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Abstract: In this study, a new electrolyte additive 1,3,5-tri-2-propenyl-1,3,5-triazine-2,4,6-(1H, 3H,
5H)-trione (TAIC) for lithium-ion batteries is reported. The additive is introduced as a novel elec-
trolyte additive to enhance electrochemical performances of layered lithium nickel cobalt manganese
oxide (NCM) and lithium cobalt oxide (LiCoO2) cathodes, especially under a higher working voltage.
Encouragingly, we found protective films would be formed on the cathode surface by the electrochem-
ical oxidation, and the stability of the cathode material–electrolyte interface was greatly promoted.
By adding 0.5 wt.% of TAIC into the electrolyte, the battery exhibited outstanding performances. The
thickness swelling decreased to about 6% after storage at 85 ◦C for 24 h, while the capacity retention
of cycle-life performances under high temperature of 45 ◦C after the 600th cycle increased 10% in
comparison with the batteries without TAIC. Due to its specific function, the additive can be used in
high energy density and high voltage lithium-ion battery systems.

Keywords: multifunctional electrolyte additive; improved interface stability; triallyl isocyanurate

1. Introduction

With the popularity of the 5G network, handheld terminals possessing more and
more abundant functions are constantly emerging, and these multi-functional terminal
devices require secondary batteries with higher capacity. Therefore, numerous flexible
batteries with longer cycle life-time and lower life cycle cost are urgently needed. With
the growing need for rechargeable batteries with relatively higher capacity and safety,
numerous efforts have been made to develop new high-performance lithium-ion secondary
batteries (LIBs) [1,2]. Layered lithium nickel cobalt manganese oxide (NCM) and lithium
cobalt oxide (LiCoO2) materials have attracted much attention as a result of their high
capacity, stable performance and high degree of commercialization. One of the most
effective ways to improve the capacity of the batteries is to increase the working voltage [3,4].
For example, the working voltage of LiCoO2, one of the main cathode materials of LIBs for
handheld terminals, has improved to 4.5 V up to now. However, it is necessary to ensure
the high-temperature performance of the cathode, such as high-temperature storage and
cycling characteristics, and the combined interval cycling performance under high applied
voltage. The surface and internal structural stability of the cathode materials should be
greatly improved, and more efforts should be made to match the used electrode and the
electrolyte system.

The oxidation potential of the traditional organic carbonate solvent for LIBs is about
5.0 V (vs. Pt). However, the decomposition reaction begins at a voltage above 4.5 V due to
the porous structure of LIBs, resulting in serious capacity attenuation of the battery at a
high cut-off voltage [5–7]. During aging of the battery, the dissolved transition metal ions
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such as Ni2+, Co2+ and Mn2+ of cathode NCM or LiCoO2 would catalyze and accelerate
the decomposition of electrolyte to form irreversible reaction products, resulting in an
accelerated decrease in the capacity of LIBs [8]. For example, sulfone-based solvents have
not yet been used in a large-scale prospective as a result of their poor compatibility with
cathode materials due to their high viscosity, regardless of its relatively higher oxidation
potential of above 5 V (vs. Li/Li+) [9,10]. Ethers-based electrolytes could offer lots of
advantages like high ionic conductivity and coulomb efficiency [11,12], however, the
disadvantages of ethers, such as the lower oxidation stability (electrochemical potential
window of less than 4 V vs. Li/Li+), cannot be ignored, which prevents them from being
used as ‘co-solvent’ of electrolytes [13,14]. Long-chain carbonates-based electrolytes and
ionic liquid electrolytes can theoretically be used as high-voltage electrolytes due to their
higher cycling stability [15], while the high viscosity would have significant negative effects
on the ionic conductivity and the wettability of cathode/anode electrodes. In addition,
other solvents having high melting points would cause significant deteriorations in low-
temperature properties of LIBs. Therefore, the practical applications of the abovementioned
solvents-based electrolyte systems have been severely hindered [16].

