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Abstract: Pyrazines and pyridazines fused to 1,2,3-triazoles comprise a set of heterocycles obtained
through a variety of synthetic routes. Two typical modes of constructing these heterocyclic ring
systems are cyclizing a heterocyclic diamine with a nitrite or reacting hydrazine hydrate with
dicarbonyl 1,2,3-triazoles. Several unique methods are known, particularly for the synthesis of
1,2,3-triazolo[1,5-a]pyrazines and their benzo-fused quinoxaline and quinoxalinone-containing analogs.
Recent applications detail the use of these heterocycles in medicinal chemistry (c-Met inhibition or
GABAA modulating activity) as fluorescent probes and as structural units of polymers.
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1. Introduction

Within the 1,2,3-triazole-fused pyrazines and pyridazines, a series of congeners exists
depending on whether a nitrogen atom occupies a position at the ring fusion (Figure 1).
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Figure 1. Structures of 1,2,3-triazole-fused pyrazines and pyridazines: 1H-1,2,3-triazolo[4,5-
b]pyrazine (2); 1H-1,2,3-triazolo[4,5-c]pyridazine (4); 1H-1,2,3-triazolo[4,5-d]pyridazine (6); 1,2,3-
triazolo[1,5-a]pyrazine (8); 1,2,3-triazolo[1,5-b]pyridazine (10); common precursors 1, 3, 5, 7, 9.
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We became interested in structures containing heterocyclic nuclei 2, 4, 6, 8 and 10
following reports detailing potent mesenchymal–epithelial transition factor (c-Met) protein
kinase inhibition, such as the current clinical candidate Savolitinib [1] (Figure 2, Structure A)
and specifically those containing substructures 2 and 8 [1,2]. In addition to c-Met inhibition,
structures containing these heterocyclic nuclei have shown GABAA allosteric modulat-
ing activity [3] (Figure 2, Structure B), have been incorporated into polymers for use in
solar cells [4,5] (Figure 2, Structure C), and have demonstrated β-secretase 1 (BACE-1)
inhibition [6] (Figure 2, Structure D). Their piperazine derivatives have demonstrated
potent PDP-IV inhibition [7].
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Figure 2. Examples of useful structures containing 1,2,3-triazole-fused pyrazines and pyri-
dazines: (A) c-Met inhibitor Savolitinib [1], containing a 1,2,3-triazolo[4,5-b]pyrazine, (B) a com-
pound with GAGAA allosteric modulating activity containing a 1,2,3-triazolo[4,5-c]pyridazine [3],
(C) a 1,2,3-triazolo[4,5-d]pyridazine derivative used in polymers for solar cells [4,5], and (D),
a 1,2,3-triazolo[1,5-a]pyrazine derivative with BACE-1 inhibitory activity [6].

Emphasis in this review is placed on the more common derivatives of 2 and 8. In com-
parison to the heterocyclic scaffolds outlined in Figure 2, derivatives of 4, 6 and 10 are less
common in the literature. Among fused heterocycles containing the more well-known fused
1,2,4-triazoles, both 1,2,4-triazolo[1,5-a]pyrimidines [8] and 1,2,4-triazolo[4,3-a]pyrazines [9]
have been recently reviewed. Kumar and coworkers [10] surveyed 1,2,3-triazoles fused
to various rings, both aromatic and non-aromatic. In the present review, we address ap-
proaches to the synthesis of 1,2,3-triazole-fused pyrazines and pyridazines and their related
congeners, while setting two limitations:



Molecules 2022, 27, 4681 3 of 28

1. This review covers synthetic methods of preparing structures containing fused hete-
rocycles 2, 4, 6, 8, 10 (Figure 1). Tricyclic and tetracyclic congeners containing these
heterocycles are included.

2. 1,2,3-Triazolopyrimidines do not appear in this review. They have received attention
in the literature on purine chemistry [11–13].

1,2,3-Triazolopyrimidines, which form the core structure of 8-azapurines, 8-azaadenines,
and 8-azaguanines, have been well-studied and reviewed [13–15] owing to their simi-
larity to the respective nucleobases. With both scope and limitations in place, this re-
view addresses synthetic approaches to the 1,2,3-triazolodiazine family: 1,2,3-triazolo[4,5-
b]pyrazine, 1,2,3-triazolo[4,5-c]pyridazine, 1,2,3-triazolo[4,5-d]pyridazine, 1,2,3-triazolo[1,5-
a]pyrazine, and 1,2,3-triazolo[1,5-b]pyridazine. The literature covered includes articles
published since the most recent review of each type of compound, or earlier if no review
exists. Reports are covered until the spring of 2022 and exclude tetrahydro-derivatives.

2. Synthetic Approaches

This overview of synthetic methods is organized according to the type of heterocycle.
In the case of 1H-1,2,3-triazolo[1,5-a]pyrazines, methods are subdivided into pyrazines
and benzopyrazines. Reaction times are included along with solvents, catalysts, and
other reagents in most examples. Commercial availability of precursors is emphasized
where applicable.

2.1. Syntheses of 1H-1,2,3-Triazolo[4,5-b]pyrazines

One of the first reported preparations of a 1H-1,2,3-triazolo[4,5-b]pyrazine came from
Lovelette and coworkers [16], who utilized condensation of a 4,5-diamino-1,2,3-triazole,
14, and a 1,2-dicarbonyl compound 15 (Scheme 1) to give the desired triazolopyrazines 16
in yields in the range 30–35%. A useful precursor, 4,5-diamino-1,2,3-1H-triazole 14, was
prepared by reacting carbamate 13 with a strong base. This carbamate was readily prepared
from the carbonyl azide by refluxing in ethanol. The carbonyl azide can be prepared from
benzyl azide 11, ethyl cyanoacetate 12, and sodium ethoxide, all commercially available
starting materials.
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Dicarbonyl compounds included glyoxal (R1 = R2 = H), benzil (R1 = R2 = Ph), and
others. This was one of the first reports of 1,2,3-triazole-fused pyrazines, highlighted
within a study of fused 1,2,3-triazoles. This method offers three-point diversity, one from
the triazole substituent, and the other two from the respective dicarbonyl substituents.
Despite this, a potential drawback lay in the restriction to a symmetrically substituted
1,2-dicarbonyl species to avoid mixtures of isomers. Indeed, the authors noted the two
condensation products using an asymmetrically substituted diketone, where R1 = CH3 and
R2 = H, as being indistinguishable.

