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Abstract: The chemo/regioselective H-D exchange of amino acids and synthetic building blocks
by an environmentally benign Pd/C-Al-D2O catalytic system is described. Due to the importance
of isotope labeled compounds in medicinal chemistry and structural biology, notably their use as
improved drug candidates and biological probes, the efficient and selective deuteration methods are
of great interest. The approach is based on selective H-D exchange reactions where the deuterium
source is simple D2O. D2 gas is generated in situ from the reaction of aluminum and D2O, while the
commercially available palladium catalyst assists the H-D exchange reaction. The high selectivity
and efficiency, as well as the simplicity and safe nature of the procedure make this method an
environmentally benign alternative to current alternatives.

Keywords: H/D exchange; heterogeneous catalysis; green chemistry; Pd-Al combination; in situ
deuterium gas formation

1. Introduction

The selective H-D exchange of organic compounds, such as amines, alcohols or amino
acids, offers great application opportunities either as drugs or as diagnostic tools. The bene-
fits of deuterium labeling have long been considered to improve the properties of drugs [1].
While metabolic enzymes (e.g., proteases) have the ability to transform drug molecules to
inactive metabolites, the introduction of deuterium to drugs appears to strengthen their
resistance toward metabolic degradation due to the improved stability of the deuterium-
carbon bond that is six to ten times stronger than the carbon-hydrogen counterpart [2].
In addition, the higher stability of the deuterated drug provides longer lasting effects,
which allows lower dosage, likely causing fewer side effects [3,4]. As a breakthrough,
in 2016, a deuterated drug developed by TEVA Pharmaceuticals, the d6-tetrabenazine
(Figure 1) was approved to treat the symptoms of Huntington’s disease [5]. The deuterated
analog demonstrated improved ADME properties compared to the original non-deuterated
compound [6]. In fact, the deuterium introduced on the methoxy groups of the tetrahy-
droisoquinoline ring appears to prevent the cleavage of these substituents that leads to the
inactive form of the drug [7].

The H-D exchange is also considered to stabilize chiral centers, slowing down the
epimerization, which can be considerably useful when enantiomers have different potency
and toxicity [8,9]. Isotope labeled drugs can also have other functions related to drug
development. For instance, in imaging, where deuterium and hydrogen are discriminated,
isotope labeled molecules can serve as biological tracers [10]. They can provide better
understanding of metabolic pathways; they can also help localize the metabolites of drugs
and help assess their toxicity. Deuterated amino acids, for example, are valuable candidates
to be used as probes in biological organisms [11]. They can also be used for structural
analysis of proteins [12].
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Figure 1. Structure of tetrabenazine-d6.

