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Abstract: The structural and spectroscopic properties of a new triazolopyridine derivative (1,2,4-
triazolo[4,3-a]pyridin-3-amine) are described in this paper. Its FTIR spectrum was recorded in the
100–4000 cm−1 range and its FT-Raman spectrum in the range 80–4000 cm−1. The molecular structure
and vibrational spectra were analyzed using the B3LYP/6-311G(2d,2p) approach and the GAUSSIAN
16W program. The assignment of the observed bands to the respective normal modes was proposed
on the basis of PED calculations. XRD studies revealed that the studied compound crystallizes in the
centrosymmetric monoclinic space group P21/n with eight molecules per unit cell. However, the
asymmetric unit contains two 1,2,4-triazolo[4,3-a]pyridin-3-amine molecules linked via N–H· · ·N
hydrogen bonds with a R2

2(8) graph. The stability of the studied molecule was considered using
NBO analysis. Electron absorption and the luminescence spectra were measured and discussed
in terms of the calculated singlet, triplet, HOMO and LUMO electron energies. The Stokes shifts
derived from the optical spectra were equal to 9410 cm−1 for the triazole ring and 7625 cm−1 for the
pyridine ring.

Keywords: 1,2,4-triazolo[4,3-a]pyridin-3-amine; XRD studies; molecular structure; spectroscopic analysis

1. Introduction

Triazolopyridine derivatives constitute an important class of organic compounds em-
ployed in various biochemical, clinical and pharmaceutical applications. This group includes
[1,2,4]triazolo[1,5-a]pyridine, [1,2,4]triazolo[4,3-a]pyridine, [1,2,3]triazolo [1,5-a]pyridine,
[1,2,3]triazolo[4,5-b]pyridine and [1,2,3]triazolo[4,5-c]pyridine isomeric systems exhibiting
particularly useful effects. They have been recognized as antifungal [1–4], insecticidal [4],
antibacterial [5,6], anticonvulsant [7], antioxidant [8], herbicidal [9] agents, as well as adeno-
sine receptors [10] or HIF prolyl hydrolase [11] and myeloperoxidase [12] inhibitors. On
the other hand, pyridotriazine derivatives were discovered as prospective drugs showing
antithrombotic [13], antimicrobial [14,15], antifungal [16] and anti-Alzheimer disease [17]
effects. They are also antagonists of serotonin receptors [18,19].

Several isomeric triazolopyridines are of peculiar importance in medicinal and pharma-
ceutical applications. Special efforts have mainly been focused on [1,2,4]triazolo[4,3-a]pyridine,
which is recognized as a member of a new class of antidepressants that chemically and
pharmaceutically differ from the other tricyclic drugs [1–9,11,15]. Trazodone, an effective
antidepressant of the serotonin antagonist showing anxiolytic and hypnotic effects [20–22],
is an example of their application. Its transfer into breast milk and excretion was carefully
studied in [23].

[1,2,3]triazolo[4,5-b]pyridine derivatives offer somewhat limited application possi-
bilities. They have been described as anti-inflammatory, hypotensive, hypoglycemic,
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antipyretic, analgesic, antiasthmatic drugs and as vasodilators and substrates of NAD
glycohydrolase [24–28].

[1,2,3]triazolo[4,5-c]pyridine was reported to be an organic sensitizer for high-performance
solar cells [29,30] due to the formation of a D-A-π-A organic core where D is the electron
donor, A is the electron acceptor and π is the conjugated spacer between them. Yutilov and
Smolyar [31] described its synthesis.

Finally, the syntheses of several [1,2,4]triazolo[1,5-a]pyridine derivatives have been
reported, for which the prospective medical and pharmaceutical applications were sug-
gested [10].

A very important contribution of the triazolopyridines (TPs) to the medical and
pharmaceutical fields is related to receptor–ligand interactions and their docking to bio-
logically active components. The docking strategy was used for 1,2,4-TP as a 11β-HSD1
inhibitor [32], histone demethylase activator [33], antagonists for the adenosine recep-
tor [34,35] or antiproliferative inhibitors of tubulin polymerization [36]. It was discovered
that 7-aryl-1,2,4–TPs react with glutamate receptors leading to new drugs active in psychi-
atric diseases (schizophrenia, anxiety disorder) [37].