Monge and coworkers [17] prepared benzo-fused 1H-1,2,3-triazolo[4,5-b]pyrazines
through the acid-catalyzed cyclization of 2-azido-3-cyanoquinoxaline, 18, obtained from
2-chloro-3-cyanoquinoxaline 17, yielding 1-hydroxy-1H-1,2,3-triazolo[4,5-b]quinoxaline 19
(Scheme 2) in 52% yield. Though uncommon, acid-catalyzed cyclization of ortho-substituted
azidocyanoaryl species may represent an underutilized method of obtaining structures
with the 1,2,3-triazolo[4,5-b]pyrazine core. Despite this, the use of costly starting materials
hinders wider applicability.
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Unexpectedly, Starchenkov and coworkers [18] determined that, upon treatment of
diamine 20 with trifluoroacetic anhydride (TFAA) and HNO3 and proceeding via inter-
mediate 21, triazolopyrazine N-oxide 22 was formed (Scheme 3). This was one of the first
reports of the preparation of a fused 1,2,3-triazole 2-N-oxide, namely [1,2,5]oxadiazolo[3,4-
b][1,2,3]triazolo[4,5-e]pyrazine-6-oxide 22, formed in 92% yield.
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intermediate 21.

Forming a mesoionic ring system while studying luminescence, Slepukhin and cowork-
ers [19] obtained the 1H-1,2,3-triazolo[4,5-b]pyrazine core within the azapentalene inner
salt 27 in 50% yield after intramolecular cyclization of 8-(benzotriazole-1-yl)tetrazolo[1,5-
a]pyrazine 25 in refluxing DMF, causing loss of nitrogen via intermediate 26 and formation
of 5H-pyrazino[2′,3′:4,5][1,2,3]triazol[1,2-a]benzotriazol-6-ium, inner salt 27 (Scheme 4).
Pyrazine 25 was prepared in 48% yield by nucleophilic aromatic substitution of chloride by
the benzotriazolyl ion after deprotonation of 1H-1,2,3-benzotriazole 24 by carbonate.
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Scheme 4. Synthesis of an azapentalene, 5H-pyrazino[2′,3′:4,5][1,2,3]triazolo[1,2-a]benzotriazol-6-ium,
inner salt 27, after intramolecular cyclization of 25 and loss of nitrogen via intermediate 26.

Azapentalenes, containing the 1H-1,2,3-triazolo[4,5-b]pyrazine nucleus, have gained
attention for their useful properties, such as in luminescence and complexation [19]. Com-
pounds of this type have demonstrated low toxicity, high solubility, and other properties
desirable as potential fluorescence probes [20]. This intramolecular approach has remained
popular in obtaining various substituted azapentalenes, another example being that of Nyf-
fenegger and coworkers [21]. Here, the azapentalene, 5H-pyrazolo[1′,2′:1,2][1,2,3]triazolo[4,5-
b]pyrazin-6-ium, inner salt, 31, was obtained in yields up to 85% via cyclization with loss
of nitrogen after amination of 2-azido-3-chloropyrazine, 28, with either pyrazole 29 or 1,2,4-
triazole affording 2-azido-3-(1H-pyrazol-1-yl)pyrazine 30 (Scheme 5). Other derivatives
using nitro-substituted pyrazoles were formed in yields in the range 63–97%. This method
offers convenience in that a precursor to 28, 2,3-dichloropyrazine, is commercially available.

Molecules 2022, 27, x FOR PEER REVIEW 5 of 29 
 

 

 
Scheme 4. Synthesis of an azapentalene, 5H-pyrazino[2′,3′:4,5][1,2,3]triazolo[1,2-a]benzotriazol-6-
ium, inner salt 27, after intramolecular cyclization of 25 and loss of nitrogen via intermediate 26. 

Azapentalenes, containing the 1H-1,2,3-triazolo[4,5-b]pyrazine nucleus, have gained 
attention for their useful properties, such as in luminescence and complexation [19]. Com-
pounds of this type have demonstrated low toxicity, high solubility, and other properties 
desirable as potential fluorescence probes [20]. This intramolecular approach has remained 
popular in obtaining various substituted azapentalenes, another example being that of 
Nyffenegger and coworkers [21]. Here, the azapentalene, 5H-pyrazolo[1′,2′:1,2][1,2,3]tria-
zolo[4,5-b]pyrazin-6-ium, inner salt, 31, was obtained in yields up to 85% via cyclization 
with loss of nitrogen after amination of 2-azido-3-chloropyrazine, 28, with either pyrazole 
29 or 1,2,4-triazole affording 2-azido-3-(1H-pyrazol-1-yl)pyrazine 30 (Scheme 5). Other de-
rivatives using nitro-substituted pyrazoles were formed in yields in the range 63–97%. This 
method offers convenience in that a precursor to 28, 2,3-dichloropyrazine, is commercially 
available. 

 
Scheme 5. Synthesis of the azapentalene 31, from pyrazine 30, derived from 2-azido-3-chloropyra-
zine 28. 

Notably, in addition to having an azido group substituted ortho to the pyrazole of 30 
[20,21], reports have also made use of the respective amine via ring closure by displace-
ment of an N-iodonium intermediate by an adjacent nitrogen atom of the attached pyra-
zole to form azapentalenes [22,23]. Compounds of this type have been thoroughly charac-
terized via NMR spectroscopy [24]. A Pfizer patent [25] filed in 2007 detailed the use of 
either isoamyl nitrite in DMF or NaNO2 in aqueous acetic acid, after first aminating com-
mercially available 2-amino-3,5-dibromopyrazine 32 in the presence of a sterically hin-
dered base, N,N-diisopropylethylamine (DIPEA), then treating diaminopyrazine 33 with 
nitrite to form 3,5-disubstituted 1H-1,2,3-triazolo[4,5-b]pyrazine 34 (Scheme 6). 

