
����������
�������

Citation: Solheim, J.H.;

Zimmermann, B.; Tafintseva, V.;

Dzurendová, S.; Shapaval, V.; Kohler,

A. The Use of Constituent Spectra

and Weighting in Extended

Multiplicative Signal Correction in

Infrared Spectroscopy. Molecules 2022,

27, 1900. https://doi.org/10.3390/

molecules27061900

Academic Editors: Michele De Luca

and Gaetano Ragno

Received: 4 February 2022

Accepted: 12 March 2022

Published: 15 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

The Use of Constituent Spectra and Weighting in Extended
Multiplicative Signal Correction in Infrared Spectroscopy
Johanne Heitmann Solheim * , Boris Zimmermann , Valeria Tafintseva , Simona Dzurendová ,
Volha Shapaval and Achim Kohler

Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1432 Ås, Norway;
boris.zimmermann@nmbu.no (B.Z.); valeria.tafintseva@nmbu.no (V.T.); simona.dzurendova@nmbu.no (S.D.);
volha.shapaval@nmbu.no (V.S.); achim.kohler@nmbu.no (A.K.)
* Correspondence: johanne.heitmann.solheim@nmbu.no

Abstract: Extended multiplicative signal correction (EMSC) is a widely used preprocessing technique
in infrared spectroscopy. EMSC is a model-based method favored for its flexibility and versatility.
The model can be extended by adding constituent spectra to explicitly model-known analytes or
interferents. This paper addresses the use of constituent spectra and demonstrates common pitfalls.
It clarifies the difference between analyte and interferent spectra, and the importance of orthogonality
between model spectra. Different normalization approaches are discussed, and the importance of
weighting in the EMSC is demonstrated. The paper illustrates how constituent analyte spectra can be
estimated, and how they can be used to extract additional information from spectral features. It is
shown that the EMSC parameters can be used in both regression tasks and segmentation tasks.

Keywords: preprocessing; extended multiplicative signal correction; infrared spectroscopy

1. Introduction

Infrared spectroscopy has over the past decades grown to become one of the most
prominent techniques for non-destructive biochemical characterization of biological mate-
rials. An ideal absorbance spectrum is approximately proportional to the concentrations
of the absorbing compounds in the material. However, physical effects, which are caused
by the measurement setup or the sample morphology, may interfere with the absorbance
and disturb the signal. This leads to scaling effects in the spectra, as well as baseline shifts
and deformations. Preprocessing methods are therefore needed to clean the data prior to
the interpretation [1]. By removing interfering effects from the absorbance spectra, less
data is needed to calibrate multivariate models or machine learning models [2]. Several
preprocessing methods have been proposed in literature. By taking the first or second
derivative of the spectra, broad baseline distortions are suppressed [3]. They can also
be suppressed by rubber band correction. Scaling variations can be handled with peak
normalization or vector normalization [4]. All these methods are filtering methods, which
means that they simply remove the unwanted effects in the spectra.

After multiplicative signal correction (MSC) was introduced in 1983 by Martens
et al. [5], MSC and its extended version EMSC (extended MSC) has been favored for its
flexibility and versatility. EMSC is a model-based technique, which means that it builds on
a physical model of scattering and absorption. It builds on the Beer–Lambert law, and can
be extended by adding the model spectra of known physical or chemical variations, called
the constituent spectra [6]. Instead of simply removing unwanted effects, the effects are
explicitly modeled and parameterized before they are removed. The EMSC parameters are
thus available for the analysis. This is beneficial since physical effects can be related to the
sample morphology, and therefore may carry relevant information (see Figure 11 in [7–9]).

In the EMSC, we distinguish between unwanted features in the measured spectra,
which should be removed (interferents), and features which should not be removed (ana-
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lytes). Typical interferent signals can be scattering features, e.g., Mie scattering or interfer-
ence fringes, or chemical signals from paraffin embedding [10]. Analyte spectra are known
chemical variations, e.g., a known chemical compound in the sample.

While the literature suggests the use of constituent spectra in EMSC [11,12], it is not
clear how one or several constituent spectra can be defined such that confounding with the
reference spectrum is avoided. This has created some uncertainty in the use of constituent
spectra in EMSC in the infrared community (private communications). The paper at hand
therefore aims to develop some clear strategies for how to create and use constituent spectra
in the EMSC and to discuss major pitfalls when using constituent spectra. We show how
analyte constituent spectra can be estimated from the data, and how they can be used for
predicting the proportion of a known constituent, or to segment infrared spectroscopic
images. Further, we illustrate the effect of using different normalization techniques, and
show how normalization may introduce artifacts in the spectra. The use of weights in
the EMSC normalization is also discussed, and we show that the optimal normalization
approach depends on the aim of the analysis. We present three case studies. In case study I,
we discuss different normalization strategies, and in case studies II and III we discuss the
use of constituent spectra.

2. Results and Discussion
2.1. The Effect of Different Normalization Procedures and the Importance of Weighting in
the EMSC

Preprocessing methods in vibrational spectroscopy can be divided into filtering meth-
ods and model-based methods. Common filtering methods include vector normalization,
peak normalization, and derivatives. Model-based methods, such as EMSC, are often
preferred to filtering methods since they explicitly model and parameterize physical and
chemical variation. Information is therefore not lost during preprocessing. In addition,
model-based methods are recognized for their flexibility in modeling specific chemical or
physical variations. The EMSC model is described in Section 3.2.

In the following, we demonstrate how normalization is achieved by EMSC, and
compare it to vector normalization and peak normalization. One should note that both
vector normalization and peak normalization require the spectra to be baseline corrected,
while EMSC performs baseline correction and normalization simultaneously.

