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Abstract: Thanks to their ability to bind to specific biological receptors, mannosylated structures
are examined in biomedical applications. One of the most common ways of linking a functional
moiety to a structure is to use an azide-alkyne click reaction. Therefore, it is necessary to prepare
and isolate a propargylated mannose derivative of high purity to maintain its bioactivity. Three
known preparations of propargyl-α-mannopyranoside were revisited, and products were analysed
by NMR spectroscopy. The preparations were shown to yield by-products that have not been
described in the literature yet. Our experiments showed that one-step procedures could not provide
pure propargyl-α-mannopyranoside, while a three-step procedure yielded the desired compound of
high purity.

Keywords: alkylation; furanose; NMR spectroscopy; mannose; propargyl; pyranose

1. Introduction

Mannose is a natural monosaccharide, occurring in plants as well as microorganisms,
usually as a constituent of mannan, hemicellulose, or cellulose [1]. Historically, mannose
was used in the food industry as an alternative sweetener or to improve the texture of
foodstuff, in cosmetics, or it was used as a feed additive [1]. Thanks to its ability to bind
to specific biological receptors, mannose has been examined as a functional moiety of
biosensors [2–4] and as the key compound for bacterial labels [5]. However, there is no
more discussed application of mannose than its use in medicine. The number of arti-
cles published on mannosylated structures increases every year, and a frequent theme
is the preparation of mannosylated nanocarriers capable of targeted delivery [6–10] or
cell imaging [11,12]. Several types of cells, including antigen-presenting cells, dendritic
cells, macrophages, and several tumorous cells, are able to express mannose receptors as
an important component of the immune system [6,13]. The main function of these trans-
membrane proteins is to bind mannosylated pathogens and glycoproteins in the organism,
thereby facilitating phagocytosis [13]. Therefore, functionalisation of nanostructures with
mannose may enhance targeting into a specific tissue, as well as enhancing the cellular
uptake of drugs incorporated into a carrier.

For the preparation of a mannose-functionalised material, the “click” alkyne–azide
cycloaddition reaction is frequently used [14–16]. To perform this reaction, the synthesis of
the alkyne derivative of mannose is essential.

As mentioned before, mannose derivatives have become a point of interest for possible
application in targeted drug delivery. However, organisms are very sensitive to the right
form of the mannose derivative structure. Mannose contains six carbons and appears in
either a pyranose or furanose form [1]. Therefore, the synthesis of targeting nanocarriers
requires high selectivity and exact reproducibility of the products. In an aqueous solution,
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D-mannose appears in the α-D-pyranose form (approximately 68%) and the β-D-pyranose
form (32%) at room temperature [17]. The carbohydrate-recognition domains of mannose
receptors contain mannose-binding lectin, which recognises the equatorial C3 and C4
hydroxyl groups on the pyranose ring [18]. This fact shows that it is crucial to deeply
examine the synthesis product and properly separate the undesired by-products such as
the furanose form.

Propargyl-mannosides are synthesised using two different approaches—direct synthe-
sis (Scheme 1, conditions (a)) and three-step synthesis using the protection–deprotection
strategy. Several authors mentioned that the preparation they used may lead to the desired
mannopyranoside but that they also may lead to unknown by-products [19–21]. Despite
that, some authors used the product immediately without purification and estimation
of purity [22,23]. For example, Richards et al. [22] used direct synthesis catalysed by hy-
drochloric acid for the propargylation of mannose and galactose. The products of the
preparation were used without any further purification, no yields were given, and the
NMR characteristics were insufficient.
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Scheme 1. One-step procedure for the preparation of propargyl-mannosides. The synthesis was
performed according to two different methods: (a) propargyl alcohol, HCl, RT, overnight [22];
(b) propargyl alcohol, H2SO4 on silica, 65 ◦C, 2 h [19].

Other preparations were made with sulphuric acid as a catalyst (Scheme 1, conditions
(b)) [16,19–21,24,25]. All authors purified the product using column chromatography, al-
though the mobile phases differed (CHCl3–MeOH; EtOAc–acetone–H2O; CH2Cl2–MeOH).
An overview of the results is given in Table 1. The yields of the propargylation vary (30–
90%) as well as the anomeric purity of the products (the ratio of α/β mannopyranoside
differs from 1:0 to 2:1). Although Roy et al. [19] mentioned that furanosides may also form,
they were not described.

Table 1. Overview of publications, in which sulphuric acid-catalysed propargylation of mannose was
performed, and the yields of reactions, anomers, and their ratios are described.