N

N

N N
N

N N
N

N

N

N
N

N
N

N
N

N2
N

N

N
N

N
N

DMF, 
reflux, 3 h

Na2CO3
ACN, reflux, 

1 h
N

N

N N
N

Cl
N

N

H
N

25                                                 26                                           2723

24

N

N Cl

N3

N
H
N

pyridine,
MeCN N

N N

N3

N

N

N

N
N

N

28                                        30                                                       31

N2

dichlorobenzene, 
165 °C, 2 hcommercially available 

2,3-dichloropyrazine

29

Scheme 5. Synthesis of the azapentalene 31, from pyrazine 30, derived from 2-azido-3-chloropyrazine 28.

Notably, in addition to having an azido group substituted ortho to the pyrazole of
30 [20,21], reports have also made use of the respective amine via ring closure by displace-
ment of an N-iodonium intermediate by an adjacent nitrogen atom of the attached pyrazole
to form azapentalenes [22,23]. Compounds of this type have been thoroughly characterized
via NMR spectroscopy [24]. A Pfizer patent [25] filed in 2007 detailed the use of either
isoamyl nitrite in DMF or NaNO2 in aqueous acetic acid, after first aminating commercially
available 2-amino-3,5-dibromopyrazine 32 in the presence of a sterically hindered base,
N,N-diisopropylethylamine (DIPEA), then treating diaminopyrazine 33 with nitrite to form
3,5-disubstituted 1H-1,2,3-triazolo[4,5-b]pyrazine 34 (Scheme 6).
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The use of nitrite for triazole cyclization, via the nitrosonium ion, has also been
reported by Ye and coworkers [26,27], Cui and coworkers [2] (who were cited in the orig-
inal patent [25]), and others. Thottempudi and coworkers [28] used a combination of
TFAA/HNO3 as an in situ nitronium source, giving a triazole 2-N-oxide, while Jia and
coworkers [1], and others [29,30] used nitrosonium generated from nitrite. Both synthe-
ses offer straightforward introduction of the triazole based on the amine chosen during
amination. They also have the advantage of short reaction times and little or no required pu-
rification. Likely owing to these benefits, cyclization using nitrite to generate nitrosonium
ion, such as in 33 to 34 (Scheme 6), continues to dominate reports in the literature. Indeed,
the reaction of various diazinyl diamines with nitrite represents a central theme throughout
the discussion of syntheses of 1H-1,2,3-triazole-fused pyrazines and pyridazines.

2.2. Syntheses of 1,2,3-Triazolo[1,5-a]pyrazines

More well-known than 1,2,3-triazolo[4,5-b]pyrazines are the fused [1,5-a]pyrazine
derivatives. While benzo[b]pyrazines (i.e., quinoxalines) are not commonly encountered
as part of 1,2,3-triazolo[4,5-b]pyrazines, they are widespread in the literature in com-
pounds containing the 1,2,3-triazolo[1,5-a]pyrazine nucleus. Therefore, this section is
organized into the syntheses of benzo-fused structures (e.g., 1,2,3-triazolo[1,5-a]pyrazines
containing quinoxaline or quinoxalinone), and those that are bicyclic 1,2,3-triazolo[1,5-
a]pyrazines. A recent brief review of 4,5,6,7-tetrahydro[1–3]triazolo[1,5-a]pyrazines has
been published [31]. An earlier review detailed aspects of the chemistry of 1,2,3-triazolo[1,5-
a]pyrazines [32]. A review on the synthesis of triazoloquinazolines also appeared in 2016 [33].

2.2.1. Syntheses of Bicyclic 1,2,3-Triazolo[1,5-a]pyrazines

The first method of synthesizing a 1,2,3-triazolo[1,5-a]pyrazine by Wentrup [34] was,
at the time, the synthesis of a novel purine isomer. Wentrup utilized the thermolysis of
5-(2-pyrazinyl)tetrazole 36 (400 ◦C, 10−5 Torr), affording 38, 1,2,3-triazolo[1,5-a]pyrazine in
20% yield proceeding via diazo intermediate 37. The precursor 2-(2H-tetrazol-5-yl)pyrazine
36 was readily prepared from 2-cyanopyrazine, 35, upon treatment with hydrazoic acid
generated in situ from ammonium chloride and sodium azide (Scheme 7). This method,
while suffering from harsh reaction conditions and poor yields, was the first utilizing
intramolecular cyclization of diazo intermediates in the formation of 1,2,3-triazolo[1,5-
a]pyrazines. Lead tetraacetate oxidation of the hydrazone of pyrazine-2-carbaldehyde
similarly gave 38 in 75% yield [35].
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In addition to syntheses of neutral compounds of this type, several reports have ap-
peared for the preparation of fused pyrazinium salts. A method by Beres and coworkers [36]
afforded 1-(4-bromophenyl)-3-methyl-1,2,3-triazolo[1,5-a]pyrazinium tetrafluoroborates 31
in 55% yield (when R1 = p-chlorophenyl) and 81% yield (when R1 = CH3) after reaction
of 4-bromophenylhydrazones 39 (prepared from the respective 2-pyrazinyl ketone) with
tribromophenol bromine (TBB) and NH4BF4 (Scheme 8). When R1 = CH3, the yield of 40
was 81%. Interestingly, after treatment of 40 with pyrrolidine in methanol, the ring-opened
2-aza-1,3-butadienes can be valuable starting materials for other conversions. For exam-
ple, a ring-opened triazolyl-2-aza-1,3-butadiene was converted to a fused pyridine after
treatment with N-phenylmaleinimide, or an imidazoline when treated with tosyl azide [36].
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Methods have been reported for the preparation of 1,2,3-triazolo[1,5-a]pyrazinones.
In work by Nein and coworkers [37,38], the reaction of 5-hydroxy-N-diphenyl-1H-1,2,3-
triazole-4-carboxamide 41 with chloroacetonitrile in DMF and base gave the alkylated
product 42, which, after refluxing in sodium ethoxide, gave 6-amino-4-oxo-2,5-diphenyl-
4,5-dihydro-2H-1,2,3-triazolo[1,5-a]pyrazinium-5-olate 43 in 80% yield (Scheme 9). They
proposed the geometry of 3-phenacyl- and 3-cyanomethyl derivatives of triazolium-5-
olates indicated interaction of the carboxamide nitrogen at position 4 of the triazole
with cyano groups, which was then confirmed experimentally after obtaining the desired
mesoionic 42 [37].
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Similarly involving reaction of triazolium olates such as 42, during a synthesis of
1,2,5-triazepines by Savel’eva and coworkers [39], [1,5-a]triazolopyrazines were formed as
byproducts (5–7%) from the intramolecular cyclization of 1-amino-3-(p-phenacyl)-4-{[2-(1-
methylethylidene)hydrazino]carbonyl}-[1,2,3]-triazolium-5-olates. Jug and coworkers [40]
took a novel approach for the reaction of 4-(ethoxymethylene)-2-phenyloxazol-5(4H)-one
44 with commercially available diaminomaleonitrile 45, forming adduct 46 which, after
conversion to triazole 47 with nitrite, afforded the substituted 1,2,3-triazolo[1,5-a]pyrazine
48 (Scheme 10). Later, derivatives of 48 such as ethyl 4-amino-3-cyano-1,2,3-triazolo[1,5-
a]pyrazine-6-carboxylate were further reacted by Trcek and coworkers [41] to form 1,2,3-
triazolo[1,5-a]-1,2,4-triazolo[5,1-c]pyrazines in 55–65% yield.
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45 forming an adduct 46, which led to triazole 47 and pyrazine 48. (R1 = alkyl.)