The nitrogen-containing heterocyclic compounds such as triazolopyridines often occur
as bi- or three-dentate chelating ligands due to the presence of the lone electron pairs on
the nitrogen atoms. They can coordinate metal ions and form complex compounds applied
as fluorescence sensors, chemisensors and catalysts [38–45]. The aim of the present work
was to characterize the structural and spectroscopic properties of a new compound, 1,2,4-
triazolo[4,3-a]pyridin-3-amine, in the solid-state. Spectral measurements and quantum
chemical calculations were undertaken to determine the energies and conformation of the
double triazolopyridine ring. Besides, because such a double-ring system can act as a donor
to a metal center, a phosphorescence sensor or a chemisensor, the knowledge of its optical
and electron properties is important for the full characterization of the studied compound.
These data can determine whether this material can serve as a photochromic system. A
full structural, electronic and optical characterization of the triazolopyridine derivatives is
important in understanding their receptor–ligand interactions and docking processes in
the production of the drugs [35].

2. Materials and Methods

1,2,4-triazolo[4,3-a]pyridin-3-amine (Sigma Ltd., Rowville, Australia) was recrystal-
lized from an ethanol solution. The obtained orange single crystals were studied using
the XRD technique. X-ray intensity data for the title crystal were collected using graphite
monochromatic MoKα radiation on a four-circle κ geometry Xcalibur diffractometer with
Sapphire2 area CCD detector at 100 K. Data collections were carried out using the CrysAlis
CCD program [46]. Integration, scaling of the reflections, correction for Lorentz and the
polarisation effects and absorption corrections were performed using the CrysAlis Red
program [46]. The structures were solved by the direct methods using SHELXT-2014/7 [47]
and refined using the SHELXL-2018/3 program [48]. The positions of the hydrogen atoms
in the pyridine ring were introduced in their geometrical positions and treated as rigid,
whereas the H atoms of the NH2 group were refined. The final difference Fourier maps
showed no peaks of chemical significance. Details of the data collection parameters, crys-
tallographic data and final agreement parameters are presented in Table S1. The selected
geometrical parameters are shown in Table 1 and the geometry of the closest intermolecular
interactions is exhibited in Table 2. Visualizations of the structures were made with the Dia-
mond 3.0 program [49]. The structure in the CIF format was deposited in the Cambridge
Crystallographic Data Centre (CCDC No. 2115902). The homogeneity of the obtained
sample was checked on a PANanalytical X’Pert diffractometer equipped with a Cu-Kα
radiation source (λ = 1.54182 Å). The diffraction data were recorded in the range of 5–50◦ at
room temperature. The experimental pattern of powder diffraction was quite similar to
that simulated from the X-ray single crystal structure and indicates the homogeneity of the
obtained sample (Figure 2).
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Table 1. X-ray and DFT optimized geometrical parameters (Å,◦) of TPa-NH2.

X-ray Values DFT
Bonds Molecule 1 Molecule 2 *

N1—N2 1.4005 (11) 1.4024 (11) 1.374
N2—C1 1.3147 (13) 1.3164 (13) 1.311
C1—N3 1.3760 (12) 1.3739 (12) 1.370
N3—C2 1.3827 (12) 1.3865 (12) 1.376
C2—C3 1.3507 (13) 1.3536 (13) 1.355
C3—C4 1.4337 (14) 1.4330 (14) 1.431
C4—C5 1.3601 (14) 1.3599 (14) 1.363
C5—C6 1.4281 (13) 1.4283 (13) 1.416
C6—N3 1.3863 (12) 1.3896 (12) 1.401
C6—N1 1.3211 (13) 1.3182 (12) 1.317
C1—N4 1.3716 (12) 1.3672 (13) 1.393