Author. Yield (%) Described Anomers
1H and 13C NMR

Ratio of Anomers
(α/β-Pyranoside)

Roy (2007) [19] 83 α-6 1:0
Shaikh (2011) [24] 90 − 1:0
Basuki (2014) [21] 30 α-6β-6 8:1 after acetylation

Su (2015) [25] 85 α-2
−

(considering pure
α-anomer)

Oz (2019) [16] 39 − −
Raposo (2020) [20] 38 α-2 2:1
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In addition to the strategies examined in this article, the O-propargylation of mannose
can be performed, e.g., via trichloroacetimidate intermediate product [26–29], or a thio-
derivative intermediate [30,31]. However, these approaches may also result in the mixture
of α- and β-D-mannopyranoside [27,30].

The mannose propargylation products formed by various synthetic procedures are the
main subject of this article. Structures were examined by NMR, and the spectra are shown
to provide the reader with the characterisation data of all forms, thereby facilitating the
future synthesis and identification of 1-O-propargyl-mannosides.

2. Results and Discussion

In our work, the one-step approach was repeated according to Richards et al. [22] to a
total yield of 25%. However, not only propargyl-α-D-mannopyranoside (α-2) was detected
using NMR (see below) but also other by-products in the form of other isomers were
detected, such as propargyl-β-D-mannopyranoside (β-2), propargyl-α-mannofuranoside
(α-3), and propargyl-β-mannofuranoside (β-3) in the ratio of 28:12:51:9. The calculated
yields (based on mannose) were 7% α-2, 3% β-2, 13% α-3, and 2% β-3. Unfortunately, not
even thorough purification by column chromatography succeeded in the perfect separation
of the products. The procedure was repeated several times with similar results. The isomers
were not reported by Richards et al. [22], who used the product for further synthesis without
any purification.

We recognised furanosides 3 and pyranosides 2 based on the 1H-13C HMBC NMR
spectra. The spectra of furanosides 3 revealed a strong interaction between H1–C4 (3JHC),
and a negligible interaction between H1–C5 (4JHC), while pyranosides 2 had a negligible
H1–C4 (4JHC), and strong H1–C5 (3JHC) interaction. The anomers were identified based on
NOESY and HSQC-NOESY NMR spectra, where H1 had NOE only to H2 and propargyl
CH2 in the case of α-anomers, but also to H3, H4, or H5 in the case of β-anomers. When the
NMR samples in D2O were acidic (pH ~ 5), then the acetylene hydrogen was exchanged
during a few days by deuterium, which was well recognised as the multiplicity of propar-
gyl CH2 hydrogen signals decreased while the multiplicity of acetylene carbon signals
increased. In addition, the 1H/2H isotope effect on their chemical shifts was observed (see
the Supplementary Materials, Table S1).

The sulfuric acid-catalysed preparation (Scheme 1, conditions (b)) is used most often.
We revisited the sulfuric acid-catalysed preparation [19] to compare the effect of different
reaction conditions on direct synthesis. The yields reported in the literature vary widely
from 30% to 90% (Table 1). Our results lie within this interval, as we obtained a 37% yield.
However, only a minority of authors described the synthesis of any product other than
propargyl-α-D-mannopyranoside (α-2), specifically propargyl-β-D-mannopyranoside (β-2)
was detected in a few cases [20,21]. Moreover, the products obtained from the reaction
were commonly per-O-acetylated before characterisation. In our work, non-acetylated
products were investigated, and both pyranosides α-2 and β-2 and furanosides α-3 and β-3
were detected in molar ratios of 712:209:57:22, respectively. The calculated yields (based
on mannose) were 26% α-2, 8% β-2, 2% α-3, and 1% β-3. To the best of our knowledge,
mannofuranosides produced by this reaction have never been described.