Peak normalization ensures that the absorbance value of the selected peak is equal for
all the spectra. The physical interpretation of peak normalization is that one standardizes
the sample biomass to the amount of one compound, e.g., proteins (through the amide I
peak at 1653 cm−1). Vector normalization, on the other hand, normalizes according to the
area under the curve, which is the total absorbance. We will show that by applying weights
in the EMSC, similar results as for vector normalization can be achieved.

To illustrate the effect of different normalization procedures, we have simulated a
dataset consisting of two chemically different groups. A template spectrum was created by
fitting Lorentzian functions to a Matrigel spectrum [13], and subsequently the peak heights
of the Lorentzian functions were adjusted systematically to create the two groups. Only the
amide I and II peaks were changed such that the peak heights for the first group were scaled
between 0.85 and 1 compared to the original template, while for the second group they
were scaled between 0.4 and 0.55. There are in total 20 spectra per group. The simulated
spectra are shown in Figure 1a, and we refer to the groups as “red” and “blue” according
to this figure. The mean of all spectra is shown in black. It is evident from the figure that
these spectra have no need for baseline correction, and we can therefore perform peak
normalization or vector normalization directly. Peak normalization according to amide I
is shown in Figure 1b, while vector normalization is shown in Figure 1c. In the latter, the
spectra are vector normalized according to the mean spectrum of the two groups. With
vector normalization, the spectra are standardized to the total absorbance, which can be
considered as an equivalent for the total biomass that is transmitted by infrared radiation
during the absorption measurement. This means that in this case, chemical differences



Molecules 2022, 27, 1900 3 of 18

are present in all spectral regions. This is reasonable, since a decrease in amide I and II
concentration necessarily means that the concentration of other compounds must increase.
For peak normalization, the concentration differences are even more pronounced, since
they are standardized to one compound rather than the whole biomass. It is assumed here
that the amide I component is equal for all samples in a group.
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Figure 1. Different normalization procedures demonstrated on a simulated dataset. (a) Simulated
spectra showing the two chemically different groups in different color. The groups are simulated
with chemical differences in the amide I and II region. The mean spectrum is shown in black.
(b) Peak normalization according to the amide I peak. (c) Vector normalization. (d) Weighted EMSC
normalization is shown with weights in dashed gray. The mean spectrum in black is used as reference.
Only a constant baseline was included in the EMSC (MSC).

In order to assign more or less importance to different spectral regions in the normal-
ization process, we perform a weighted EMSC. Applying weights means that the model
spectra are all multiplied with the weight spectrum prior to the least squares regression
performed in the EMSC modeling. Therefore, weighting in the EMSC is not the same as a
weighted least squares regression. Weighting is a powerful tool when normalizing spectra
with EMSC. Weights are applied to regions where the variation is expected to be high also
after the normalization. There is no universal strategy for applying weights, and before
applying weights, one should decide what kind of normalization one seeks. If one expects
chemical differences to be significant, while also expecting no variations in the baseline, one
could apply low weights to the chemically active regions. Doing this for the two simulated
groups, one obtains a similar result as for vector normalization, as shown in Figure 1d. The
spectra were corrected with an EMSC with only a constant baseline, with the mean of the
two groups, shown in black, used as a reference. The weights used in the EMSC are shown
in a grey dashed line.

It should also be pointed out that EMSC normalization with weighting in many cases
outperforms vector normalization and peak normalization. For example, for spectra that
exhibit strong baseline variations due to scattering, which is hard to remove completely,
vector normalization and peak normalization are ineffective normalization methods. In
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these cases, EMSC can be used in combination with weights that put less priority to
normalization of the baseline. An example is strong baseline variations in high throughput
screening (HTS) FTIR spectra of biological particles. Scattering is strongly connected to
the size of the particles, and strong variations in the baseline can therefore be observed for
samples of varying particle size [14]. By down-weighing the chemically inactive regions in
the EMSC, less priority is put to the varying baseline.

It is worth mentioning that there is no universal strategy for preprocessing infrared
spectra and the optimal strategy depends on the goal of the analysis. Often it is desired
to obtain spectra that can be interpreted visually and with multivariate methods. This
may be the case when using unsupervised or supervised methods. However, when the
goal is to achieve the best performance of a supervised model, visual interpretability
may not be the first priority and a different preprocessing strategy may be chosen. It is
common practice when optimizing the performance of multivariate models to evaluate
different preprocessing techniques in the calibration process, and select the best performing
strategy [3]. We want to refer to our recently published study [2] where we compare a
large range of different preprocessing techniques, chemometrics, and machine learning
classifiers for different spectroscopic datasets.

2.2. The Effect of Different Normalization Procedures—Case Study I

In the first case study, different normalization procedures are applied to the oleagi-
nous filamentous fungi dataset. The dataset is described in Section 3.1.1. We normalize
according to either total biomass, or to the total lipid content. It follows that the optimal
normalization procedure depends on the aim of the subsequent analysis. We compare the
two normalization procedures, EMSC normalization according to total biomass or total
lipid content.

Spectra of oleaginous filamentous fungi were calibrated against the total percentage of
fat in the biomass, or the concentration of polyunsaturated fatty acids (PUFA) relative to the
total fat percentage, by two separate partial least squares regression (PLSR) models. We will
investigate how different normalization methods for EMSC affects the two PLSR models.
Not surprisingly, the optimal normalization strategy differs for the two regression models.

The first normalization strategy, which we refer to as strategy A, is to first normalize the
full spectra by a basic EMSC, before selecting the lipid regions. Normalization with EMSC
is done on the full spectra to normalize according to the total biomass. After normalizing
according to biomass, the lipid regions 1765–1727 cm−1 and 3050–2800 cm−1 are selected
as input for both PLSR models; predicting total fat and PUFA. The normalized spectra are
shown in Figure 2a.