Raghavendra and coworkers [42] reported a triazolopyrazine synthesis employing
solid-phase polystyrene p-toluenesulfonyl hydrazide, a common carbonyl scavenging resin.
After reaction of the polystyrene p-toluenesulfonyl hydrazide 49 with an acetylpyrazine
50 in the presence of 5% TiCl4 in MeOH, hydrazone 51 was obtained. Reaction of 51
with morpholine gave the desired 1,2,3-triazolo[1,5-a]pyrazines, 52 (Scheme 11), in yields
ranging from 33–62%. This regiospecific, traceless protocol represented the first solid-phase
assisted synthesis of a triazolopyrazine and was also used for the synthesis of several
non-fused 1,2,3-triazoles in the same report in yields up to 60%.
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Scheme 11. Intramolecular cyclization of hydrazone 51, derived from tosylhydrazide 49, in the
formation of disubstituted 1,2,3-triazolo[1,5-a]pyrazines 52. (R1, R2 = alkyl.)
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Copper-catalyzed [3 + 2] cycloaddition of propiolamide 53, followed by halide dis-
placement to form a fused product, was utilized in the synthesis of saturated derivatives
of 1,2,3-triazolo[1,5-a]pyrazine (i.e., triazolopiperazines) 54 in 80% yield [43] (Scheme 12).
Koguchi and coworkers used ynones and β-amino azides to afford 6,7-dihydro-1,2,3-
triazolo[1,5-a]pyrazines. These authors verified that the one-pot reaction gave cycloaddition
of the alkyne and azide first, followed by reaction of the amine with the ketone [44].
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Scheme 12. Cycloaddition of propiolamide 53 and displacement of iodide to form triazolopiperazine
54. (R1, R2, R3, R4 = alkyl or aryl.)

2.2.2. Syntheses of Benzo-Fused 1,2,3-Triazolo[1,5-a]pyrazines

One of the first reported preparations of a 1,2,3-triazolo[1,5-a]pyrazine by Kauer and
coworkers [45] started with dimethyl l-(o-nitrophenyl)-lH-triazole-4,5-dicarboxylate 59, and
upon treatment with tributyl phosphine in refluxing toluene, afforded methyl 4-methoxy-
1,2,3-triazolo[3,4-a]quinoxaline-3-carboxylate 60 (Scheme 13). Triazole 59 was readily pre-
pared from o-azidonitrobenzene 57 (which in turn was prepared from o-chloronitrobenzene
55 or o-aminonitrobenzene 56) and dimethyl acetylenedicarboxylate 58 in CHCl3.
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Scheme 13. Treatment of triazolyl-o-nitrobenzene 59 with tributyl phosphine, PBu3, resulting in
1,2,3-triazolo[3,4-a]quinoxaline 60.

Through a different approach, Cue and coworkers [46] accessed 1,2,3-triazolo[l,5-
a]quinoxaline N-oxides 62 in yields ranging from 52–70% by cyclization of quinoxaline-
3-carboxaldehyde-1-oxide-p-toluenesulfonylhydrazone 61 (Scheme 14). The starting sul-
fonylhydrazone 61 was prepared by reaction of a 3-substituted quinoxaline N-oxide with
p-toluenesulfonylhydrazide [45].
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Scheme 14. Synthesis of substituted 1,2,3-triazolo[l,5-a]quinoxaline N-oxides, 62, via intramolecular
cyclization of sulfonylhydrazone 61. (R1, R2 = H, methyl.)

For the intramolecular cyclization of ortho-substituted amines to prepare 1,2,3-triazoles
using nitrite, as is commonly reported for non-fused derivatives [2,25], Ager and cowork-
ers [47] illustrated that the amines used in cyclization do not need to be primary. Through
reaction of a secondary amine within a ring and a primary amine 63 with isoamyl nitrite in
chloroacetic acid, they obtained 1,2,3-triazoles fused to both lactones and lactams, 64, in
yields in the range 54–76% (Scheme 15). In the case of lactams, 1,2,3-triazoloquinoxalinones
were formed.
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Scheme 15. Synthesis of 1,2,3-triazole-fused quinoxalinones, using a diamine in which one amine
is secondary.

Synthesizing compounds of the same type, Bertelli, and coworkers [48] first formed
a triazole diester on a ring ortho to a nitro group, 65, which was intramolecularly cy-
clized to form ethyl 4,5-dihydro-4-oxo-[1,2,3]triazolo[1,5-a]quinoxaline-3-carboxylate, 66
(Scheme 16). This reaction was conducted by hydrogenation with a 10% Pd/C catalyst
or by reaction with FeCl3 and Fe powder. Biagi and coworkers [49] cyclized the triazole
diester into 1,2,3-triazoloquinoxalinone 66 with 10% Pd/C in ethanol in an excellent 98%
yield. Shen and coworkers further modified the ester group of 66 to prepare a derivative
suitable for biological testing [50].
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Abbott and coworkers [51] prepared 1,2,3-triazoloquinoxalines in an analogous man-
ner, but opted for use of an amide instead of a nitro group, giving mesoionic 1,2,3-triazoles
68, which were derived from the lithium salt of [2-(acetylamino)phenyl]amino acetic acid
67 (Scheme 17). A series of 1,2,3-triazoloquinoxalines, 69, was synthesized after cyclization
with p-toluenesulfonic acid (p-TSA) in refluxing toluene in yields in the range 16–59%.
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Scheme 17. Synthesis of mesoionic 1,2,3-triazoloquinoxalines 69 from ortho-substituted 1,2,3-
triazolobenzamides 68. (R1, R2 = alkyl or aryl.)