Next, the products of the three-step propargyl-mannoside preparation were also
examined. In the first step (Scheme 2), per-O-acetylated mannopyranoside was obtained
with the majority of per-O-acetyl-α-D-mannopyranoside. Our detailed analysis of the 1H
NMR spectrum of the product revealed the presence of both pyranoside anomers and traces
of furanoside anomers. In the literature, the formation of the mixture of both pyranosides is
described, but not quantified (Table 2). However, the anomeric ratio of α- and β-pyranoside
in the product was reported in the articles, where a different synthetic procedure was
used with the same aim (specifically α/β-pyranoside in the ratio of 4.75:1) [32,33]. No
furanosides 3 were reported. During the characterisation of our products, the major anomer
α-4 was well identified based on the medium NOE of H1 to acetyl on C2, and weak to
acetyl on C3, which was missing in the case of anomer β-4. Further NMR evidence of the
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configuration and conformation of α-4 was prevented due to overlaps and second-order
character of the signals. In contrast, the minor anomer β-4 had well-dispersed 1H signals.
The observation of strong NOE of H1 on signals of the H2, H3, and H5 proton and weak to
acetyl on C1 only proves the configuration. The pyranose ring conformation of β-4 shown
Scheme 2 is in accordance with the gain of 1H–1H interaction constants. In addition, based
on selective 1D TOCSY NMR experiments, we identified the presence of peracetylated α-D-
mannofuranoside α-5 and β-D-mannofuranoside β-5. The obtained characteristics were in
accordance with the published data [34]. (We probably recognized a typo in the article; the
chemical shift of H3 of β-D-mannofuranoside should read 5.651 ppm.) Mannosides α-4,
β-4, α-5, and β-5 were in the molar ratio of 860:129:10:1, which corresponds to yields of
66%, 10%, 1%, and 0.1%, respectively. We repeated this experiment with identical results.

Table 2. Overview of papers where per-O-acetylation of mannose was performed. Yields of reactions,
anomers, and their ratios are described.

Author. Yield (%) Described Anomers
1H and 13C NMR

Ratio of Anomers
(α/β-Pyranoside)

Zhao (2012) [35] 95 - Mixture with an
undefined ratio

Wamhoff (2016) [36] 80 α-4
β-4

Mixture with an
undefined ratio

Abellán-Flos (2016) [37] Quant. α-4 −
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Scheme 2. The first step of the three-step synthesis using protection via acetylation.

In the second step (Scheme 3), the mixture of α-4, β-4, α-5, and β-5 was used as the
starting material, as it was not possible to separate the individual compounds. In contrast
to the literature, which refers to only one product in the form of α-pyranoside (Table 3),
the reaction resulted in another mixture of products, including the desired α-6, but also
β-6, propargyl-tetraacetyl-α-furanose (α-7), and propargyl-anhydromannose (α-8). NMR
analysis revealed the anomers were in the molar ratio of 9803:149:32:7, which corresponds
to the yields of 82% for α-6 (based on α-4), 8% for β-6 (based on β-4), 23% for α-7 (based
on α-5), and 5% for α-8 (based on α-5). However, during the purification by column
chromatography, it was possible to separate the mixture into three fractions, including a
fraction of pure α-6, which was used for the next step of the synthesis. The compound
α-8 was identified by correlation 2D NMR experiments; the configuration was suggested
based on NOE experiments and similarity with the known analogues [38]. Several 1H NMR
signals were overlapped, so we also recorded the NMR spectra in C6D6, in which the signals
were more separated, and the NOE spectra were more reliable. Fortunately, we also isolated
a fraction with a high content of β-6; therefore, the comparison of NOE unambiguously
confirmed the configuration on carbon C1 (see the Supplementary Materials, Table S1).
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Table 3. Overview of preparations where propargylation of per-O-acetylated mannose was performed.

Author. Yield (%) Described Anomers
1H and 13C NMR

Ratio of Anomers
(α/β-Pyranoside)

Zhao (2012) [35] 71 α-6 -
Poláková (2011) [39] 90 α-6 -
Kramer (2019) [32] 73 α-6 -

Wardrop (2002) [40] 77 α-6 1:0
Hellmuth (2017) [33] 73 α-6 -

Pohlit (2017) [41] 73 α-6 -
Spicer (2013) [42] 81 α-6 -

Wamhoff (2016) [36] 3 α-6 -
Abellán-Flos (2016) [37] 62 α-6 -
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Scheme 3. The second step of the three-step synthesis using protection via acetylation.

The last step (Scheme 4) based on the deprotection of the hydroxyl groups of man-
nose [39,43] resulted in the production of pure propargyl-α-D-mannopyranoside (α-2),
which is in agreement with the literature, which describes only the α-pyranoside form
in 89–98% [32,33,35,39,41,44,45]. The NMR characteristics of all products are listed in the
Supplementary Materials, Table S1.
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3. Materials and Methods
3.1. Materials

Synthetic D-(+)-mannose was purchased from Sigma-Aldrich, along with propargyl
alcohol and acetic anhydride. Hydrochloric acid, sulphuric acid, ethyl acetate (EtOAc), and
dichloromethane (DCM) were acquired from Lachner; methanol (MeOH) and pyridine
were acquired from Penta. Boron trifluoride diethyl etherate (BF3·OEt2) was purchased
from TCI. Anhydrous DCM was obtained from Acros. Methanol was further dried over
molecular sieves (4Å pellets, Acros), and DCM was distilled before using to eliminate
impurities. Other chemicals were used as supplied. Sodium methoxide was prepared
according to the standard procedure by the reaction of sodium (2.3 g) with anhydrous
methanol (100 mL) in an argon atmosphere.