The second strategy, which we refer to as strategy B, is to select the lipid region
3050–2800 cm−1, before performing an EMSC with polynomials up to 1st degree. With
this procedure, the spectra are roughly standardized according to the lipid content. The
reason for omitting the ester peak at 1765–1727 cm−1 is described in the following. Since
each of these regions are very narrow, but together they span a quite big spectral range
(3050–1727 cm−1), the preprocessing needs to be done separately to avoid creating extra
baseline variations (see Supplementary Materials for more details). When the regions
are preprocessed separately, the ester peak becomes very similar for all spectra, losing
most of its predictive value. The peak still retains some predictive value for total lipid
content, however the effect is small (results not shown). The normalized spectra using only
the region 3050–2800 cm−1 are shown in Figure 2b, and they are used as input for both
PLSR models.
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Figure 2. Different normalization strategies demonstrated on spectra of filamentous fungi. (a) Strategy
A: the full spectra are first normalized with EMSC (described in the text), before the lipid regions are
selected. (b) Strategy B: the lipid region at 2800–3590 cm−1 is selected prior to EMSC normalization.

Training and testing was performed as described in the following. The first set of
biological replicates serve as the training set, while the second as the test set. All PLSR
models were built by first optimizing the number of components (Aopt) in a 6-fold cross-
validation procedure, where 70% of the samples served as the calibration set and the rest
as validation within the fold. The samples were shuffled before splitting, but technical
replicates were not split across calibration and validation sets. The results reported below
are the test set results.

The results show that for predicting the total percentage of fat with PLSR, normal-
ization according to the total biomass (strategy A) outperforms normalization according
to total lipids (strategy B) (see Table 1). This confirms that standardization of the spectra
with respect to the total absorbance is equivalent to standardizing the spectra according to
the total biomass. This results in peak heights, which give information about the relative
concentration of different compounds. When we aim at predicting the total amount of fat,
this is favorable.

When establishing calibration models for lipids that are given in percentage with
respect to the total amount of lipids, a different strategy is needed. In this case we sug-
gested to normalize spectra according to the total absorbance in the C-H stretching region,
3050–2800 cm−1, which can be considered as approximately proportional to the amount
of lipids. We referred to this strategy as strategy B. Following this strategy, we assume
that the peak heights after normalization no longer contain information about the total
concentration of lipids with respect to the total biomass. This method is more appropriate
when analyzing the lipid profiles (see Table 1), since information about the total amount of
lipids is expected to be removed from the data. Peaks are normalized such that the peak
highs correlate with concentrations of different lipids per total amount of lipids.

Table 1. Results from PLSR on the spectra shown in Figure 2. Models for predicting total % fat of the
total biomass, as well as % PUFA of the total amount of fat was established. Every instance in the
table starts with (Aopt), which was found based on the full cross-validation on the training set. For
the test set, the % fat range from 19.7 to 87.1, with an average of 41.4 and standard deviation at 16.0.
The % PUFA values range from 8.68 to 41.3, with an average of 23.5 and standard deviation at 6.64.

Normalization Strategy Predicting % Fat of
Total Biomass

Predicting % PUFA
of Total Fat

Strategy A (2) R2 = 0.89, RMSE = 5.24 (4) R2 = 0.67, RMSE = 3.79
Strategy B (7) R2 = 0.69, RMSE = 8.87 (2) R2 = 0.87, RMSE = 2.37
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2.3. Using Constituent Spectra in the EMSC: Analyte and Interferent Spectra

The EMSC model can be extended with the constituent model spectra to explicitly
model the known chemical variability. According to the Beer–Lambert law in Equation (9),
the EMSC reference spectrum can be expressed in terms of the chemical compounds;

Z(ν̃) =
J

∑
j=1

cjk j(ν̃) (1)

where cj is the concentration of compound j, and k j is the characteristic absorptivity.
Therefore, the EMSC model can be written

Zapp(ν̃) = b ·
{ J

∑
j=1

cjk j(ν̃)

}
+ a + d · ν̃ + e · ν̃2 + ε(ν̃). (2)

Assuming that all concentrations sum to 1, ∑ cj = 1, we can write

J

∑
j=1

cjk j =
J

∑
j=1

cj(k j − Zre f (ν̃)) + Zre f (ν̃). (3)

This makes it possible to rewrite Equation (2) to

Zapp(ν̃) = b · Zre f (ν̃) + a + d · ν̃ + e · ν̃2 + b ·
{ J

∑
j=1

cj∆k j(ν̃)

}
+ ε(ν̃) (4)

where ∆k j is the difference spectrum (k j − Zre f (ν̃)). To simplify the expression, one can
exchange b · cj by hj.

Zapp(ν̃) = b · Zre f (ν̃) + a + d · ν̃ + e · ν̃2 +
J

∑
j=1

hj · ∆k j(ν̃) + ε(ν̃) (5)

According to Equation (5), constituent spectra are often referred to as difference spectra,
since they represent chemically differences between the main constituents and the reference
spectrum. Using the difference spectrum and not the complete spectrum of the constituent
in the EMSC avoids collinearity between model spectra, which would result in a non-
unique solution to the least squares regression (ill-conditioning). Therefore, the constituent
spectra do not resemble chemical absorbance spectra of chemical or biological compounds.

We distinguish between analyte constituent spectra and interferent constituent spectra,
and they are treated differently in the EMSC. Interferent spectra contain information about
unwanted signals which do not relate to the sample, and should therefore be removed
from the spectra. Examples include absorbance signals from paraffin in spectra of paraffin
embedded pollen samples [10], and bound water in meat tissue sections resulting from
day-to-day variations in humidity [15]. By removing the effects of interferents, we reduce
the need for calibration data to build reliable models, as well as increase the model in-
terpretability [11]. Analyte spectra, on the other hand, contain information about major
chemical variations that we do not want to remove from the spectra. The main purpose
of adding analyte spectra is to quantify a known constituent. However, it can also have a
stabilizing effect on the EMSC by increasing the modeling capability.