By adding a small amount of functional additive, such as film-forming additive, into
the electrolyte system to form protective films at the cathode and anode interfaces, which
could prevent the reaction between the cathode/anode and the solvent molecules, thus the
structural damage of the positive and negative materials would be greatly reduced or even
prevented. The rational approaches to selective functional additives have been proved to
be more convenient than the development of new electrolytes [17–20].

To provide good protection against the deterioration at the cathodic interface, the
formation of a protective polymer cathode/electrolyte interphase (CEI) film has been
performed [21]. In recent years, the application of a large number of electrolyte additives
including vinyl carbonate (VC), fluorides, new lithium salts, and other phosphorus (P)-/or
boron (B)- or sulfur (S)-containing additives, and nitriles has been deeply investigated,
and the possible effects and mechanisms have also been described. Interestingly, most
of the additives exhibiting excellent cathodic protection ability toward high voltage LIBs
possess double or triple bonds [22]. To the best of our knowledge, a crosslinking agent,
1,3,5-tri-2-propenyl-1,3,5-triazine2,4,6(1H,3H,5H)-trione (TAIC; Figure 1), has been widely
used in the preparation of polymers [23,24], and the polymers fabricated by TAIC have
shown relatively better thermostability.
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In this paper, TAIC was selected and used as a multifunctional electrolyte additive
to form a CEI at the cathodic interface, and the lithium cobalt oxide (LiCoO2)/electrolyte
interface stability under high voltage was evaluated. The physicochemical properties of the
battery were analyzed, and the underlying mechanisms were also investigated. The results
indicated that TAIC-containing LIBs could maintain good performance under high voltage
and high temperature conditions. This work may provide some useful references for the
preparation of more stable LIBs due to the formation of high-quality CEI film in the battery.
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2. Experimental Details
2.1. Preparation of the Electrodes

The additive 1,3,5-tri-2-propenyl-1,3,5-triazine2,4,6(1H,3H,5H)-trione (TAIC) was pur-
chased from Alfa Aesar, Ward Hill, MA, USA. Main components of electrolyte such as
lithium hexafluorophosphate (LiPF6), ethylene carbonate (EC), propylene carbonate (PC),
diethyl carbonate (DEC), n-propyl propionate (PP), fluoroethylene carbonate (FEC) and
1,4-Dicyanobutane (ADN) were provided by ShanShan Advanced Materials (Quzhou) Co.,
Ltd., Quzhou, China. Anhydrous solvents were prepared by using 4A molecular sieve, then
activated and mixed in a glove box filled with purified argon (Ar) in the absence of water
and oxygen (below 1 ppm). The moisture and the content of free acid in the electrolytes of
below 20 ppm and 50 ppm were measured by the Metrohm Coulomb Karl Moisture Tester
and triethylamine titration, respectively. The codes of the electrolyte used are defined as
Base-1# and TAIC-2#, respectively (Table 1).

Table 1. The compositions and codes of various electrolytes.

Code
Solution Additive/wt.% Lithium Salt/mol L−1

EC PC DEC PP FEC ADN TAIC LiPF6

Base-1# 20 20 20 40 3 3 0 1.2
TAIC-2# 20 20 20 40 3 3 0.5 1.2

The cathodic materials consisting of 96.0 wt.% LiCoO2 or NCM (which were provided
by Tianjin B&M Science and Technology Co., Ltd.; Tianjin, China), 2.0 wt.% super P carbon
black, and 2.0 wt.% poly(vinylidene fluoride) (PVDF) were prepared, respectively. LiCoO2
and conductive agents were homogeneously dispersed in N-methyl-2-pyrrolidone (NMP)
to form a slurry with a viscosity of about 3000~6000 mPa·s. The slurry was coated onto an
aluminum foil current collector, and then dried to obtain a cathode. The anodic material con-
sisting of 96.3 wt.% graphite (which was provided by Jiangxi Zichen Technology Co., Ltd.,
Yichun, China), 1.0 wt.% super P carbon black, 1.5 wt.% styrene butadiene rubber (SBR),
and 1.2 wt.% carboxy-methyl cellulose (CMC) was also fabricated. The active materials
and conductive agents were homogeneously dispersed in deionized water to form a slurry
with a viscosity of about 2000~4000 mPa·s, and an anode could be obtained by coating the
slurry onto a copper foil current collector followed by air-drying.