3.2. Instruments

The NMR spectra were recorded by a 500 MHz instrument (JEOL, Tokyo, Japan) at
25 ◦C. The chemical shifts (δ) are presented in ppm, and the coupling constants (J) are
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presented in Hz. The 1H and 13C chemical shifts are referenced to tetramethylsilane using
the solvent signals HDO 4.66 ppm, CHCl3 7.26 ppm, CHD2OD 3.31 ppm, and C6HD5
7.16 ppm for 1H and CDCl3 77.16 ppm, CD3OD 49.00 ppm, and C6D6 128.06 for 13C. For
the estimation of molecular structures, a series of standard NMR experiments was recorded
and analysed, including 2D COSY, HSQC, HMBC, TOCSY, NOESY, ROESY, and selective
1D NOESY, 1D TOCSY, and selective homodecoupled 1H NMR spectra. For the mass
spectrometry (MS) analysis, a Sciex X500R QTOF HR mass spectrometer was used. Fourier-
transform infrared analysis (FTIR) was performed using a Nicolet iZ10 from ThermoFisher
Scientific (Waltham, MA, USA). The observed pseudo molecular peak [M + Na]+ of the
studied compounds was usually followed by a less intensive peak of [2M + Na]+, which is
typical for oxygen compounds [46]. The peak of [3M + Na]+ was not observed. A detailed
anomeric composition of the products is given in the Results and Discussion section.

3.3. Direct Synthesis
3.3.1. Synthesis of 1-O-Propargyl-D-Mannose (2) Catalysed by Hydrochloric Acid

Direct synthesis catalysed by hydrochloric acid was performed according to the proce-
dure described by Richards et al. [22]. Briefly, mannose (300 mg, 1.67 mmol) and propargyl
alcohol (3 mL, 86.9 mmol) were stirred in a round bottom flask. Subsequently, hydrochloric
acid (0.15 mL, 0.45 mmol) was added, and the mixture was stirred overnight. The solution
was concentrated in vacuo, and the products were purified by column chromatography
(DCM/MeOH 9:1), giving two fractions: fraction A (107.1 mg, 18%) and fraction B (47 mg,
8%), in the form of a yellow oil. The fractions were analysed using NMR (see the detailed
composition of the fractions in Table 4 and NMR data in see the Supplementary Materials,
Table S1). HRMS [M + Na]+: m/z calcd 241.068; found 241.067.

Table 4. The composition of fractions yielded in direct synthesis catalysed by hydrochloric acid. The
composition of the combined fractions is discussed in the Results and Discussion section.

Isomer Yield in Fraction A
(%)

Yield in Fraction B
(%)

Yield in Combined
Fractions (%)

α-2 4.0 3.0 7.0
β-2 0.6 2.5 3.1
α-3 12.3 0.5 12.8
β-3 0.6 1.7 2.3

Total yield 17.5 7.7 25.2

3.3.2. Synthesis of 1-O-Propargyl-D-Mannose (2) Catalysed by Sulphuric Acid

The procedure was carried out according to Roy and Mukhopadhyay [19]. Briefly: To
the suspension of D-mannose 1 (0.3 g, 1.67 mmol) in propargyl alcohol (480 µL, 8.33 mmol),
H2SO4·silica (8.8 mg) was added, and the mixture was stirred at 65 ◦C for 2 h. The product
was then isolated by column chromatography. The excess of propargyl alcohol was first
eluted with DCM, and subsequently, the product was eluted with DCM/MeOH (15:1),
yielding the product 2 in the form of white solid (133.4 mg, 37%; a mixture of anomers: 26%
α-2, 8% β-2, 2% α-3, and 1% β-3).