N4—H4A 0.912 (14) 0.900 (15) 1.014
N4—H4B 0.884 (14) 0.884 (15) 1.012

Angles

N1—N2—C1 108.46 (8) 108.56 (8) 108.83
N2—C1—N3 109.53 (8) 109.56 (8) 110.12
C1—N3—C6 105.30 (8) 105.11 (8) 104.04
C1—N3—C2 131.42 (8) 131.38 (8) 132.96
C2—C3—C4 120.54 (9) 120.69 (9) 120.49
C3—C4—C5 121.11 (9) 121.33 (9) 120.90
C4—C5—C6 118.47 (9) 118.46 (9) 119.04
C5—C6—N1 131.73 (9) 131.51 (9) 119.03
C5—C6—N3 118.26 (8) 118.13 (8) 118.05
N3—C6—N1 110.02 (8) 110.34 (8) 109.89
N2—C1—N4 128.31 (9) 127.91 (9) 127.39

H4A—N4—H4B 113.8 (12) 115.3 (13) 108.69

Torsion Angles

N1—N2—C1—N4 −177.34 (9) 177.52 (9) −175.56
N1—C6—C5—C4 −176.21 (10) −179.85 (10) −178.91
N2—N1—C6—C5 −178.68 (10) 177.61 (10) −178.87
N2—C1—N3—C2 −175.45 (9) 178.12 (9) −177.92
C1—N3—C2—C3 178.26 (9) 178.55 (9) −179.76

* for Molecule 2, the description of atoms is preceded by the number 1 and the rest are the same as in Molecule 1
(see Figure 1).
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Table 2. Hydrogen bond geometry (Å,◦).

D—H· · ·A D—H H· · ·A D· · ·A D—H· · ·A
N4—H4A· · ·N12 0.912 (14) 2.088 (14) 2.9958 (12) 173.8 (12)
N14—H14B· · ·N2 0.884 (15) 2.209 (15) 3.0836 (12) 170.1 (13)
N4—H4B· · ·N1 i 0.884 (14) 2.355 (14) 3.2242 (12) 167.7 (12)
N4—H4B· · ·N2 i 0.884 (14) 2.659 (14) 3.5055 (12) 160.6 (11)

N14—H14A· · ·N11 ii 0.900 (15) 2.403 (15) 3.2741 (13) 163.0 (12)
Symmetry codes: (i) x − 1, y, z; (ii) x + 1, y, z.
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Figure 2. Experimental (a) and simulated (b) from an X-ray structural analysis on a single crystal for
TPa-NH2.

The FT-IR/ATR spectrum was recorded in the 300–4000 cm−1 range using a Nicolet
6700 spectrometer (Thermo Fisher Scientific, Waltham, USA) equipped with a portable ATR
set. The resolution of these measurements was 2.0 cm−1.

The FT-Raman spectrum in the 4000–80 cm−1 range was measured in back scattering
geometry with a FT Bruker 110/S spectrometer. The resolution was 2.0 cm−1. The YAG:Nd
laser was used as an excitation source (excitation wavelength 1064 nm).

The room temperature electron absorption spectrum was measured in the 200–1500 nm
spectral range using a Cary-Varian 5E UV-VIS-near-IR spectrophotometer with a resolution
of 0.5 nm. The absorption spectrum of the compound in the ground state was recorded in
silicon paste.

Emission spectra and luminescence decay curves were recorded with a grating spec-
trograph (Princeton Instr. Acton, Massachusetts 01720 USA, Model Acton 2500i) coupled
to a streak camera (Hamamatsu, 314-5, Shimokanzo, Iwata City, Shizouka Pref., 438-0193,
Japan, Model C5680) operating in the 200–1100 nm spectral range with a temporal reso-
lution of 20–100 ps. The luminescent properties of the compounds were investigated at
room temperature.

The geometry optimization of the molecular structure of the studied compound was
carried out for the monomer and dimer with the use of the GAUSSIAN 16W program
package [50]. All calculations were carried out using density functional three-parameters
hybrid (B3LYP) methods [51–53] with the 6-311G(2d,2p) approach [54–57]. The calculated
and experimental values were compared using scaling factors to correct the evaluated
wavenumbers for vibrational anharmonicity and deficiencies inherent to the used compu-
tational level. The scaling factors were determined using the mean square method [58,59].
The Potential Energy Distribution (PED) of the normal modes among the respective internal
coordinates was calculated for the studied derivatives using the BALGA [60] program.