Saha and coworkers [52] used the intramolecular cyclization of ortho-substituted anilines
with tethered 1,2,3-triazoles, 72, a Pictet–Spengler reaction, to form 1,2,3-triazoloquinoxalines 73
in yields in the range 61–70% (Scheme 18). This sequence offers two-point diversity: one
from 72, and the other from an aryl aldehyde 73. The prerequisite triazole 72 was conve-
niently prepared from readily available starting materials, including o-fluoronitrobenzene
70, phenylacetylene 71, and sodium azide.
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Scheme 18. 3-Phenyl-4-p-tolyl-1,2,3-triazolo[1,5-a]quinoxalines 74 synthesized from ortho-substituted
2-(4-phenyl-[1,2,3]triazol-1-yl)anilines 72. (R1, R2 = alkyl or aryl.)
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Chen and coworkers [53] used a novel approach for the synthesis of 4-(trifluoromethyl)-
1,2,3-triazolo[1,5-a]quinoxaline 76 via cascade reactions of N-(o-haloaryl)alkynylimine 75
with sodium azide in the presence of copper iodide and L-proline (Scheme 19). Among
a series of amine-containing catalysts, L-proline resulted in a 98% isolated yield, while
tetramethylethylenediamine and N,N′-dimethylethylenediamine gave lower yields, and
higher percentages of the uncyclized imine product.
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Scheme 19. Synthesis of 3-phenyl-4-(trifluoromethyl)-1,2,3-triazolo[1,5-a]quinoxaline 76 from N-(o-
haloaryl)alkynylimine 75.

Using photoredox catalysis, He and coworkers [54] used [fac-Ir(ppy)3] as a photo-
catalyst to afford the corresponding 1,2,3-triazoloquinoxaline 78 from isonitrile 77 in 60%
yield (Scheme 20). Due to poor solubility of the catalyst, ACN resulted in decreased
yields compared to DMF. This work is a rare example of free-radical generation of 1,2,3-
triazole-fused ring systems, as cyclohexyl radicals are proposed to have formed from
phenyliodine(III)dicarboxylate. The radicals yield isonitrile carbon radicals, followed by
reaction with carbon 5 of the triazole. Various fused rings were synthesized in addition to
1,2,3-triazoles including tetrazoles, pyrazoles, and imidazoles in yields as high as 80%.
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Scheme 20. Photoredox approach for the synthesis of a 1,2,3-triazoloquinoxaline 78. (Cy = cyclohexyl,
fac = facial, ppy = 2-phenylpyridine).

In the presence of Cu(OAc)2 and base in DMSO/THF, Li and coworkers [55] re-
ported an efficient one-pot synthesis of 1,2,3-triazolo[1,5-a]quinoxalines 81 from 1-azido-2-
isocyanoarenes 79 in yields in the range 40–84% (Scheme 21). They outlined the option of
using terminal acetylenes 80 or substituted acetaldehydes 82, the former being cyclized into
81 in one step (in yields ranging from 40–83%), and the latter forming uncyclized triazole 83,
which was annulated using Togni’s reagent II and tetra-n-butylammonium iodide (TBAI),
forming 84, or phenylboronic acid, forming 85. Derivatives of 84 were prepared in yields
in the range 26–78%, and one synthesis of 85 yielded 86%.
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Scheme 21. Copper-catalyzed synthesis of 1,2,3-triazolo[1,5-a]quinoxalines 81 from 1-azido-2-
isocyanoarenes 79. Annulation of intermediate 83 with 1) Togni’s reagent II and catalytic TBAI
forming 84, or 2) phenylboronic acid and a manganese catalyst forming 85. (R1, R2 = alkyl or aryl.)

Owing to the versatility of intermediate 83, many functionalized 1,2,3-triazoloquinoxalines
were prepared, and indeed, Li and coworkers reported several compounds containing the
1,2,3-triazolo[1,5-a]quinoxaline core with a variety of functionalities. Additionally, in this
report, the fused products were further reacted into diversified quinoxaline derivatives via
Rh(II)-catalyzed carbenoid insertion reactions [55].

Employing a Pd-catalyzed intramolecular cyclization of triazole 86, Kotovshchikov
and coworkers [56] synthesized 3-butyl-[1,2,3]triazolo[1,5-a]quinoxalin-4(5H)-one 87 in
77% yield. As this reaction was conducted under CO (1 atm), the carbonyl carbon of the
quinoxalinone was introduced by Pd-catalyzed insertion of CO (Scheme 22).
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Scheme 22. Pd-catalyzed synthesis of quinoxalinone 87 from ortho-substituted aniline 86.

Xiao and coworkers [43] and Chen and coworkers [57] used in situ conversion of
N-propargyl-N-(2-iodoaryl)amides 88 to azides, which underwent 1,3-dipolar cycload-
dition with the adjacent alkyne to form substituted 1,2,3-triazolo[1,5-a]quinoxalines 89
(Scheme 23) in yields in the range 58–91%. Chen and coworkers suggested that cycload-
dition might occur first. The sequence was conducted in the presence of DIPEA and
1,2-dimethylethylenediamine (DMEDA).
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Scheme 23. Intramolecular cyclization of N-propargyl-N-(2-iodoaryl)amides 88, yielding 1,2,3-
triazoloquinoxalines 89 after in situ conversion of 88 to the azide. (R1, R2, R3, R4 = alkyl or aryl.)

Preparative thermolysis of tetrazoloquinoxaline 90 proceeded by loss of nitrogen
through diazo intermediate 91 and then to 1,2,3-triazolo[1,5-a]quinoxaline 92 in 67% yield
(Scheme 24) [58]. Using a ring-closure method similar to that used by both Raghavendra
and coworkers [42] and Cue and coworkers [46], Vogel and Lippmann [59] developed
a route to derivatives of 92 in 47–89% yield via conversion from tosylhydrazones 93 using
base (Bamford-Stevens conditions) or, in certain cases, heat (Scheme 24).