3.4. Synthesis Using Protective Groups
3.4.1. Per-O-Acetyl-Mannopyranoside (4)

As the first step, acetylation of mannose was performed by the modified procedure
described by Zhao et al. [35]. Mannose 1 (5.0 g, 27.8 mmol) was dissolved in pyridine
(40 mL). Subsequently, acetic anhydride (26 mL, 275 mmol) was added dropwise at 0 ◦C.
The mixture was slowly brought to room temperature and stirred overnight. The solu-
tion was then diluted with ethyl acetate (30 mL), extracted with 3.6% HCl (5 × 10 mL),
and finally washed with brine (2 × 15 mL). Organic phases were collected, dried with
anhydrous MgSO4, filtered, and concentrated. The crude product was purified by column
chromatography (hexane/EtOAc 1:1), yielding the peracetylated product (4) in the form
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of a pure oil (8.32 g, 77%; a mixture of anomers: 66% α-4, 10% β-4, 1% α-5, and 0.1%
β-5). HRMS [M + Na]+: m/z calcd 413.105; found 413.103; [2M + Na]+: m/z calcd 803.222;
found 803.219.

3.4.2. Synthesis of Propargyl 2,3,4,6-Tetra-O-Acetyl-Mannopyranoside (5)

Acetylated propargyl mannose (5) was synthesised according to Poláková et al. [39].
Specifically, peracetylated mannose 4 (8.32 g, 21.3 mmol; a mixture of anomers) was dis-
solved in anhydrous DCM (80 mL) in an argon atmosphere. Next, propargyl alcohol
(6.20 mL, 107.6 mmol) was added, and the solution was cooled to 0 ◦C. To the cold so-
lution, BF3·OEt2 (13.2 mL, 107.2 mmol) was added dropwise; the reaction mixture was
then brought to room temperature and stirred for 24 h. The solution was diluted with
DCM (100 mL) and poured into ice-cold water (150 mL). The organic phase was sepa-
rated, washed with saturated NaHCO3 (3 × 200 mL) and water (200 mL), and dried over
anhydrous Na2SO4. The crude product was purified in column chromatography (hex-
ane/EtOAc 2:1), yielding the pure product (α-6) in the form of white crystals (5.82 g, 71%).
HRMS [M + Na]+: m/z calcd 409.111; found 409.109. Except for the main product (α-6),
other fractions containing mixtures of anomers were isolated. The total yield of all fractions
was 5.95 g. For more details on the product’s composition and analysis, see the Results and
Discussion section and the Supplementary Materials, Table S1.

3.4.3. Synthesis of 1-O-Propargyl-D-Mannose (2)

1-O-propargyl-D-mannose (2) was synthesised by the modified procedure described
by Poláková et al. [39] and Řezanka et al. [43]. The compound α-6 (5.76 g, 14.9 mmol) was
dissolved in the mixture of anhydrous DCM (10 mL) and anhydrous methanol (40 mL)
in an inert atmosphere. Subsequently, sodium methoxide solution (2.6 mL) was added,
and the solution was stirred under argon at room temperature for 24 h. Then, the mixture
was neutralised with DOWEX H+ form, filtered and concentrated in vacuo. The product
was purified in column chromatography (DCM/MeOH 6:1). The final product (α-2) was
obtained in the form of white crystals (2.71 g, 83%). HRMS [M + Na]+: m/z calcd 241.068;
found 241.067. FTIR ν: 3269 cm−1 (C≡C−H), 2120 cm−1 (C≡C).

4. Conclusions

Our detailed analysis of the formed products described the selectivity of D-mannose
O1-propargylation. Three previously published procedures of propargyl-mannosides prepa-
ration were carried out, and the products were thoroughly examined by NMR. Our results
show that one-step preparations may produce more than just the α-mannopyranoside
described in the literature. Both preparations (catalysed either by hydrochloric acid or sul-
phuric acid on silica) resulted in the mixture of several isomers, such as α-mannopyranoside,
β-mannopyranoside, α-mannofuranoside, and β-mannofuranoside. In our experience, the
product mixtures cannot be separated. Therefore, the use of these preparations may be
problematic in applications where the anomeric purity of the product is essential. Moreover,
a three-step preparation of α-mannopyranoside was repeated. Although the mixture of
anomers was produced in the first step, by-products were easily separable after the second
step, and the final step resulted in pure α-mannopyranoside.

We believe that our observations are mostly general for similar alkyl groups and
saccharides of similar steric hindrance around O1. We also believe that the presented
data may facilitate the interpretation of NMR spectra of saccharide derivatives, which are
frequently discussed in biomedical applications.

Supplementary Materials: Complete NMR characteristics of all studied products are given in Sup-
plementary Materials, Table S1: NMR characteristics of the studied compounds.
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