Due to the significance of deuterated organic compounds, the development of efficient
and selective deuteration methods attracted great interests [13,14]. Various combinations
of deuterium source and reagents/catalysts are available to carry out deuteration reactions
including acid-base catalyzed reactions [15], deuterated reagents-based methods (such as
LiAlD4 [16]) and transition metal-catalyzed approaches [17–19]. Most methods, however,
do not conform to the recent expectations and standards of sustainable synthesis. In addi-
tion to the metal deuteride reagents, that are used in excess and generate significant amount
of toxic waste [10,16], there are three main deuterium sources employed for H-D exchange
reactions. These are: D2 gas, D2O/H2 mixture and D2O. While versatile and efficient, proce-
dures employing D2 gas as a deuterium source suffer from the drawbacks of the production
of D2 gas that is particularly expensive and laborious. The H2/D2O system was reported
for the H-D exchange of organic compounds using a palladium catalyst supported on
carbon [20]. The methods achieved moderate to good yields and provided site-selectivity
depending on the molecules. The transfer deuteration employing formic acid and D2O
for the generation of D2 through H+/D+ exchange aided by an iridium catalyst was also
achieved [21]. The reactions of various alcohols and ketones, performed under hydrogen
atmosphere in D2O also afforded high H-D exchange yields [21]. While those methods are
carried out at mild temperatures, protocols that do not require explosive gas handling are
preferable due to safety concerns. The combination of a transition metal as catalyst and D2O
as the deuterium source has also been widely used for H-D exchange reactions. Although
some previous works described the use of harsh conditions to achieve high yields [22],
the selection of appropriate catalysts under specific reaction conditions is a potentially
sustainable and powerful method for H-D exchange. The selective H-D exchange of amines
and amino acids in D2O was performed using a ruthenium catalyst [23]. High selectivity
and high incorporation of deuterium were observed at 135 ◦C. Palladium, known for its
high efficiency as a hydrogenation catalyst [24], was found to be a suitable catalyst for H-D
exchange reactions as well, providing interesting reactivity. A regioselective palladium-
catalyzed H-D exchange reaction was also reported [25]. The system provided excellent
deuterium incorporation at the benzylic site under mild conditions. However, the use of
a small amount of hydrogen gas was still necessary to reach higher H-D exchange yields.
Tashiro et al. were among the first to develop a deuteration method based on Ni/Al alloy
in D2O. The alloy exhibited high activity in an alkaline medium. For instance, various
benzaldehydes, anilines and benzylamines were successfully deuterated with the Ni/Al
alloy-Na2CO3-D2O system [26,27]. The amino acids tyrosine and phenylalanine were also
subjected to this highly active catalytic system [28]. For both amino-acids, high overall
H-D exchange but rather low selectivities were observed. In a recent study, photoredox
catalysts have been applied for the selective H-D and H-T exchange of several compounds
of pharmaceutical interest [29], indicating the continuously growing importance of isotope-
labeled compounds. In a recent work, the selective halogen-deuterium replacement was
applied for the incorporation of deuterium into important building blocks [30]. Due to the
high interest in deuterated compounds, their preparation has been periodically reviewed;
several recent accounts summarize the most recent developments in this field [31]. Building
upon our recent efforts on the development of green synthetic methods [32,33], herein,
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we describe a simple and yet effective H-D exchange protocol for the selective labeling of a
variety of compounds by using an environmentally benign Pd/C-Al-D2O system.

2. Results and Discussion

While the application of the Ni/Al alloy in reductive transformations has a consider-
able history, practical applications were hindered by the lack of selectivity [34]. By executing
modifications to this system, we have been able to demonstrate its versatility in several
transformations [35]. Recently, we demonstrated the success of the better tunable Pd/C-Al-
water system for the chemoselective hydrogenation of a variety of organic compounds [36].
The simplicity and efficacy of the new protocol is based on the in situ hydrogen formation
by the reaction of aluminum with water where the presence of palladium ensures the
reduction in the substrates. In the present study, we extend the applicability of this system
to H-D exchange reactions by replacing H2O by D2O. The continuous well-controlled in
situ generation of D2 gas from D2O makes the method safe as the use of pressurized gas is
not necessary, and it could be practical for both laboratory and industrial scale. The only
waste generated is the stable and non-toxic aluminum oxide.

As a preliminary experiment, the production of D2 gas with different amounts of
aluminum was investigated in order to optimize the amount of aluminum employed.
To do so, the volume of D2 generated was measured using a simple gas burette (see
Supplementary Materials, Figure S1). The plotted results are depicted in Figure 2.
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Figure 2. Volume of D2 produced as a function of time using various amount of Al at 80 ◦C (oil bath).
The aluminum powder was mixed with 1.5 mL of D2O and was presonicated for 1 h before the
measurement. The grey horizontal line indicates the formation of 1 mmol D2 for easier comparison.

Figure 2 shows that increasing the amount of aluminum in parallel increases the
amount of deuterium gas formed. In addition to the greater amount of D2, adding more
aluminum will reduce the time needed to obtain a desired volume of D2 gas approximately
by a factor of two under the applied conditions. After 120 min, 100 mg of Al initiated the
formation of 30 mL of D2, while about 240 min were necessary to obtain the same amount
of gas using 50 mg of Al. Nevertheless, independently of the time, even the lowest amount
of Al produced more than 1 mmol of D2 at 80 ◦C which is a sufficient supply for the H-D
exchange reactions given the scale at which they were performed (0.3 mmol). Following
this experiment, the activity and selectivity of our Pd/C-Al-D2O system was investigated
using a model substrate starting with 100 mg of Al to maximize the production of D2 in
relatively short times. The major goal was to exchange C-H to C-D. The significantly more
labile protons bound to N or O-atoms are also replaced during the procedure; however,



Molecules 2022, 27, 614 4 of 12

after placing the compounds into water (or simply by moisture), they would exchange back
to H rapidly. The amino acid L-phenylalanine was selected as a model substrate; it is an
important amino acid, readily available, non-toxic and it possesses a variety of C-H bonds.
The data are summarized in Table 1.