When including constituent spectra in the EMSC, the model reads

Zapp(ν̃) = a + b · Zre f (ν̃) + f · Zana(ν̃) + g · Zint(ν̃) + ε(ν̃) (6)

where Zana and Zint represent an analyte difference spectrum and interferent difference
spectrum, respectively. An EMSC model can of course include several analyte and inter-
ferent spectra, while we select one of each here for simplicity. Note that we replace the
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parameters hj from Equation (5) by f and g in order to highlight the difference between
analyte and interferent spectra. Polynomial spectra can of course also be added as model
spectra. The analyte and interferent spectra are handled differently when the corrected
spectrum is calculated;

Zcorr(ν̃) =
Zapp − a − g · Zint(ν̃)

b

= Zre f (ν̃) +
f · Zana(ν̃) + ε(ν̃)

b
.

(7)

While the interferent signals are removed from the measured spectrum, the analyte
signals are kept. It is now possible to examine the relative content of the constituents by
comparing the ratio f

b or g
b among spectra in the dataset.

To see examples of the use of interferent spectra in the EMSC, we refer the reader
to [12,16]. Several EMSC-based models are built by including spectra as interferent spec-
tra. Among the most known EMSC-based methods we find the Mie extinction EMSC
(ME-EMSC) [13], the fringe EMSC [17] and the replicate EMSC [18,19]. Throughout the
remainder of the paper, we illustrate how analyte spectra can be used to gain additional
information about the chemical composition of the samples. However, first, we need to
discuss the orthogonality between model spectra, as well as some common pitfalls in the
use of constituent spectra.

2.4. Orthogonality and Pitfalls When Using Constituent Spectra

In addition to the parameterization of chemical compounds, adding chemical model
spectra can affect the EMSC normalization in a similar way as applying weights. As
described above, low weights can be applied to regions with large variability. Alternatively,
a known variability could be added to the EMSC model as an analyte spectrum. In the
following, we demonstrate this approach using the example of the two simulated groups.
In order to highlight some of the advantages of normalization with EMSC compared to for
example vector normalization and peak normalization, we introduce physical features to
the simulated spectra by adding random constant, linear and quadratic baselines, scaled
between −0.1 and 0.1. The disturbed spectra are shown in Figure 3a. Although this is a
simulated example, it demonstrates nicely how baseline correction and normalization can
be achieved simultaneously with EMSC, whereas other normalization procedures would
require baseline correction prior.

We start by correcting the simulated spectra in Figure 3a with a basic EMSC, containing
polynomials up to the second degree. This results in the corrected spectra in Figure 3b.
It is evident that the chemical variation in the amide I and II peaks affects the correction,
and introduces artefacts in the baseline. The artefacts are most clearly seen at 4000 cm−1,
where the red and blue group has a systematic difference. This systematic difference can be
explained by the fact that due to statistical interference between the chemical difference
and the model spectra, some of the important chemical differences are modeled by the poly-
nomial model spectra. These unwanted effects can be avoided by either applying weights,
or by adding constituent spectra to the EMSC to explicitly model the chemical variability.

Once again, we need to decide how we want to normalize the spectra. If the goal
is to standardize with respect to the total amount of biomass, we can apply the weights
shown in Figure 1d and account for the chemical variation in all active spectral regions. The
result of the preprocessing by weighted EMSC is shown in Figure 3c, where the artefacts
in the baseline are removed. Alternatively, one can add an analyte constituent spectrum,
which expresses the chemical difference between the two groups. Clearly, such an approach
requires some a priori knowledge. The analyte spectrum used in this study (shown in gray
in Figure 3d) is the difference between the means of each group. The resulting corrected
spectra are shown in Figure 3d, where we once again see that the artefacts vanish. No
weights are used in this correction. As we can see from Figure 3c,d, applying weights
can in some cases result in a very similar correction as for including analyte spectra. The
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main advantage of using EMSC with analyte spectra is that the chemical differences are
parameterized and available for the subsequent data analysis.
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Figure 3. Using EMSC models on a simulated dataset consisting of two chemically different groups.
(a) Simulated spectra, physical effects are added to the simulated pure absorbance spectra. Spectra
corrected by (b) EMSC with polynomials up to the 2nd degree; (c) EMSC with weights, shown in
dashed gray; (d) EMSC with an analyte constituent spectrum, shown in gray.

If one instead wishes to normalize the spectra according to the biomass, but neglect
the variation in the amide I and II peaks, this could be achieved by applying zero weights
only for the amide I and II region. The spectra will then look like shown in Figure 1a.
Alternatively, a constituent spectrum which expresses only the differences in the amide I
and II between the groups could also be added. This type of normalization would highlight
the differences in protein content, while the rest of the biomass is standardized (results
not shown).

The example above is somewhat artificial and serves only the purpose to demonstrate
the use of weights and constituent spectra. Later in the paper we show how the same
techniques can be applied to real measured data.

Orthogonality between Model Spectra

At this point, some comments about orthogonality in the EMSC model should be given.
Since the EMSC parameters are found by least squares regression, all model spectra in the
EMSC should ideally be orthogonal to each other. The basic model spectra such as the
baselines expressed by polynomials are not strictly orthogonal, but linearly independent such
that the parameter estimation can be considered as independent. If model spectra such as
analyte or interferent spectra are highly dependent on each other, the regression problem for
the parameter estimation becomes partially ill-posed, and the parameters cannot be estimated
unambiguously. Therefore, all model spectra should ideally be orthogonal to each other.