A 2032-type coin cell was assembled by using NCM as the cathode, lithium metal
as the anode, and a porous polyethylene (PE) separator of 9 µm thickness (W-Scope Co.,
Cheongju, Chungbuk, Republic of Korea) was placed between the cathode electrode and
counter electrode. In order to evaluate the performances of the additive on the full battery,
a wound 404,798-type battery was assembled by using LiCoO2 as the positive electrode,
graphite as the negative electrode and a separator. Each coin cell and full battery used
either reference Base-1# or functional additive electrolyte TAIC-2#.

2.2. Electrochemical Measurements

A three-electrode system with Pt metal as the working electrode, lithium metal as
the counter electrode, and Pt as the reference electrode was assembled. Linear sweep
voltammetry (LSV) of the three-electrode system was recorded over the voltage range from
open-circuit voltage (OCV) to 7 V with a scanning rate of 1.0 mV/s with eight-channel
Solartron potentiostat (model 1470E; Advanced Measurement Technology Inc.; Oak Ridge,
TN, USA). AC impedances of coin cells and full batteries were collected over the frequency
range 0.01~100,000 Hz with an amplitude of 5 mV. The coin cell of the NCM/Li system
was charged–discharged for one cycle at a current rate of 0.1 C between 3.0 V and 4.4 V.
The internal resistance of the battery was measured at 25 ◦C. High-temperature storage
performance of the full batteries was measured using a temperature-controlled test chamber,
which was kept at 85 ◦C. The long-term cycling performance of LiCoO2/graphite full
batteries at 45 ◦C was evaluated in an incubator in the potential range 3.0–4.5 V at a current
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rate of 1 ◦C. Charge–discharge tests of LiCoO2/graphite full batteries were performed on a
battery testing system (CT-4008W, Neware Battery Testing System, Shenzhen, China).

2.3. Characterization Methods

Field-emission scanning electron microscope (FE-SEM; Nova Nano SEM450; FEI Co.,
Hillsboro, OR, USA) was operated at an accelerating voltage of 15.0 kV to obtain sur-
face morphologies of pristine electrode and tested electrodes. The harvested electrodes
were rinsed three times with anhydrous dimethyl carbonate (DMC) to remove residual
electrolyte, vacuum-dried in a chamber at 25 ◦C to remove excess DMC.

The structural changes in cathode can be investigated by X-ray diffraction (XRD; D8
ADVANCE). XRD patterns of the cathode were collected in the 2θ range of 15–89◦ at a scan
rate of 0.01◦ S−1 using an X-ray diffractometer with Ni-filtered Cu Kα radiation generated at
40 mA and 40 kV. The chemical compositions of the cathode and anode surfaces of batteries
were investigated by X-ray photoelectron spectroscopy (XPS; R3000, VG SCIENTA; VG
Scienta, Uppsala, Sweden) with monochromatic Al Kα radiation under ultrahigh vacuum
(≤2 × 10−7 mbar).

2.4. Computational Simulation

In recent years, the high-precision and multi-scale simulation of electrolyte additives
for lithium-ion batteries could be implemented by various quantum chemistry theories
such as density functional method and classical molecular dynamics (MD). Herein, the
redox potential of the additive was obtained by calculating the highest-occupied-molecular-
orbital (HOMO) and lowest-unoccupied-molecular-orbital (LUMO) energies by density
functional method, and the additive potentiating electrolytes action in the battery can be
justified theoretically. Molecular orbital energies of EC and DEC as electrolyte solvents,
and TAIC as an additive, were calculated by Density Functional Theory (DFT) to propose
the decomposition mechanism. The structural optimizations and frequency calculations of
the solvent and additive molecules, and their solvated molecules with Li+ were carried out
by DFT with the Triple-ζ Basis set 6-311++G (d, p).