The natural bond orbitals calculations were carried out using the NBO program as
implemented in the GAUSSIAN 16W package at the B3LYP/6-311G(2p,2d) level of theory
in order to show a detailed description of the electronic structure of the TPa-NH2 molecule.
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3. Results and Discussion
3.1. Crystal and Molecular Structure

X-ray studies of the TPa-NH2 single crystal showed that the studied compound
crystallizes in the monoclinic system in the centrosymmetric space group P21/n with eight
molecules per unit cell. Its unit cell parameters are a = 5.5666 Å, b = 12.6649 Å, c = 16.8190
Å and β = 99.4340. However, the asymmetric unit contains two 1,2,4-triazolo[4,3-a]pyridin-
3-amine molecules linked via N–H· · ·N hydrogen bonds with a R2

2(8) graph (Figure 1). It
should be noted that the center of the R2

2(8) system is not the inversion crystallographic
center. Details of the data collection parameters, crystallographic data and final agreement
parameters are presented in Table S1.

X-ray selected geometrical parameters with DFT-optimized settings are presented
in Table 1 and the geometry of the hydrogen bonding interactions is shown in Table 2.
The respective bond lengths in both the independent molecules obtained from the X-ray
analysis of single crystals are almost the same and correlate nicely with the bond lengths
of the gaseous molecule obtained from the DFT calculations. The conformations of both
the independent molecules exhibit a similar, almost planar conformation. The dihedral
angle between the plane of the pyridine ring and the plane of the 1,2,4-triaza ring is equal
to 3.1(1)◦ in molecule 1 and 1.8(1)◦ in molecule 2. However, small differences between
the X-ray and DFT values of the studied compound are due to different approaches to the
description of the conformation of the molecules. The X-ray values refer to the conformation
of the molecules in crystals where the interactions between the molecules play a significant
role and lead to crystallization and a specific crystal packing, while DFT values refer to a
single isolated molecule in the gaseous state, omitting interactions between molecules and
thus leading to these differences. The arrangement of the molecules in crystal is mainly
determined by the N–H· · ·N hydrogen bonds that form a dimeric structure with a R2

2(8)
graph and the dimers mainly interact in the unit cell by electrostatic interactions, dispersive
forces and van der Waals forces because there are no strong directional interactions (such
as hydrogen bonds) between the dimers (Figure 3). The dimers are arranged in stacks
along and perpendicular to the [210] direction (see Figure 3b). Within the stacks, the
π· · ·π interaction between the clouds of the rings is relatively weak due to the distance of
3.710(5)Å between Cg· · ·Cg (Cg = gravity center of the pyridine ring). The geometry of
the hydrogen bonds and the other closest contacts between the molecules are presented
in Table 2.
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The optimized structure of the TPa-NH2 molecule obtained from the DFT calculations
is shown in Figure 4, in which the numbering of the atoms is also defined. The calculated
geometrical parameters are introduced in Table 1 for comparison with those obtained from
the XRD studies. These values were used to calculate the vibrational and electron energy
levels. It should be noted that the theoretical and experimental bond lengths, the angles
between them as well as the torsional angles show a very good accordance which proves
that the theoretical model of the DFT calculations was chosen correctly.
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The Mulliken atomic charges determined in the present work for the studied com-
pound are presented in Table S2. These results show that coupling between the pyridine
and triazole rings as well as the substitution of the amino group at C(1) atom leads to a
redistribution of electron density. The charges of the nitrogen atoms clearly vary depending
on their place and function in the TP system. The N(1) and N(2) atoms in the triazole ring
exhibit charge values of −0.279 and −0.281, respectively. The third nitrogen N(3) atom
exhibits a higher charge value equal to −0.243 because it is common for the both rings. The
charge value of the fourth N(4) atom is significantly smaller (−0.406) because it belongs to
the amino-chromophore engaged in the hydrogen bond joining two TP molecules in the
unit cell. The charges of the carbon atoms also depend on their position in the TP system.
The pyridine carbons are symmetrically (negative or positive) distributed in this ring: C(2):
0.118, C(3): −0.183, C(4): 0.044, C(5): −0.163. As is common for T and P rings, the C(6) atom
has a significantly higher charge value: 0.372. A clearly higher value (0.420) characterizing
the charge of C(1) atom is due to the attachment of an amino group in this place.