Molecules 2022, 27, x FOR PEER REVIEW 14 of 29 
 

 

 
Scheme 22. Pd-catalyzed synthesis of quinoxalinone 87 from ortho-substituted aniline 86. 

Xiao and coworkers [43] and Chen and coworkers [57] used in situ conversion of N-
propargyl-N-(2-iodoaryl)amides 88 to azides, which underwent 1,3-dipolar cycloaddition 
with the adjacent alkyne to form substituted 1,2,3-triazolo[1,5-a]quinoxalines 89 (Scheme 
23) in yields in the range 58–91%. Chen and coworkers suggested that cycloaddition might 
occur first. The sequence was conducted in the presence of DIPEA and 1,2-dimethyleth-
ylenediamine (DMEDA). 

 
Scheme 23. Intramolecular cyclization of N-propargyl-N-(2-iodoaryl)amides 88, yielding 1,2,3-tria-
zoloquinoxalines 89 after in situ conversion of 88 to the azide. (R1, R2, R3, R4 = alkyl or aryl.) 

Preparative thermolysis of tetrazoloquinoxaline 90 proceeded by loss of nitrogen 
through diazo intermediate 91 and then to 1,2,3-triazolo[1,5-a]quinoxaline 92 in 67% yield 
(Scheme 24) [58]. Using a ring-closure method similar to that used by both Raghavendra 
and coworkers [42] and Cue and coworkers [46], Vogel and Lippmann [59] developed a 
route to derivatives of 92 in 47–89% yield via conversion from tosylhydrazones 93 using 
base (Bamford-Stevens conditions) or, in certain cases, heat (Scheme 24). 

 
Scheme 24. Cyclization methods for preparing 1,2,3-triazolo[1,5-a]quinoxalines. 

O

N

NH2

NN

I

n-Bu

N
H

N
NN

n-Bu
5 mol% Pd(OAc)2

CO (1 atm)

MeOH, TEA, 
50 °C, 17 h

86                                                                    87

N

N
NN

R1 R4

R2

R1

I
NR3

O

R4

R2

NaN3, CuI, DIPEA
DMEDA

DMF, 50 °C

88                                                                89

N

N N
N

NHN

N2

heat

N

N
N2

165 °C

89 h
N

N
NN

R

N

N

R

N
H
N

S
OO

NaOMe,
MeOH

R = H (ref. 58)
R = O-alkyl, O-aryl, NH2 (ref. 59)

90 91 92

93

Scheme 24. Cyclization methods for preparing 1,2,3-triazolo[1,5-a]quinoxalines.

Overall, there exist diverse methods for the synthesis of both bicyclic 1,2,3-triazolo[1,5-
a]pyrazines and 1,2,3-triazolo[1,5-a]quinoxalines.

2.3. Syntheses of 1H-1,2,3-Triazolo[4,5-d]pyridazines

Livi and coworkers [60] reviewed syntheses of this heterocyclic system covering re-
ports prior to 1996. Another review on condensed 1,2,3-triazoles appeared in 2008, which
includes synthesis of 1H-1,2,3-triazolo[4,5-d]pyridazines [32]. Here, we summarize both
older and newer reports. A common theme in the literature regarding the synthesis of
1H-1,2,3-triazolo[4,5-d]pyridazines is the reaction of 1,2,3-triazole dicarbonyl species with
hydrazine hydrate. This yields a diacylhydrazide, which can be cyclized with either high
heat or acid. One of the first examples (Scheme 25) is from Fournier and Miller [61], who
used 2-(4,5-dibenzoyl-1H-1,2,3-triazol-1-ylmethyl)-3,4,6-trimethylhydroquinone diacetate
and hydrazine hydrate in ethanol to form 4,5-diphenyl-1H-1,2,3-triazolo[4,5-d]pyridazine.
In a comparable manner, Erichomovitch [62] used triazole diesters 94 to obtain diacylhy-
drazides 95, which were heated to form 1H-1,2,3-triazolo[4,5-d]pyridazines 96 in 80% yield
with loss of hydrazine.
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Janietz and coworkers [63] developed a scheme that proceeded through dichlorotria-
zole 97, which, after conversion to a dinitrone and subsequent treatment with acid, afforded
the dialdehyde 98, which cyclized to form the desired 1H-1,2,3-triazolo[4,5-d]pyridazine 99
after treatment with hydrazine (Scheme 26).
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Scheme 26. Synthesis of substituted 1,2,3-triazolo[4,5-d]pyridazines 99 from 4,5-dichloromethyltriazoles
97, proceeding through dialdehyde 98. (R = aryl.)

Reports of forming 1,2,3-triazolo[4,5-d]pyridazones or pyridazines using this method
include those of Gilchrist [64,65], Milhelcic [66], Ramesh [67], Theocharis [68], Bussolari [69],
Biagi [70–72], Abu-Orabi [73], Ramanaiah [74], Bankowska [75], and others [5,76–78].

Martin and Castle [79] used ring closure by nitrosonium ion in their treatment of a 4,5-
diamino-6-pyridazinone 101 in forming 3,5-dihydro-4H-1,2,3-triazolo[4,5-d]pyridazin-4-
one 102 in 91% yield (Scheme 27). Commercially available 4,5-dichloro-3(2H)-pyridazinone
100 was converted to 101 in three steps. Similar methods of reacting substituted diaminopy-
ridazines with nitrite have been conducted by Yanai [80] (conversion of 103 to 104 in
Scheme 27), Chen [81], Draper [82], and Mataka [83].
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Smolyar and coworkers [84] reported a novel synthesis of a 1H-1,2,3-triazolo[4,5-
d]pyridaz-4-one, 106 by a ring-opening/ring-closing “cyclotransformation” involving
treatment of 1H-1,2,3-triazole-fused 5-nitropyridin-2(1H)-ones 105 with a large excess
of hydrazine hydrate (Scheme 28). They reported that after heating for 3–4 h, at 140 ◦C,
the desired pyrazinone was obtained in 86% yield with no chromatography required. 5-
Nitropyridin-2(1H)-ones fused with benzene and pyridine were also studied in this report.
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Scheme 28. Cyclotransformation of 1,2,3-triazole-fused lactams 105 to 1,5-dihydro-1,7-dimethyl-1,5-
4H-1,2,3-triazolo[4,5-d]pyridazin-4-ones 106 in the presence of excess hydrazine hydrate and high
heat. (R1 = methyl, ethyl, butyl, cyclohexyl, and (CH2)3NMe2.)