An interesting situation arises if the basic EMSC model as given in Equation (14) is used
for correction of spectra, and subsequently analyte model spectra are then estimated from the
loadings of a PCA of the corrected spectra [20]. The advantage of adding the PCA loadings
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after EMSC corrections is that they are definitely orthogonal to the basic EMSC model spectra
that have been used for correcting the data before PCA. However, if the extended EMSC
model (extended by PCA loadings as an analyte) is now once more applied to the same data,
the correction will be identical for both models. The reason is that when adding a constiuent
spectrum (either analyte or interferent) which is orthogonal to all other EMSC model spectra,
the constituent spectrum does not affect the parameter estimation for the other model spectra.
This can be seen by comparing Equation (14) with Equation (7). If Zana is orthogonal to the
rest of the model spectra in Equation (6) (EMSC with constituents), the only difference from
Equation (13) (a regular EMSC) is that the parts of Zapp, which would otherwise end up in
ε, is parameterized by Zana instead. When the constituent spectrum is an analyte spectrum,
the correction result is therefore not different for the two EMSC models (with and without
orthogonal analyte spectrum), since neither ε nor Zana is removed from Zapp. On the other
hand, if the model spectra that are added to the EMSC model are interferent spectra, i.e., the
aim is to remove their contribution to the spectra Zapp, the correction result will in general
be different for both models (EMSC with and without orthogonal interferent spectra). When
parts of Zapp is parameterized by Zint instead of ε, the corrected spectra are affected. This is
seen from Equation (7), since Zint is removed from Zapp.

Here, a note should be given that performing a PCA on corrected spectra is practically
the same as performing PCA on residuals of the EMSC models [19]. Therefore, when we in
this paper refer to PCA on residuals of an EMSC model, it can be considered equivalent to
performing PCA on the spectra corrected by the same EMSC model.

Although orthogonal model spectra are desired, in the example of the two groups
where the difference spectrum was added as an analyte constituent spectrum to the EMSC,
the difference spectrum was in fact not orthogonal to the rest of the model spectra. The
aim in this example was in fact to change the corrected spectra to remove the artefacts in
the baseline by expanding the basic EMSC. The model capacity is increased by allowing
explicitly modeling the chemical variability. A change in the corrected spectra would not
occur if the analyte spectrum was orthogonal to the rest of the model spectra. The use of an
orthogonal analyte spectrum would therefore not remove the artifacts in the baseline.

If the aim is to further improve the correction result by adding an analyte spectrum,
the analyte spectrum should not be completely orthogonal to the previously used model
spectra (if the same previously used model spectra are reused in the new model), even
though the least squares regression require independent model spectra, as described above.
Therefore, one can either change the previously used model spectra in the new model or
assure otherwise that the new model spectrum is not orthogonal and has some collinearity
with the other model spectra. However, the main message here is that when adding
an orthogonal model spectrum as an analyte spectrum, the user has to be prepared that
the correction result is not changed. As long as the degree of collinearity is kept low,
ill-conditioning does not pose a big problem in the EMSC. In the following we demonstrate
the detrimental effects of a common pit-fall, i.e., to add model spectra with a high degree
of collinearity to the EMSC.

In order to illustrate the problem of dependent analyte spectra, we set up an EMSC
model where the mean of the red group from Figure 1a serves as a reference spectrum.
The mean of the blue group is then added to the model as an analyte spectrum. Since
the mean spectra of the two groups are highly dependent, and one is used as a reference
model spectrum, while the other one is used as an analyte spectrum, the estimation of the
parameters becomes an ill-posed problem. The resulting corrected spectra are shown in
Figure 4, where it is evident that the scaling parameter is correctly estimated for the red
group, but severely underestimated for the blue group. It even becomes negative for some
spectra of the blue group. To avoid ill-conditioning, constituent spectra should ideally be
orthogonal (or close to orthogonal, as described above) to the rest of the model spectra.
This is the reason why constituent spectra are also called difference spectra, since they
represent chemical differences from the reference spectrum, rather than a spectrum that is
highly dependent on the reference spectrum.
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Figure 4. Major pitfall when adding constituent spectra to EMSC models; if the constituent spectra
are not orthogonal to the rest of the model spectra, the least squares regression becomes ill-posed,
and the parameter estimation becomes highly unstable. The corrected spectra from the blue group
demonstrate that the scaling parameter is wrongly estimated. The reference spectrum in the EMSC
model (mean of red group) is shown in black, while the analyte constituent spectrum is shown in
gray (mean of blue group).

2.5. Using Constituent Spectra for Estimating Chemical Compounds

In the next sections we give two examples of how analyte spectra can be used to access
additional information about the sample. We illustrate in the following sections how EMSC
parameters can be used in both a regression task and a segmentation task.

2.5.1. Case Study II: Estimation of Glucose in ATR Spectra of Growth Media

Measured attenuated total reflectance (ATR) spectra of growth media (growth media
dataset described in Section 3.1.2) are shown in Figure 5a, together with the pure water
spectrum (black) and estimated pure glucose spectrum (gray). The estimated pure glucose
spectrum was found by measuring a water solution with glucose, and subtracting the
water signal. For ATR spectra, there are often little signs of baseline variations since
scattering does not take place in contact reflection measurements. Therefore, an EMSC
with only a constant baseline (MSC) is sufficient for normalizing the spectra [21]. Since an
estimated pure glucose spectrum is available, we add this spectrum to the EMSC model
as an analyte spectrum, while the pure water spectrum serves as a reference spectrum.
The glucose spectrum represents chemical signals we do not want to remove from the
measured spectra, and is therefore treated as an analyte spectrum. The corrected spectra are
shown in Figure 5b. From the corrected spectra there are different ways of estimating the
glucose content. One alternative is to regress the glucose content on the EMSC parameter,
which correspond to the glucose analyte spectrum. The EMSC parameter is first divided
by the scaling parameter to represent relative content, as described in Section 2.3. The
univariate regression results are shown in Figure 5c, and the root mean square error (RMSE)
is 2.81 g/L, with a corresponding R2-score at 0.99. The glucose content ranged from 0.55 to
80 g/L, with a mean value at 39.4 g/L and standard deviation of 23.2 g/L.

