factors considered, more cost-efficient, easy-to-use,
and accessible technologies for material and thereby device manufacture and development
needs to be set in place to ensure their widescale progress and use in day-to-day biomedical
applications. With further investigation into these technologies and their incorporation,
the future of wearable biosensors is quite promising in biomedical applications, mainly in
remote healthcare monitoring.
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