A number of methods exist for the preparation of molecules containing the 1,2,3-
triazolo[4,5-d]pyridazine core, the majority of which involve the treatment of 1,2,3-triazole
dicarbonyl species with hydrazine hydrate followed by acid or heat-promoted cyclization,
or the cyclization of a diaminopyridazine with nitrite.

2.4. Syntheses of 1,2,3-Triazolo[1,5-b]pyridazines

Despite being reported as early as 1949 by Schofield and coworkers [85] in their
study of cinnolines, 1,2,3-triazolo[1,5-b]pyridazines remain rare in the literature, in part
owing to few methods available for their synthesis. While synthesizing azepinones,
Evans and coworkers [86] instead serendipitously obtained 3,6-diphenyl-1,2,3-triazolo[1,5-
b]pyridazine 108. This was obtained from the intramolecular cyclization of diketo-oxime
107 (Scheme 29) after refluxing in HCl. This gave up to 22% of a pyrazinylhydrazone
byproduct. A similar method in the same report used HOAc, but this resulted in poor
yields (about 15%) and up to three products.
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Scheme 29. Formation of a 1,2,3-triazolo[1,5-b]pyridazine 108 after the intramolecular cyclization
of oxime 107.

A fluoroborate salt was prepared by Riedl and coworkers [87] in a manner similar
to that of Beres and coworkers [36]. The acyl-substituted pyridazine, 111, after treat-
ment with p-bromophenyl hydrazine hydrochloride 112 gave the hydrazone 113. Tribro-
mophenol bromine (TBP) in DCM afforded the desired ring-closed product 114 in 67%
yield (Scheme 30). The initial bromide salt was converted to the fluoroborate salt with
40% fluoroboric acid in ACN. Ketone 111 was prepared by the same group via reaction of
a commercially available 3-cyanopyridizine 109 with p-chlorophenylmagnesium bromide
110, also synthesized from commercially available p-chlorobromobenzene and Mg. This
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was followed by acidic workup to afford the desired ketone. Compounds of this type
were also prepared by Vasko and coworkers [88] using a similar method, which gave
a 27% yield. A third method for the synthesis of 1,2,3-triazolo[1,5-b]pyridazines consisted
of intramolecular oxidative ring closure of a hydrazone derived from 111 to afford the neu-
tral 1,2,3-triazolo[1,5-b]pyridazine 115 [89]. Kvaskoff and coworkers employed MnO2 as
an oxidant using a similar procedure [35,89,90], where purification by sublimation afforded
the desired product 115 (where R1 = R2 = H) in 71% yield.
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Scheme 30. Cyclization of hydrazone 113, derived from acylpyridazine 111, to afford the 1,2,3-
triazolo[1,5-b]pyridazinium salt 114, or 1,2,3-triazolo[1,5-b]pyridazine 115. (R1, R2 = alkyl or aryl.)

2.5. Syntheses of 1,2,3-Triazolo[4,5-c]pyridazines

More prevalent in the literature than 1,2,3-triazolo[1,5-b]pyridazines but still un-
common are the 1,2,3-triazolo[4,5-c]pyridazines. One of the first reports of such a com-
pound came from Gerhardt and coworkers [91], whereas in previous reports, nitrite was
used to cyclize 5-chloro-3,4-diaminopyridazine 116 to afford 7-chloro-3H-1,2,3-triazolo[4,5-
c]pyridazine 117 (Scheme 31) in 83% yield. Nitrite in the presence of an acid catalyst has
been used for the synthesis of this heterocyclic ring system from the respective diaminopy-
ridazines in other reports by Murakami [92], Lunt [93], Ramanaiah [74], and Owen [3].
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In a report by Pokhodylo and coworkers [94], nitrite was used in the synthesis of
a substituted 1,2,3-triazolo[4,5-c]pyridazine despite only having one amine group present
(as opposed to other cyclizations, which have two amine groups present). For example,
4-(3,4-dimethoxyphenyl)-1-phenyl-1H-1,2,3-triazol-5-amine 118 was reacted with sodium
nitrite and glacial acetic acid to give the desired 3-(4-chlorophenyl)-7,8-dimethoxy-3H-
[1,2,3]triazolo[4,5-c]cinnoline 119 in 35% yield (Scheme 32). Yields may have been low
compared to other nitrite cyclizations due to the formation of a C-N bond directly with
a carbon of an aromatic ring.
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Daniel and coworkers [22] formed tricyclic ylides 121 in 65% yield by oxidative cycliza-
tion of the respective ortho-substituted amino pyridazine 120 (Scheme 33). Unfortunately,
compounds containing the 1,2,3-triazolo[4,5-c]pyridazine nucleus remain rare in the litera-
ture, and little is known of their biological or pharmacological properties.
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3. Applications

Recent applications of the aforementioned heterocyclic systems, covering both medici-
nal and non-medicinal topics, are discussed in the following section.

3.1. Applications of 1H-1,2,3-Triazolo[4,5-b]pyrazines

In the last decade, 1H-1,2,3-triazolo[4,5-b]pyrazines have garnered an interest within
the field of medicinal chemistry for serving as the scaffold of selective c-Met inhibitors.
Medicinal studies of 1H-1,2,3-triazolo[4,5-b]pyrazines have extended well into the patent
literature, with one patent even exploring antiviral efficacy against SARS-CoV-2 [95]. The
first notable report of physiological activity came from Cui and coworkers [2], who reported
the discovery of PF-04217903, a 1,2,3-triazolo[4,5-b]pyrazine that demonstrated potent
(IC50 = 0.005 µM) and selective inhibition of over 200 c-Met kinases [2]. This heterocyclic
scaffold in general gave rise to derivatives (altering substituents at the 2 and 6 ring positions)
with potent inhibition, of which PF-04217903 was the best. This compound was selected as
a preclinical candidate for the treatment of cancer [96].
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Later, using PF-04217903 as a reference, Jia, and coworkers [1] reported the discovery
of a compound now known as Savolitinib (Figure 3). This compound, also an exquisite
c-Met inhibitor with an equal IC50 of 0.005 µM, demonstrated favorable pharmacokinetic
properties in mice [1]. Savolitinib possessed equal potency. Having recently passed phase
II clinical trials for the treatment of metastatic non-small cell lung cancer, papillary and
clear cell renal cell carcinoma, gastric cancer, and colorectal cancer, Savolitinib has been
granted conditional approval for use in China at the time of this review [97]. A review of
c-Met inhibitors in non-small cell lung cancer has recently appeared [98].
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Figure 3. Two potent and selective c-Met inhibitors containing the 1,2,3-triazolo[4,5-b]pyrazine core:
PF-04217903 and Savolitinib.