Often, we do not have spectra of pure compounds available. In the following, we
show how the same analysis can be performed with only the ATR spectra belonging to the
growth media available. Two steps are needed, and we start with a basic EMSC. From the
dataset we first select the spectrum that is closest to pure water. This is done by selecting
the spectrum with the lowest 1080 cm−1 peak compared to the absorbance at 1200 cm−1.
The peak at 1080 cm−1 is clearly related to glucose, as can be seen in the pure glucose
spectrum in Figure 5a. The spectrum with the smallest difference between the absorbance
at wavenumbers 1080 cm−1 and 1200 cm−1 is expected to represent a water spectrum,
and will serve as the reference spectrum in the EMSC. The obtained reference spectrum is
shown in black in Figure 5d. Since most of the chemical variation is present in the region
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950–1200 cm−1, we put zero weights to this region and apply the EMSC correction. The
difference between using weights and not using weights is small in this case. In order
to estimate a glucose spectrum, we consider the residuals of the EMSC model. In the
residuals we find the unmodelled parts of the spectra, i.e., that part that is not represented
by the physical EMSC model spectra and the reference spectrum. By taking a PCA on the
residuals of the whole dataset, the first loading resembles a glucose spectrum (see Figure 5d
in gray). Alternatively, one could perform the PCA on the EMSC corrected spectra, which
leads to a nearly identical result. The obtained spectrum (first loading from the PCA)
is added as an analyte constituent spectrum to the EMSC, and we can now perform the
new EMSC correction. This time, weights are not needed, as the chemical variability is
handled by the constituent spectrum. Finally, the EMSC parameter corresponding to the
constituent spectrum can be used in a linear univariate regression with the glucose content.
The parameter is first divided by the scaling parameter. An RMSE of 2.89 g/L is achieved,
with an R2-score at 0.98.
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Figure 5. Correcting ATR spectra of growth media by an EMSC with a glucose analyte spectrum.
(a) Raw spectra of growth media shown together with a pure water spectrum in black and an
estimated pure glucose spectrum in gray. (b) The corrected spectra are shown together with the
pure water spectrum (black), which is used as a reference spectrum in the EMSC model, and the
pure glucose spectrum (gray), which is used as an analyte spectrum. (c) Regressing the parameter
corresponding to the analyte spectrum to the glucose content. An RMSE of 2.81 g/L was achieved,
with a corresponding R2-score at 0.99. The red dots show glucose content versus the EMSC parameter.
The regression line is shown in blue. (d) An approximate pure water spectrum can be estimated from
the dataset (shown in black) and used as a reference spectrum. Based on a PCA on the residuals,
an estimated pure glucose spectrum can be found in the first principal component. The glucose
spectrum can be added to the EMSC as an analyte spectrum. The corrected spectra are also shown in
the figure.

It is once again important to note that when an analyte spectrum is estimated from the
residuals, the resulting corrected spectra will not differ from an EMSC without the analyte
spectrum. This is because the analyte spectrum is orthogonal to all model spectra, and
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can therefore not affect the calculation of the other EMSC parameters. Since the analyte
spectrum is not removed from the measured spectrum in the correction, the only result
from adding the analyte to the model is that information related to the analyte f · Zana
is captured and transferred from ε in Equation (7) to the added analyte spectrum. If the
goal with adding analyte spectra is to modify the corrected spectra, one must allow some
collinearity between the analyte and the model spectra. The degree of correlation should
however be kept low.

For comparison, another simple way to estimate the glucose content is to perform a
linear univariate regression of the glucose content on the peak value at 1080 cm−1. This
resulted in a model with an RMSE at 3.27 g/L and R2 at 0.98.

2.5.2. Case Study III: Detection of Connective Tissue and Myofibers in Infrared
Microspectroscopy of Beef Loin Sections

In the following example we demonstrate how analyte spectra can be used in a
segmentation task for differentiating myofibers from connective tissue in infrared images
of sectioned beef loin. The dataset is described in Section 3.1.3. The raw image plotted
at the amide I peak at 1653 cm−1 is shown in Figure 6a, and the corresponding optical
microscopy image is shown in Figure 6b. The spectra in the image are shown in Figure 6c.
An EMSC is performed on the raw spectra, using the mean of the spectra as reference and a
constant and linear baseline. The chemical differences between each pixel and the reference
are now contained in the residuals. By performing a PCA on the residuals, we structure
this variation and make it possible to parameterize the differences from the mean spectrum.
The first loading from the PCA is shown in blue in Figure 6d. In the same figure we show
the difference between the mean spectrum of a region corresponding to myofiber and a
region from connective tissue in red. The regions are found by correlating the visual image
to the infrared image. Figure 6d demonstrates that the loading contains information about
chemical differences between the two groups. By adding the loading to the EMSC model as
an analyte spectrum, we are able to parameterize this difference. The corrected spectra are
shown together with the first principal component (used as analyte spectrum) in gray and
the mean spectrum (used as reference) in black in Figure 6e. Subsequently, a segmentation
can be performed based on the parameter of the constituent spectrum. The result is shown
in Figure 6f. A positive parameter indicates that the pixel is connective tissue (yellow),
while a negative value indicates myofiber (blue).

Again it is worth mentioning that an analyte spectrum that is estimated from the
residuals of the EMSC model did not affect the resulting corrected spectra. We would
like to add that the segmentation can also be performed directly on the first principal
component scores, which would yield exactly the same results as shown in Figure 6f. In this
example, however, the aim is to show how the EMSC parameters relate to concentration of
different compounds, and we therefore stay within the EMSC framework.
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Figure 6. Cont.
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Figure 6. (a) Infrared image of beef loin tissue section, at 1653 cm−1. (b) Optical microscopy image
of the same tissue section. (c) Raw spectra from the infrared image. (d) Difference spectrum shown
in red (difference between mean of myofiber and connective tissue spectra) together with the first
principal component from the PCA on the residuals in blue. The principal component is scaled to
show that it contains almost exactly the same information as the difference spectrum. (e) Corrected
spectra shown together with the mean spectrum (black), which is used as a reference in the EMSC,
and the first principal component (gray) used as analyte spectrum. (f) Mask based on the analyte
spectrum parameter. Yellow pixels refer to connective tissue, and blue to myofiber.