3. Results and Discussions
3.1. Oxidation and Reduction Performance

As showing in Table 2, the HOMO level of TAIC was higher than those of electrolyte
solvents. Furthermore, the LUMO value of TAIC additive (−0.56 eV) was somewhere
in between EC (−0.6) and DEC (−0.42). TAIC was confirmed as a suitable additive for
cathodes toward high power applications. The preferential oxidation of TAIC additive can
be expected, and a stable interfacial layer on the cathode surface would be formed.

Table 2. HOMO and LUMO levels of TAIC, EC and DEC.

Organic Molecules TAIC EC DEC

HOMO (eV) −7.86 −8.47 −8.02
LUMO (eV) −0.56 −0.6 −0.42

To verify the theorical hypothesis, LSV was performed to investigate the oxidation
potential in different electrolytes with and without TAIC. As shown in Figure 2, an apparently
increased oxidation current can be observed at the potential of ~4.3 V in the electrolyte
containing TAIC, confirming that TAIC was oxidized preferentially. Oxidation current slowly
increased when the voltage was swept to above 5.0 V in the TAIC-containing electrolyte,
while the oxidative current sharply increased in the electrolyte without TAIC, indicating
that the electrolyte without TAIC suffered severe decomposition. Obviously, the preferential
oxidation of TAIC would efficiently suppress the decomposition of conventional electrolytes.
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Figure 2. LSV curves of the three-electrode setup in different electrolytes (Inset: Base-1# and TAIC-2#)
(The scanning voltage ranged from OCV to 7 V, and the scan rate was 1 mV/s).

3.2. Influence of Additive TAIC on Electrochemical Performance

Cycle curves of a NCM-Li half cell (a) and charge–discharge curves were recorded
(Figure 3). The AC impedance (Figure 3c,d) and the equivalent current model (Figure 3e)
of NCM/Li systems are also displayed. As shown in Figure 3b, the difference of the first
charging–discharging capacity of the cell in TAIC-containing electrolyte was greater than
that in a basic electrolyte; the first efficiency (ICE) of TAIC-containing electrolyte was 78.25%,
lower than a base electrolyte (ICE: 81.84%), indicating that a solid electrolyte protective
film might be formed by consuming Li+ during the charging process. After five cycles,
the charge–discharge efficiencies stably maintained at ≥99%, which was much higher
than those in the basic electrolyte (Figure 3a). Furthermore, the relatively better overall
cycling performance of the NCM/Li half-cell with a TAIC-containing electrolyte could be
observed. The impedance of the NCM/Li half-cell increased if the TAIC was added to the
electrolyte. With an increase in the charge–discharge cycle, sufficient electrolyte infiltration
occurred. Active edge sites of layered ternary material (NCM) gradually increased, which
correspondingly promoted the charge transfer efficiency, and the overall impedance tended
to decrease in comparison with the initial value. Due to the film-forming effect of additive
TAIC, the increase rate in interfacial impedance was relatively smaller than that with base
electrolyte, again indicating that the addition of TAIC to the electrolyte was beneficial.