Table 1. Optimization of the reaction conditions for the H-D exchange using phenylalanine as
a model substrate a.
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c reaction with 25 mg Al d reaction with 10 mg of Pd/C; e determined by 1H NMR (see Supplementary Materials,
Figures S4–S9).

Microwave activation at 80 ◦C provided highly selective deuteration of the benzylic
hydrogens, none of the other hydrogen atoms were exchanged, albeit the conversion was
low (Table 1, entry 1). The increase in the reaction temperature enhanced the H-D exchange
yield; the optimal temperature of 120 ◦C afforded complete H-D exchange of the benzylic
hydrogens (Table 1, entry 5). Lower temperatures were not sufficient to reach quantitative
yields (Table 1, entry 4). Further optimization of the reaction time revealed that 30 min at
120 ◦C provided the same results as the one obtained with 1 h of reaction time (Table 1, entry
6). As expected, based on Figure 2, reducing the amount of aluminum to 25 mg afforded
similar results over a longer time (Table 1, entry 7). Therefore, the higher temperature
combined with the microwaves appear to provide sufficient energy to ensure optimum
formation of D2 gas with minimum amount of Al in a reasonable time. A decrease in the
amount of the catalyst resulted in a significant drop in conversion; only 35% of the benzylic
hydrogens was exchanged (Table 1, entry 8).

It is important to note that various analytical methods were used to confirm the
identity of the obtained deuterated products, such as the 1H NMR as well as 2H NMR
spectroscopy and mass spectrometry. All methods were in agreement in the structural
identification of the products. The 1H NMR spectra of L-phenylalanine before and after the
H-D exchange exhibit unambiguous evidence for the disappearance of the benzylic protons.
In addition, the 2H NMR confirms the presence of deuterium atoms in the corresponding
position (Figure 3). The presence of the expected molecular-ion in the mass spectrum also
confirmed the exchange of the two benzylic hydrogens to deuterium.
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Encouraged by the high efficiency and selectivity of the H-D exchange of phenylalanine
(Table 2, entry 1), the optimum reaction conditions were applied to other compounds in
order to test the scope of the method. The tested compounds included amino acids and other
aliphatic and aromatic building blocks frequently used in multistep synthesis. As a general
observation, all substrates underwent high deuterium enrichment with high selectivity.
The optimum temperature for phenylalanine had to be adjusted for each substrate. Glycine
was deuterated in 90% exchange yield at 170 ◦C (Table 2, entry 2). While phenylalanine
was deuterated selectively at the benzylic position, surprisingly, histidine was almost
quantitatively and exclusively deuterated on its aromatic ring (Table 2, entry 3). Alanine
required the highest temperature to provide a moderate deuterium exchange (60% exchange
yield) of the hydrogen adjacent to the amino group (Table 2, entry 4). More than 90% of the
hydrogen content remained on the methyl group. The deuteration of other compounds
such as anilines, esters or alcohols is of great interests as well. Notably, they can serve as
building blocks for the synthesis of compounds with medicinal relevance [36–38]. A few
aniline derivatives were tested, and the conditions were optimized for each one of those
substrates as well. Excellent deuterium enrichment was observed at the benzylic-CH2
position of 4-ethylaniline at mild temperature in 20 min (Table 2, entry 5). The other
hydrogens underwent deuteration with about 25% yield only. A sample of 4,4′-(Ethane-
1,2-diyl)dianiline was perdeuterated at 120 ◦C in 1 h (Table 2, entry 6). An aliphatic amine
was also tested; phenylethylamine exhibited good H-D exchange on the CH2 position and
no more than 15% for the other hydrogens (Table 2, entry 7). Next, the deuteration of the
following two esters was investigated: diethyl malonate and diethyl methyl-malonate.
The H/D exchange occurred in excellent yield at the most labile C-H positions of those
molecules, providing selective deuteration. Deuteration yields of 99% and 80% were
obtained, respectively, for the hydrogens in the position adjacent to both carbonyl groups
(Table 2, entries 8 and 9). Less than 10% deuteration was observed for the other hydrogens
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of the carbon chain. It is worth noting that although the H-D exchange of malonic acid
esters could be easily performed in alkaline medium (e.g., NaOD/D2O), the inevitable
hydrolysis of the ester function and partial decarboxylation of the product malonic acid
could occur, which can be avoided by using the present H-D exchange method. 3,5-
dihydroxybenzyl alcohol also readily underwent deuteration on the aromatic ring with
excellent selectivity and only a negligible amount of exchange occurred at the benzylic
position (Table 2, entry 10).