The charge values of the hydrogen atoms attached to the pyridine ring are nearly
similar: 0.0676, 0.063, 0.068 and 0.084. They clearly differ from those of the hydrogen
atoms of the amino group: 0.152 and 0.166—one of them is engaged in the inter-molecular
hydrogen bond.

Because the amino-chromophore, triazole nitrogen atoms and hydrogen atoms partici-
pate in the HB interactions between the TPa-NH2 units of the dimer, the charge distribution
in this system reflects the changes resulting from the dimer formation. The following
Mulliken’s charges were fixed for amino-chromophore nitrogen N(4), triazole nitrogen N(2)
and the hydrogen atom H(6) of HB for the dimer: −0.405; −0.327; and 0.188, respectively.
This means that the formation of the dimer causes the charge increase in the bridging
hydrogen and a charge decrease in the triazole nitrogen.

Table S3 presents the values of the stabilization energies E(2) associated with the hyper
conjugative interactions within the molecule.

The stabilization energy of the molecule is described by the difference between the
energy of a delocalized chemical structure and the theoretical energy of a structure with
localized bonds. It reflects the interactions between the bonds inside the molecule as the
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measure of the stability gained when two atoms bond with each other, as opposed to their
free or unbound states. These parameters are particularly useful for the aromatic molecules
in which π interactions couple the whole system. Such a situation appears for the studied
TP system in which N2=C1, N1=C6, C4=C5 and C2=C3 bonds exhibit a π character. The
following energy values are particularly expressive: π(N2–C1)–π*(N1–C6) = 12.04 kcal/mol,
π(N1–C2)–π*(N2–C1) = 14.79, π(C4–C5)–π*(N1–C5) = 21.77, π(C4–C5)–π*(C2–C3) = 16.42
and π(C2–C3)–π*(C4–C5) = 14.85 kcal/mol. They express the π interactions between
the double bonds in the TP system shown in Figures 1 and 4 and structural parameters
from Table 1.

3.2. FTIR and Raman Spectra

The FTIR and Raman spectra of the studied compound are shown in Figures 5 and 6.
Table S4 presents the observed band wavenumbers and their assignment to the respective
vibrational modes. The correlation graphs of the experimental and calculated wavenumbers
are presented in Figure 7, showing their good agreement.

The amino-triazolopyridine molecule contains two clearly distinguishable vibrational
patterns corresponding to the triazolopyridine skeleton and the amino group bonded to
these units. The nine-atomic triazolopyridine skeleton gives rise to twenty-one vibrational
normal modes. The theoretical calculations and vibrational spectra show that these normal
modes can be subdivided into those in which one ring vibrates only, i.e., pyridine or triazole
rings separately and in which the concerted motions of the whole triazolopyridine double-
ring system participates. The vibrations of two former units are characterized by in-plane
stretching ν(ϕP) vibrations; in-plane δ(ϕP) bending vibrations; out-of-plane bending γ(ϕP)
vibrations; stretching ν(ϕT); in-plane bending δ(ϕT); and out-of-plane bending γ(ϕT). On
the other hand, the concerted vibrations of the whole triazolopyridine skeleton (Φ) are
described by the modes that could be denoted as stretching νas(Φ), νs(Φ), γ(Φ) wagging
and τ(Φ) wagging, because the whole double ring Φ system participates in these vibrations.
The wavenumbers of νas(Φ) modes were calculated at 1324 cm−1 for the monomer and
1331 cm−1 for the dimer. In the IR spectrum, this mode was observed at about 1339 cm−1

and in the Raman spectrum—at 1340 cm−1. The second characteristic in-plane bending
vibration of the triazolopyridine skeleton is described by the mode calculated at 767 cm−1

for the monomer and at 777–778 cm−1 for the dimer. The νs(Φ) vibration was observed in
the 766−770 cm−1 range. Its intensity in the Raman spectrum is significantly higher than
its IR counterpart. The mode calculated at 426 cm−1 for the monomer and 425–427 cm−1

for the dimer should be denoted as the γ(Φ) wagging motion of the entire skeleton. This
mode was observed at 425 cm−1 in the IR spectrum and 430 cm−1 in the Raman spectrum.
The τ(Φ) wagging modes calculated at about 188 cm−1 for the monomer and 196–203 cm−1

for the dimer were observed in the IR spectrum at 192 cm−1 and in the Raman spectrum at
191 cm−1.