Figure 4 shows the storage performance of full-cell at a high temperature of 85 ◦C.
After adding TAIC, the initial impedance of the full-cell was around 35.0 mΩ, which was
higher than with a basic electrolyte. With the increase in storage period (24 h), the thickness
expansions (~6%) of the cell with TAIC was relatively smaller than those (~13.5%) with basic
electrolyte. In particular, the impedances of a full-cells with TAIC-containing electrolytes
were about 50.0 mΩ, which were smaller than those (~52.0 mΩ) with base electrolytes,
indicating that the addition of TAIC could alleviate the oxidation decomposition of the
electrolytes by the formation of surface passivation film at high temperatures and high
working voltage.
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Figure 4. The full-cell storage performance of 85 at °C: (a) Thickness swelling; (b) Variation in 
impedance. 
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Figure 3. (a) The cycle curve of NCM-Li half-cell (The solid balls represent the cyclic capacity attenua-
tion, and the hollow balls represent the charging-discharging efficiency in the cyclic process); (b) The
charge–discharge curve during the charging process; (c) Representative EIS Nyquist plots of NCM-Li
half-cells prepared with different electrolyte models measured after the first discharge–charge cycle
at 0.1 C; (d) Representative EIS Nyquist plots of NCM-Li half-cell with different electrolyte models
after the 50th discharge–charge cycle; (e) An equivalent circuit model.
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Figure 4. The full-cell storage performance of 85 at ◦C: (a) Thickness swelling; (b) Variation
in impedance.

Figure 5 shows the cycle performance of polymer full-cell at 45 ◦C. After 600 cycles,
the capacity retention rate of the full-cell without TAIC additive was about 65.3%, while
the capacity retention rate of the full cell with 0.5 wt.% TAIC additive in the electrolyte
increased to 75.8%. The positive interface impedance of the three-electrode setup was
measured by EIS, and the initial positive interface impedance after adding TAIC was
higher than that with base electrolyte, confirming that the TAIC additive was beneficial
to the formation of a protective layer at the LiCoO2 interface, which would increase the
interface impedance. After 600 cycles, the positive interface impedance of the full-cell
with a TAIC additive was smaller than that with a base electrolyte, indicating that TAIC-
assisted film formation played a role in protecting the cathode interface and reducing the
capacity fading. Further oxidization and decomposition of the electrolyte by the cathode
was efficiently prohibited by TAIC additive, which would have a significant impact on the
cycle performance of the battery.
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Figure 5. Cycle performance of full-cell at charge/discharge rate of 1 ◦C at 45 ◦C: (a) Capacity
retention rate; (b) EIS Nyquist plots of LiCoO2 vs. Li+/Li EIS with a different electrolyte before and
after the cycle.

SEM characterizations of the electrodes after cycling were performed, and the effec-
tiveness of TAIC for improving the cycling performance of the batteries was confirmed
(Figure 6). After the first cycle, the surface morphological changes of LiCoO2 after cycling
were monitored. More byproducts are displayed on LiCoO2 particles with the TAIC-
containing electrolyte, while the smoother surface of LiCoO2 particles cycled in the base
electrolyte could be observed. However, higher side reaction product contents on the inter-
face crack are exhibited along with the more cracks at the positive interface with the base
electrolyte after 600 cycles. The SEM results were consistent with the cycle performances of
the batteries previously discussed.

Figure 7 shows the structural changes of pristine LiCoO2 powder, and the LiCoO2
powders from the cathode electrode of full-cell with a base electrolyte and with a 0.5 wt.%
TAIC-containing electrolyte after cycling at 45 ◦C. The strong peak of (003) at 18.75◦ for
pristine LiCoO2 powder could be observed, and the peaks at 18.65◦ and 18.60◦ of LiCoO2
powders from the cathode electrode of full-cell with a base electrolyte and with a 0.5 wt.%
TAIC-containing electrolyte could be detected. Obviously, the sharp splits in 003 peak
of the electrode powder cycled without a TAIC additive confirmed its higher transverse
effect, while the electrode powder with the electrolyte containing 0.5 wt.% TAIC showed
no significant changes in the peak intensity in comparison with that pristine LiCoO2
powder, indicating that the crystal structure of the LiCoO2 powder was easily subjected
to damage under high temperatures and high voltage, while the addition of TAIC to the
electrolyte could protect the structure and function of LiCoO2 by the formation of surface
passivation films.
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Figure 7. XRD patterns of LiCoO2 powders: (a) Pristine LiCoO2; (b) cycled in a base electrolyte at 45 
°C; (c) cycled in the electrolyte containing 0.5 wt.% TAIC at 45 °C. 