Table 2. Synthesis of deuterium labeled compounds via H-D exchange reactions by Pd/C-Al-D2O
system a.

Entry Product Time (min) T (◦C) Conversion b,c (%) ED d (%)

1
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thus retention was observed. The racemization of alanine-d1 took place at a significantly 
higher temperature, which was able to provide the necessary activation energy for the 
deuterolysis of the chiral C-H bond. In agreement with the literature [40] and our own 
data, a multistep mechanism has been constructed that is depicted in Figure 4. 
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In order to further characterize the products, particularly the chiral substrates, and gain
more insight to the mechanism of the reaction, the potential effect of the method on chiral
centers have been investigated. The chirality of the products phenylalanine-d2 (2-amino-
3-phenylbutanoic-3,3-d2 acid) and alanine-d1 were determined. First, the amino acids
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were esterified with isopropyl alcohol, and the obtained esters were derivatized with (S)-
Mosher’s chloride [39]. Then, the GC-MS profiles of the pre- and post-reaction amino
acids were recorded (Figures S11 and S15). It was observed that although phenylalanine
underwent the H-D exchange with retention of configuration, in the case of alanine nearly
complete racemization occurred. These observations allow two conclusions regarding the
participation of chiral compounds in these H-D exchange reactions. (i) First of all, it appears
that when the exchange does not directly occur on the chiral C-H bond, the accidental
exchange of the chiral C-H and racemization of the compound do not proceed. Thus, any
such H-D exchange that can be carried out on benzylic, aromatic, etc. hydrogens will safely
undergo with the retention of the original configuration. (ii) The only notable exemption
to this rule is when the actual H-D exchange occurs on a chiral C-H bond; in these cases,
racemization would follow. It is worth noting, however, that the second reaction takes
place at very high temperatures, nearly 200 ◦C, indicating a high energy barrier for the
racemization. All other H-D exchanges undergo at much lower temperatures.

The above experiments not only clarified the retention vs. racemization issue, but they
also helped us to propose a likely mechanism for the reaction. As in most catalytic hy-
drogenolysis processes (particularly those of heterogeneous nature) the undesirable racem-
ization of chiral substrates may occur. It appears that, based on the data, the key factor
in whether the racemization occurs or not is the strength of the actual C-H bonds and
the reaction temperature. Using phenylalanine, the exchange takes place at a relatively
moderate temperature, where the energy requirement for the cleavage of the chiral aliphatic
C-H bond was not met, hence there is no trace of exchange in that position and thus re-
tention was observed. The racemization of alanine-d1 took place at a significantly higher
temperature, which was able to provide the necessary activation energy for the deuterolysis
of the chiral C-H bond. In agreement with the literature [40] and our own data, a multistep
mechanism has been constructed that is depicted in Figure 4.
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In short, in the first step, the deuterium gas and the target compound adsorb on
the Pd surface (Figure 4A). For phenylalanine, the initial adsorption likely occurs via the
delocalized aromatic electrons. Since the ring is planar, it keeps the neighboring benzylic
CH2 close to the Pd surface, while the rest of the compound points away from the surface,
hindering the breaking of those C-H bonds. Depending on the reaction temperature,
the more or less sensitive C-H bonds will undergo a cleavage anchoring the actual C-atom
to the Pd-surface (Figure 4B). This is followed by the deuterium insertion into the metal-C
bond (Figure 4C) and the eventual desorption of the deuterated product (Figure 4D). In the
case of multiple exchanges in a compound, the incorporation of the second deuterium
atom may occur in a subsequent cleavage/exchange without actual desorption (adjacent
hydrogens) or with desorption and re-adsorption (sterically distant C-H bonds). In the
case of alanine, the surface binding occurs via the chiral carbon and during the C-2H bond
formation the deuterium atoms can be inserted from both left and right side to yield racemic
product (Figure 4E).