The same modes of the double triazolopyridine rings were described in our previous
works for 7-methyl-1H-[1,2,3]triazolo[4,5-c]pyridinium nitrate (7MTPHc) and 6-methyl-
1H-[1,2,3]triazolo[4,5-b]pyridine (6MTPb) which contain triazolo[4,5-c]- and triazolo[4,5-
b]-pyridine skeletons in their structure [61,62]. The wavenumbers corresponding to the
characteristic vibrations of triazolo[4,5-b]-, triazolo[4,5-c]- and triazolo[4,3-a]pyridine skele-
tons are shown in Table 3.
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Figure 5. Infrared spectrum of TPa-NH2. 
Figure 5. Infrared spectrum of TPa-NH2.
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Table 3. Characteristic normal modes and their PED contribution to the skeleton in the studied
triazolopyridine derivatives (the calculated values for the monomer are listed in parentheses).

TPa-NH2 6MTPb 7MTPHb

νas(Φ) (1324) 1340-1339 (1326) 1323-1322 (1275) 1275
νs(Φ) (767) 770-766 (760) 776-762 (678) 699

γ(Φ)—wagging (426) 430-425 (440) 440-439 (550) 521-515
τ(Φ)—wagging (188) 192-191 (250) 273-268 (187) 209-204

Comparing the theoretical and experimental wavenumbers, it should be noted that
the amino group participates in intermolecular interactions in the unit cell. N−H· · ·N hy-
drogen bonds (HBs) play an important role in chemistry and biology. Such interactions are
expected for the TPa derivatives. The XRD data postulate the formation of the N−H· · ·N
HB. For the solid state in which such interactions appear, the N−H· · ·N hydrogen bond
is formed between the adjacent TPa-NH2 units of the unit cell. A HB is formed between
the amino chromophore of one molecule and the nitrogen acceptor of the adjacent unit’s
triazole ring.

The theoretical calculations for TPa-NH2 were carried out for both the monomer
and the dimer. The characteristic vibrations of the HB for the dimer were predicted
by DFT calculations at the following wavenumbers: ν(N−H· · ·N) 3126 and 3096 cm−1;
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δ(N−H· · ·N) at 1428 and 1426 cm−1; γ(N−H· · ·N) at 884 and 870 cm−1; and ν(N−H)· · ·N
at 104 cm−1.

The FTIR spectrum of TPa-NH2 exhibits a very broad and strong bond in the range
2700–3400 cm−1. The ν(N−H· · ·N) vibration was observed at 3153 cm−1. The band at
1420 cm−1 of the IR spectrum should be assigned to the δ(N–H· · ·N) in-plane bending
vibrations. This vibration was observed in the Raman spectrum at 1423 cm−1. The char-
acteristic band in the range 800–900 cm−1 of the FTIR spectra should be assigned to the
out-of-plane bending vibrations γ (N–H· · ·N).

The NIR spectrum (Figure 5) of the studied derivative contains a rich spectral pattern
of overtones and combination modes. They can be assigned to the following mixed
components: 9460 cm−1: 3ν3; 8864 cm−1: 2ν1 + 2ν20 or 2ν3 + 2ν16; 7500 cm−1: 2ν1 + ν26;
6428 cm−1: ν1 + 2ν9; 6033 cm−1: 2ν6; 5357 cm−1: ν2 + ν8 + ν37; 4952 cm−1: 3ν7; 4717 cm−1:
ν2 + ν13 or ν3 + ν9; 4570 cm−1: ν2 + ν16 or 3ν10; 4358 cm−1: 3ν12 or ν1 + ν21 or ν4 + ν16;
4145 cm−1: ν1 + ν27 or ν2 + ν26 or ν3 + ν22. The discrepancies between the wavenumbers
observed in the NIR region, corresponding to combinations of fundamental transitions and
theoretical values, do not exceed a few cm−1 which means that the scaling factors used in
the DFT calculations were taken properly.