Figure 8 presents the XPS patterns of LiCoO2 electrodes after cycling at 45 °C in base 
or 0.5 wt.% TAIC-containing electrolytes. In C1s spectra, relatively weaker peaks of C-C 
(285.1 eV) and C-F (290.8 eV) of the LiCoO2 electrode in TAIC-containing electrolyte 
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Figure 6. SEM images of LiCoO2 cycled with a base electrolyte: (a) After the first cycle and; (b) after
600 cycles; SEM images of LiCoO2 cycled with the electrolyte containing 0.5% TAIC; (c) after the first
cycle; (d) after 600 cycles. The areas marked in red indicate the byproducts observed.
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Figure 7. XRD patterns of LiCoO2 powders: (a) Pristine LiCoO2; (b) cycled in a base electrolyte at
45 ◦C; (c) cycled in the electrolyte containing 0.5 wt.% TAIC at 45 ◦C.

Figure 8 presents the XPS patterns of LiCoO2 electrodes after cycling at 45 ◦C in
base or 0.5 wt.% TAIC-containing electrolytes. In C1s spectra, relatively weaker peaks of
C-C (285.1 eV) and C-F (290.8 eV) of the LiCoO2 electrode in TAIC-containing electrolyte
could be observed, while relatively stronger peaks of C=O (289.0 eV) and C-O (286.6 eV)
of the electrolytes electrode in TAIC-containing electrolyte could be detected [2]. The
results suggested that more decomposition products such as alkanes and F-containing
compounds would be produced for LiCoO2 in a base electrolyte, and alkoxy-containing
molecules would be formed in TAIC-containing electrolyte. In N1s spectra, the peak of C-N
(400.9 eV) corresponding to the LiCoO2 electrode in both electrolytes could be observed,
which might be attributed to C-N bond-containing molecules. The stronger peak at 400.9 eV
in TAIC-containing electrolyte can be possibly ascribed to the introduced TAIC. Therefore,
more lithium alkyl carbonates and polycarbonates were deposited on LiCoO2 in a base
electrolyte, while the protective SEI film formed on LiCoO2 particles by TAIC during the
initial charge process was effective in prohibiting the possible interactions between LiCoO2
and the electrolyte during the following cycling processes.
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4. Conclusions

TAIC is easily oxidized, potentially at about 4.25 V. However, a film on the cathode
(LiCoO2 and NCM) will be formed in the present of TAIC in the electrolyte, which can
effectively protect the positive interface due to the larger film-forming impedance. The
LiCoO2/Gr polymer full-cell further confirmed the film-forming reaction of cathode in TAIC,
and the alkoxy-containing byproducts formed can stably prohibit further reaction between
the LiCoO2 powder and the electrolyte, although the initial impedance was relatively larger.
By adding 0.5 wt.% TAIC to the electrolyte, the battery showed better high-temperature
storage performance and cycle performance, and thickness swelling decreased to about 6%
after 24 h storage at 85 ◦C. In addition, the capacity retention of the battery at 45 ◦C increased
10% by adding TAIC when it was cycled under 4.5 V after 600 cycles. The improvement
could be attributed to the formation of a stable and protective SEI film on LiCoO2 due to
the preferential oxidation of TAIC. The SEI film containing the decomposition products of
TAIC on the LiCoO2 was thicker. The further decomposition of electrolyte was efficiently
suppressed, and the destruction of LiCoO2 was therefore greatly prevented. Furthermore,
the addition of TAIC to the electrolyte could decrease the increase in interface impedance
after cycling, especially with regard to the impedance of LiCoO2 cathode.
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