3. Theory and Methods
3.1. Datasets
3.1.1. Filamentous Fungi Dataset

A dataset consisting of FTIR spectra from six strains of Mucoromycota oleaginous
filamentous fungi was used in this study. The strains were Amylomyces rouxii CCM F220,
Mucor circinelloides VI 04473, Mucor circinelloides FRR 5020, Mucor racemosus UBOCC A
102007, Rhizopus stolonifer CCM F445, and Umbelopsis vinacea CCM F539. The fungi were
cultivated in duplicates (i.e., two biological replicates) using six different growth conditions,
described in [22]. FTIR spectra were collected with a Vertex 70 FTIR spectrometer coupled
with a high throughput screening extension (HTS-XT) unit (both Bruker Optik, Ettlingen,
Germany). Spectra were recorded in the range 4000–400 cm−1, with spectral resolution
of 6 cm−1 and digital spacing of 1.928 cm−1. A total of 64 scans were averaged for each
spectrum, and 3 technical replicates were recorded per sample. There were in total 216
spectra in the dataset. The OPUS software (Bruker Optik GmbH, Ettlingen, Germany) was
used for data acquisition and instrument control.

Reference analyses for lipid content and fatty acid profiles were performed using a gas
chromatography 7820A System (Agilent Technologies, Santa Clara, CA, USA), as described
in [23].



Molecules 2022, 27, 1900 14 of 18

3.1.2. Growth Media Dataset

Growth media used for cultivating filamentous fungi were measured with single-
reflection attenuated total reflectance (SR-ATR) coupled to a Vertex 70 FTIR spectrometer
(Bruker Optik, Ettlingen, Germany). The spectra were recorded with a spectral resolution of
4 cm−1, digital spacing of 1.928 cm−1, and 32 scans, using the horizontal SR-ATR diamond
prism with 45◦ angle of incidence on a Specac (Slough, UK) High Temperature Golden
Gate ATR Mk II. Spectra of pure water and water solution with glucose were also recorded.
From the glucose solution, a pure glucose spectrum was estimated by subtracting the water
signals. The OPUS software (Bruker Optik GmbH, Ettlingen, Germany) was used for data
acquisition and instrument control. The glucose content of the growth media was measured
in g/L with an UltiMate 3000 UHPLC system (Thermo Fisher Scientific, Waltham, MA,
USA). For more details about the growth media dataset, see [24].

3.1.3. Beef Loin Dataset

The beef loin dataset refers to an infrared image of a cryo-sectioned beef loin. The sam-
ple was collected from a Longissimus dorsi muscle from Norwegian Red Cattle, as described
in [20]. The tissue section was measured with an IR microscope (IRscope II) coupled to an
Equinox 55 FT-IR spectrometer (both Bruker Optik GmbH, Ettlingen, Germany). An image
of 64 × 64 pixels was collected, consisting of infrared spectra in the range 3800–900 cm−1.
The spectra were recorded using 8 cm−1 spectral resolution. The OPUS software (Bruker
Optik GmbH, Germany) was used for data acquisition and instrument control. More details
about the experiment can be found in [20].

3.2. Baseline and Multiplicative Effects in Infrared Spectroscopy

In the following we give the theoretical background of the extended multiplicative
signal correction (EMSC) model. We start by briefly describing baseline and multiplicative
effects in infrared spectroscopy. The introduction is kept brief, as this topic has been
covered several times elsewhere, see for example [11]. In the following, we describe
infrared transmission experiments, while the EMSC model is also applicable to spectra
recorded with different methods, as for example attenuated total reflectance (ATR) [21].

Infrared absorbance spectra Z are defined through the transmittance T as

Z(ν̃) = − log10 T(ν̃) = − log10
I(ν̃)
I0(ν̃)

(8)

where I0 is the intensity of the incoming radiation, and I is the intensity of the radiation
which transmits through the sample. I0 is measured by removing the sample from the
incident beam.

According to the Beer–Lambert law, the absorbance spectrum is proportional to the
optical thickness, d, of the sample. The absorbance spectrum can be expressed in terms of
the concentration cj of each absorbing species j;

Z(ν̃) ≈
[

J

∑
j=1

cjk j(ν̃)

]
· d (9)

where J is the total number of absorbing species and k j is the characteristic absorptivity of
each species. Since the absorbance spectrum is scaled proportional to the sample thickness,
a parameter which in practice is difficult to control in an infrared experiment, scaling effects
are commonly observed in absorbance spectra. Equation (9) represents an ideal case, i.e.,
when scattering of the incident radiation can be neglected [25–27]. In this situation, the
absorbance spectra are often called pure absorbance spectra.

However, in real-world measurements, scattering and other physical effects can often
not be neglected. Scattering leads to loss of radiation at the detector, and therefore affects
the absorbance spectrum. Measured spectra that are affected by physical effects are called
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apparent absorbance spectra, or Zapp. Variations in the intensity of the light source can for
example create constant baseline shifts in the absorbance spectra. If the intensity of the
source radiation is varied by a factor of α between the two recordings I0 and I, we can
express the absorbance as

Zapp(ν̃) = − log10
I(ν̃)

αI0(ν̃)

= − log10
I(ν̃)
I0(ν̃)

+ log10 α

(10)

where the log10 α term accounts for a constant baseline shift. In addition to the scaling effect
and constant baseline shift, there are numerous examples of situations where we would
expect more sophisticated physical features to be present in the spectra. One example is Mie
scattering, which results in scattering features that have been observed in measurements
of spherical or approximately spherical samples, such as single cells [13,28,29]. Another
example is multiple internal reflections in thin film samples, which causes fringes in the
infrared spectra [17,30].