3.3. Electron Absorption and Emission Spectra

The absorption spectrum of the studied compound is shown in Figure 8. It contains
two clear bands: the stronger complex spectral pattern in the range 200–400 nm and the
weaker doublet in the range 400–600 nm. Such a spectral pattern agrees with those reported
for other triazolopyridines [63,64] and the fact that the title molecule contains two coupled
π-ring systems.
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Figure 8. The electron absorption spectrum of the TPa-NH2 molecule.

To learn about the electronic properties of the title compound, DFT calculations were
carried out using the optimized geometry in this molecule. Knowledge of the singlet and
triplet energy levels of the ligand is needed to assign the observed bands to the respective
electron transitions. The distribution of these levels was determined by the quantum
chemical DFT approach. The results of these evaluations are shown in Table 4. The singlet
states of the studied derivative fall in the range 188–327 nm, but the energies of the triplet
levels range from 211 to 479 nm. These data could be compared with the experimental
values seen in the electron absorption spectrum presented in Figure 8.
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Table 4. Calculated singlet and triplet electron levels of the TPa-NH2 molecule.

Electron
Levels

Wavelengths [nm] Wavenumber [cm−1] Oscillator Strength

Monomer Dimer Monomer Dimer Monomer Dimer

singlets
(1) 326.35 347.81 30,642 28,751 0.0409 0.0003
(2) 270.76 347.03 36,933 28,816 0.0019 0.0801
(3) 249.50 326.74 40,080 30,605 0.0297 0.0009
(4) 224.49 326.40 44,545 30,637 0.0310 0.0001
(5) 216.58 261.22 46,172 38,282 0.0418 0.0000
(6) 211.79 260.64 47,216 38,367 0.2960 0.0047
(7) 204.21 253.45 48,969 39,455 0.1038 0.0005
(8) 200.29 253.29 49,928 39,480 0.0124 0.1183
(9) 195.66 242.08 51,109 41,309 0.0027 0.0004
(10) 188.01 241.91 53,189 41,338 0.0553 0.0001

triplets
(1) 478.55 504.98 20,896 19,803 0.0000 0.0000
(2) 319.77 504.82 31,272 19,809 0.0000 0.0000
(3) 301.54 328.58 33,163 30,434 0.0000 0.0000
(4) 291.26 328.32 34,333 30,458 0.0000 0.0000
(5) 239.07 327.45 41,829 30,539 0.0000 0.0000
(6) 235.13 327.26 42,530 30,557 0.0000 0.0000
(7) 231.32 307.60 43,230 32,510 0.0000 0.0000
(8) 230.06 307.34 43,467 32,537 0.0000 0.0000
(9) 226.85 278.28 44,082 35,935 0.0000 0.0000
(10) 211.93 277.75 47,185 36,004 0.0000 0.0000

The calculated energies of the singlet states show a good agreement with the position
of the observed bands (Figure 8). The calculated oscillator strengths of the transitions at 212
and 204 and 217 nm (No. 6 and 7) have the greatest values which fit well with the strong
bands observed in the range 200–250 nm. The energy of the band at 321 nm coincides with
that of the singlet state No. 1 for which the calculated value equals 326 nm. It is difficult to
assign the bands observed at 456 and 500 nm. They could be explained as a result of the
intermolecular interaction between the TP molecules in the unit cell. The presence of the
NH2 group in the title molecule provides additional possibilities for the intermolecular
charge transfer by H-bonding, π-π* stacking or donor–acceptor interactions [65]. Such
a mechanism follows from the scheme of the HOMO→ LUMO transition presented in
Figure 9. ∆E for these levels is equal to 281 nm (35,531 cm−1). This corresponds to the band
observed in the UV-Vis spectrum at about 255 nm. HOMO orbitals are localized both on
the rings and the amino group, but the LUMO orbitals are reduced mainly to the three
nitrogen atoms of the whole ring system with a small contribution of the C–H bonds.

Taking into account the theoretical and experimental data, the observed bands should
be assigned to the following transitions: 200–289 nm corresponds to the π → π* of the
triazole and pyridine rings and above 300 nm to the n→ π* of this system. The energy of
the HOMO→ LUMO transition suggests that the lowest singlet state assigned to the π→
π* intramolecular charge transfer (ICT) can overlap with some contribution to the n→ π*
(CT) transition.