Last, with the aim of further reducing the environmental impact of our method, we
investigated the recyclability of the catalytic system, as summarized in Figure 5. As the
data show, the system exhibits good stability and recyclability. Although the reaction
mixture had to be replenished with 25 mg of fresh aluminum before each cycle in order to
ensure sufficient production of D2 gas, the transition metal demonstrated good recyclability,
even though the catalyst loading is relatively low. As low as 3% mol catalyst successfully
performed the H-D exchange reaction of phenylalanine to d2-phenylalanine without signif-
icant loss in activity: after the fourth cycle, above 80% of the catalyst activity was retained
(see also Supplementary Materials, Figures S22 and S23). It is also remarkable that the
selectivity appeared to remain steady throughout the four cycles.
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Figure 5. Yield (conversion × selectivity) of H-D exchange of phenylalanine to phenylalanine-d2

after reusing the same catalytic mixture (partially oxidized Al powder and Pd/C) replenished with
fresh Al (25 mg) before each cycle for four consecutive cycles.

3. Materials and Methods
3.1. General Information

All substrates, solvents and the Pd/C catalyst were purchased from Sigma-Aldrich
and used without further purification. All H/D exchange reactions were carried out using
a CEM Discover microwave reactor using closed-vessel setting at the temperatures noted.
The 1H NMR spectra were recorded on a 400 MHz Agilent MR400DD2 spectrometer at
399.96 MHz, using acetic acid (or tert-butanol) as the internal standard to calculate the
yield of H-D exchange and confirm that no other structural changes occurred in the com-
pounds. The 2H NMR spectra were recorded on the same instrument at 61.4 MHz frequency.
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The products were also characterized by gas chromatography—mass spectrometry (GC-MS)
with an Agilent 6850 gas chromatograph-5973 mass spectrometer system (70 eV electron
impact ionization) using a 30 m long DB-5 type column (J&W Scientific, Folsom, CA, USA).
The high resolution mass spectrometry analysis (HR-MS) was performed using an AB
SCIEX Qtrap 5500 instrument in negative ion mode.

3.2. Procedure

A microwave reaction vessel was charged with aluminum powder (100 mg) and 5%
Pd/C catalyst (20 mg) and suspended in 1.5 mL of D2O. The vessel was placed in an
ultrasonic bath for 1 h. The substrate (0.200 mmol) was added to the reaction vessel before
irradiating the reaction mixture in a CEM Discover microwave reactor. After completion of
the reaction, 0.5 mL of the reaction mixture was mixed and stirred thoroughly with 0.5 mL of
a stock solution containing the NMR internal standard (40 µL of acetic acid or tert-butanol in
10 mL of D2O). The NMR samples were prepared from the combined solutions. The yields
of H-D exchange were calculated using the ratio of the integration of a given signal to the
integration of the internal standard’s signal. The ratios obtained for the deuterated molecule
were then compared to the ratios obtained with the hydrogenated-counterpart in order to
determine the H-D exchange yield. Calibration curves were drawn from an experiment
with various amount of phenylalanine to assess the accuracy of the internal standard
method. A fairly linear function was obtained demonstrating the validity of the method to
calculate H-D exchange yields (see Supplementary Materials, Figures S2 and S3).

3.3. Catalyst Recycling

The reaction mixture was centrifuged after each cycle. The solution containing the
substrate was removed and analyzed. To the remaining solid mixture (Al powder and
Pd/C) 1.5 mL of fresh D2O was added and the mixture was centrifuged again. After this
step of rinsing, the liquid layer was discarded. A clean microwave reaction vessel was
charged with the remaining solid mixture containing the catalyst and was supplemented
with 25 mg of fresh aluminum powder before adding a new portion of (1.5 mL) D2O.
The reaction mixture was then sonicated for 1 h before adding the substrate and carrying out
the microwave-driven reaction. The conditions were the same as the optimum conditions
found for the model substrate, phenylalanine.