Before infrared absorbance spectra are analyzed, common practice is to first preprocess
the spectra to remove unwanted features that do not relate to the chemical composition of
the sample. Most multivariate models benefit from preprocessing [2,19]. An extensively
used preprocessing technique for infrared spectra is the multiplicative signal correction
(MSC) [5]. MSC is a model-based technique, which means that it builds on a physical model,
more specifically the Beer–Lambert law from Equation (9) and intensity variations from
Equation (10). MSC takes advantage of the fact that infrared spectra share a very similar
overall shape. Therefore, each measured spectrum Zapp is modeled around a reference
spectrum Zre f ;

Zapp(ν̃) = a + b · Zre f (ν̃) + ε(ν̃) (11)

where the reference spectrum is a pure, scatter-free spectrum, often taken as the mean
spectrum from the dataset [6]. The parameter b takes the scaling effect into account,
while the constant baseline shift from Equation (10) is represented by the constant a. The
unmodeled part of Zapp, i.e., the chemical differences between each spectrum and the
reference, is contained in the residual term ε. The MSC parameters a and b are determined
by least squares regression. In order to standardize the measured spectra, the physical
effects are removed by subtracting the constant baseline shift and scaling the spectra
according to the reference spectrum;

Zcorr(ν̃) =
Zapp(ν̃)− a

b
. (12)

Zcorr is a scatter-free spectrum that is normalized according to the reference spectrum.
In addition to the scaling effect and the constant baseline shift, it is common to

observe signals of diffuse scattering in the absorbance spectra. Diffuse scattering leads
to broad features in the baseline, where the offset does not change significantly from one
wavenumber to the next. These broad features are often well corrected by extending the
MSC model, adding polynomial terms, called polynomial model spectra, to Equation (11).
In its most basic form, the extended MSC (EMSC) reads

Zapp(ν̃) = a + b · Zre f (ν̃) + ċ̃ν + d · ν̃2 + ε(ν̃), (13)

where the corrected spectrum is found by removing the physical features from the mea-
sured spectrum:

Zcorr(ν̃) =
Zapp(ν̃)− a − c · ν̃ − d · ν̃2

b
. (14)

The polynomial model spectra are centered around the midpoint of the wavenumber
region, such that the polynomials are either symmetric or anti-symmetric around the
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midpoint. This is described in greater detail in the Supplementary Material. Here, the term
EMSC will also cover MSC models, stating the orders of the polynomials used.

It is possible to extend the model by polynomials of order higher than two, how-
ever, one should be careful not to include too high orders when correcting FTIR spectra.
Higher order polynomial spectra could start modeling broad chemical features, such as
the broad O-H stretching region around 3500–2600 cm−1. For FTIR spectra recorded in
the range 4000–500 cm−1, second order polynomials and below are typically used. One
should keep in mind that if cutting the spectra, for example selecting only the fingerprint
region 1800–500 cm−1, one should consider to limit the polynomials to the first degree
only. For Raman spectra, however, the chemical features in the spectrum are of very sharp
nature, and therefore polynomials of higher orders are frequently used. In [12] it is re-
ported that polynomials up to the seventh degree do not pose any over-fitting problems in
Raman spectra.

One of the major advantages of the EMSC is the possibility to add spectra that represent
chemical features to the model. This enables explicit modeling of known chemical variations
in the dataset, which in turn can provide valuable information to the data analysis. We
call these chemical model spectra constituent spectra. The use of constituent spectra are
discussed in detail in Section 2, where we also show common pitfalls.

4. Conclusions

In this paper we have clarified some of the common misunderstandings about EMSC
preprocessing when the EMSC model contains constituent spectra, and we have shown
how to avoid major pitfalls when using such models. The importance of using orthogonal
model spectra has been discussed, and examples of how to construct them were given.
Further, the effect of weighting in the EMSC was discussed, showing that weighting affects
the normalization. The optimal normalization strategy depends on the study. Alternatively
to applying weights, we have shown that analyte constituent spectra can be used. Analyte
spectra allows modeling of known compounds, and provides additional information about
the dataset. Examples of how to utilize the additional information were given, including a
regression task and a segmentation task.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27061900/s1, Figure S1: MSC correction of spectra from the filamentous fungi
dataset. All models use polynomi als up to the second degree, and the polynomial model spectra
are shown in pink, red and blue in all figures. The reference spectrum is shown in black. (a)
Corrected spectra using an EMSC on the full spectral range. (b) Corrected spectra using the region
1800–400 cm−1. (c) Corrected spectra using the full spectral range, and applying zero weights in
the region 4000–1800 cm−1. The weights are shown in dashed grey. Figure S2. EMSC correction of
different spectral regions. All models use polynomials up to the first degree, and the polynomial
model spectra are shown in pink and red , while the reference spectrum is shown in black. (a) EMSC
corrected spectra from the lipid regions. Zero weights are applied to the silent region 2800–1765 cm−1.
(b) EMSC corrected spectra from the lipid regions. The silent region 2800–1765 cm−1 is removed from
the spectra before the EMSC. (c) The region 3050–2800 cm−1 is corrected separately. (d) The region
1765–1727 cm−1 is corrected separately. (e) The corrected spectra from (c) and (d) shown together.
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Abbreviations
The following abbreviations are used in this manuscript:

EMSC Extended multiplicative signal correction
FTIR Fourier transform infrared
HTS-XT High throughput screening extension
MSC Multiplicative signal correction
PLSR Partial least squares regression
PUFA Polyunsaturated fatty acid
RMSE Root mean square error
SR-ATR Single-reflection attenuated total reflectance
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