Some information follows from the luminescence spectrum measured for the title
compound (Figure 10). Its emission spectrum contains two bands: a high intensity one at
about 460 nm and the second, clearly weaker, at 545 nm. Depending on the wavelength used
for the excitation line, the former band is somewhat shifted towards blue. The observed
bands should be assigned to the π* → n transitions of the pyridine and triazole rings,
respectively. The lifetime of the excited state is 3 ns (insert of Figure 10). A comparison of
the absorption and emission spectra allows us to state that the Stokes shift for the measured
sample is close to 9410 and 7625 cm−1, respectively for the triazole and pyridine rings.
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Comparing the theoretical data with the UV-Vis and emission spectra of the studied
compound, another explanation of its electron properties can be proposed. The lumines-
cence of the title compound was observed in the range 460–545 nm. It clearly shifted into
red in relation to the S0 → S1 absorption transition, calculated at 326 nm and observed
at 320 nm. Therefore, the observed luminescence could originate from the T1,T2 → S0
emission that may have proceeded by the inter-system crossing S1 → T1,T2. Room temper-
ature fluorescence is generally not observed from excited triplet states; however, having in
mind the calculated energies of these levels, we believe that a transition of this character is
reasonable. According to the DFT calculations, the energies of the T1 and T2 states were
20,896 cm−1 and 31,272 cm−1, respectively, i.e., they were close to those expected for the
emission from the triplet state. Besides, their red shift agrees with the expectations because
the inter-molecular hydrogen bonds significantly affect the excited state properties. The
excited-state hydrogen bonding influences nonadiabatic processes such as internal con-
version, intersystem crossing, intramolecular charge transfer and photoinduced electron
transfer. Giving such an explanation of the discrepancies between the theoretical and
experimental data, the depopulation scheme of the excited states for the studied compound
can be proposed (Figure 11). It is based on the intersystem crossing mechanism which
is a part of a Jablonsky diagram often used to explain the origins of the luminescence
observed for organic compounds [66–70]. This scheme clearly explains why in the emission
spectrum there is a doublet band: it results from the appearance of the T1 → S0 and T2 →
S0 transitions.
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4. Conclusions

1. 1,2,4-triazolo[4,3-a]pyridin-3-amine occurs in a monoclinic structure forming the
orange crystals—eight molecules constitute its unit cell. Its full structure has been
described in the present work for the first time.
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2. IR and Raman spectra measurements confirm the existence of inter-molecular N–
H· · ·N hydrogen bonds in which the NH2 group attached to the triazole ring joins
the triazole nitrogen atom of the adjacent TP system. The amino group plays the role
of an effective hydrogen bond donor.

3. A characteristic set of normal modes was identified for the triazolopyridine skeleton
in the title molecule and their PED contributions were characterized (see Table S4).

4. The TD-DFT B3LYP quantum–chemical calculations performed for the isolated TPa-
NH2 molecule located the lowest singlet state assigned to the π→ π* intramolecular
charge transfer (ICT) transition that probably overlaps with some contribution to the
n→ π* (CT) transition.

5. The presence of an amino group in 1,2,4-triazolo[4,3-a]pyridin-3-amine, its electron
properties and the energies of its ground and excited states suggest that this compound
can be used as a ligand for the complexation of the d- and f- electron ions. The
hydrogen atom of the amino group participating in the intermolecular hydrogen
interaction is susceptible for the complexing of the metal ions. In such a binding,
the lone pairs of nitrogen atoms of the triazole ring can participate. Besides, a very
broad range of the electron absorption in the studied compound allows them to
become excited in metal complexes through the ligand-to-metal transfer. The probable
depopulation mechanism of the excited states of the ligand is proposed in the present
work (Figure 11).

Supplementary Materials: Table S1: Crystallographic data and final refinement parameters for
TPa-NH2; Table S2: The Mulliken atomic charges determined for the studied derivative; Table S3:
The stabilization energies E(2) associated with the hyper conjugative interaction within the molecule;
Table S4: Experimental and scaled wavenumbers (in cm−1) of the vibrational spectra for TPa-NH2
monomer and dimer; checkCIF/PLATON report.
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