2,2-d2-phenylalanine (Table 2, entry 1): 1H NMR (D2O, 400 MHz): δ (ppm) = 3.79 (s, 1H),
7.12–7.23 (m, 5H); 2H NMR (D2O, 61.4 MHz): δ (ppm) = 3.23 (s, 1D), 3.07 (s, 1D); MS (EI):
C8H9D2N m/z = 168 (M+H).

d2-glycine (Table 2, entry 2): 1H NMR (D2O, 400 MHz): δ (ppm) = 3.39 (s, 2H). 2H NMR
(D2O, 61.4 MHz): δ (ppm) = 3.72 (s, 2D); MS (EI): C2H3D2NO2 m/z = 78 (M+H).

d2-histidine (Table 2, entry 3): 1H NMR (D2O, 400 MHz): δ (ppm) = 2.96–3.10 (m, 2H),
3.78–3.82 (t, 1H). 2H NMR (D2O, 61.4 MHz): δ (ppm) = 6.96 (s, 1D), 7.63 (s, 1D); MS (EI):
C6H7D2N3O2 m/z = 158 (M+H).

d1-alanine (Table 2, entry 4):1H NMR (D2O, 400 MHz): δ (ppm) = 1.31 (s, 3H), 3.62–3.64 (m,
1H). 2H NMR (D2O, 61.4 MHz): δ (ppm) = 1.37 (s, 1D), 3.70 (s, 1D); HR-MS (ESI-TOF) (M-):
C3H6DO2N value found = 89.9924, calculated value = 90.0540.

d2-ethylaniline (Table 2, entry 5):1H NMR (D2O, 400 MHz): δ (ppm) = 1.02 (s, 3H),
6.98–7.17 (m, 1H). 2H NMR (D2O, 61.4 MHz): δ (ppm) = 2.34 (s, 2D); MS (EI): C8H9D2N
m/z = 108 (100%), 123 (M+, 34%).

d12-4,4’-(ethane-1,2-diyl)dianiline (Table 2, entry 6):1H NMR (D2O, 400 MHz): δ (ppm) = 1.02
(s, 3H), 6.98–7.17 (m, 1H). 2H NMR (D2O, 61.4 MHz): δ (ppm) = 2.34 (s, 2D); MS (EI):
C14H4D12N2 m/z = 109 (100%), 220 (13%), 224 (M+, 1%).

d2-phenylethylamine (Table 2, entry 7): 1H NMR (D2O, 400 MHz): δ (ppm) = 2.72 (s, 2H),
7.11–7.24 (m, 5H). 2H NMR (D2O, 61.4 MHz): δ (ppm) = 2.89 (s, 4D), 6.87–7.25 (m, 8D); MS
(EI): C8H8D2N m/z = 93 (100%), 123 (M+, 24%).
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d2-diethyl malonate (Table 2, entry 8): 1H NMR (D2O, 400 MHz): δ (ppm) = 1.10–1.14
(t, 6H), 1.52 (q, 4H). 2H NMR (D2O, 61.4 MHz): δ (ppm) = 3.46 (s, 2D); MS (EI): C8H10D2O4
m/z = 117 (100%), 162 (M+, 2%).

d1-diethyl methylmalonate (Table 2, entry 9): 1H NMR (D2O, 400 MHz): δ (ppm) = 1.07–1.10
(t, 6H), 1.20 (s, 3H), 4.02–4.08 (q, 4H). 2H NMR (D2O, 61.4 MHz): δ (ppm) = 2.91 (s, 2D); MS
(EI): C8H13DO4 m/z = 130 (100%), 175 (M+, 15%).

d1-3,5-dihydroxybenzyl alcohol (Table 2, entry 10): 1H NMR (D2O, 400 MHz): δ (ppm) = 4.33
(s, 2H), 6.15 (s, 1H), 6.27 (s, 2H). 2H NMR (D2O, 61.4 MHz): δ (ppm) = 6.17–6.28 (m, 3D);
MS (EI): C7H7DO3 m/z = 141 (100%), 143 (M+, 40%).

4. Conclusions

In conclusion, a selective, practical and environmentally friendly H-D exchange
method was developed. A range of substrates from amino acids and amines to esters
and alcohols were successfully deuterated under microwave-assisted conditions. The major
advantages of this method are as follows: (i) the combination Pd/C-Al-D2O that provides
a safe way to generate D2 in situ, (ii) the only waste generated in the reaction is the stable
and non-toxic aluminum oxide, (iii) the availability of the catalyst that is ligand-free and
nevertheless, provides excellent selectivity, and (iv) a rapid synthesis ensured by the mi-
crowave irradiation. It is reasonable to conceive that the procedure described herein may
have the potential to contribute to improvements in the drug design process in terms of
cost, time and environmental impact.

Supplementary Materials: The Supplementary Material can be downloaded online. The following
supporting information includes additional data, including the compound spectra, determination of
chirality etc. as reference to in the article.
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