Sirbu and coworkers [20] recently reported a novel class of small molecules contain-
ing the 1,2,3-triazolo[4,5-b]pyrazine scaffold with excellent properties for use as versatile
fluorescent probes in optical imaging (Figure 4). Specifically, a phenyl ester derivative
was used to dye HeLa cells in epifluorescence microscopy. Compared to commercially
available LysoTracker Green DND-26, the tested triazolopyrazine derivative demonstrated
comparable properties. In addition, it showed low cytotoxicity when evaluated in Alamar
Blue assay (>95% cell viability up to 170 µM) and showed high solubility with a variety of
desirable characteristics. A phenyl ester derivative, when evaluated as a dye in HeLa cells,
showed high photostability and low cytotoxicity [20].
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Intriguingly, another application lay in the monitoring of hypoxic regions within
tumor cells. This was explored by Janczy-Cempa and coworkers [23], who looked at the
fluorescent products produced after reduction of nitrotriazolopyrazine probes by nitrore-
ductases (enzymes often overexpressed in tumor regions). Both probes studied (Figure 5)
had very weak fluorescence in normoxic regions, but their reduction by nitroreductases
led to a 15-fold increase in intensity in hypoxic regions. This was evaluated using the
human melanoma cell line A2058. In contrast to the fluorescence probes developed by
Sirbu and coworkers [20], probes in this study had substitutions on the pyrazine ring as
opposed to the triazole-fused pyrazole. While additional work is still to be done, this
report demonstrates the potential for these highly conjugated compounds to be useful
in biomedical monitoring. Legentil and coworkers [99] obtained compounds similar
to the structure on the right in Figure 5 in yields as high as 79%, which were used to
develop a luminescence layered double-hydroxide filter. This material was dispersed
into a polymer for use as a dye.
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Overall, applications of compounds containing 1,2,3-triazolo[4,5-b]pyrazines in the
current literature are focused on c-Met inhibition (i.e., the treatment of distinct types
of cancers), and optical and/or cellular imaging, with triazapentalene-type molecules
demonstrating a wide range of favorable characteristics as fluorescent probes.

3.2. Applications of 1H-1,2,3-Triazolo[4,5-c]pyridazines

After being initially evaluated by Gerhardt and coworkers [91] as potential purine
antagonists, 1H-1,2,3-triazolo[4,5-c]pyridazines have since found broader interest within
medicinal chemistry. In a report by Owen and coworkers [3], a 1H-1,2,3-triazolo[4,5-
c]pyridazine was found to have GABAA modulating activity during a structure–activity
relationship study of the respective imidazolopyridazine. Compounds containing the
1,2,3-triazolo[4,5-c]pyridazine scaffold have been investigated in the patent literature for
the treatment of Huntington’s disease [100] and as modulators of Janus-family kinase-
related diseases [101].

Other recent patents have been filed regarding fused pyridazines with herbicidal
activity, of which 1,2,3-triazolo[4,5-c]pyridazine is included [102]. In another recent patent,
compounds of this type were implicated in controlling unwanted plant growth [103].

Reports of compounds containing the 1,2,3-triazolo[4,5-c]pyridazine scaffold are
uncommon in the current literature beyond synthetic reports and patents. Undoubt-
edly, there is still work to be done in exploring the potential applications of this unique
heterocyclic system.
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3.3. Applications of 1H-1,2,3-Triazolo[4,5-d]pyridazines

In a recent development, Li, and coworkers [4] outlined a series of triazole-based struc-
tures for the construction of conjugated polymers for solar cells. In addition to demonstrat-
ing desirable properties as units incorporated into polymers (Figure 6), their reported syn-
thetic route uses affordable, commercially available starting materials and produces units
compatible with other monomers. Structures containing 1,2,3-triazolo[4,5-d]pyridazine
components offer a privileged, conjugated unit for the construction of polymers owing
in part to the convenient para substitution of the pyridazine ring and perpendicular N2
substitution of the triazole ring.
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Figure 6. Structures containing the 1,2,3-triazolo[4,5-d]pyridazine-based monomer, m-TAZ, used to
construct highly conjugated TAZ-based polymers.

Another notable outcome of the study of 1,2,3-triazolo[4,5-d]pyridazines was that from
Biagi and coworkers [104], who reported compounds of this type with high selectivity for
the A1 receptor subtype in radioligand binding assays at bovine brain adenosine A1 and
A2A receptors. The most potent compound contained a 4-amino-substituted 7-hydroxy-
1,2,3-triazolo[4,5-d]pyridazine, and after substitution of the hydroxyl group for a chlorine,
affinity decreased and suggested a hydrogen-bond donating substituent at position 7 was
critical for binding affinity.

3.4. Applications of 1,2,3-Triazolo[1,5-a]pyrazines

Among applications of compounds containing the 1,2,3-triazolo[1,5-a]pyrazine unit are
those of benzo-fused 1,2,3-triazoloquinoxalines and saturated 1,2,3-triazole-fused piperidines.
In a recent report by Pérez Morales and coworkers [105], a 1,2,3-triazoloquinoxalinone
(Structure A, Figure 7) was identified via high-throughput screening as inducing expres-
sion of Rgg2/3-regulated genes in the presence of short hydrophobic pheromones at low
concentrations. This work stemmed from interest in the Rgg2/3 quorum sensing circuit of
the pathogen Streptococcus pyogenes, with the objective of manipulating and inhibiting the
bacteria. After analyzing its mode of action, it was determined this compound directly un-
competitively inhibited recombinant PepO in vitro, and induced quorum sensing signaling
by stabilizing short hydrophobic pheromones.
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Figure 7. Compounds containing congeners of the 1,2,3-triazolo[1,5-a]pyrazine core with a diverse set
of biological activities: (A) an inducer of Rgg2/3-related genes of the human pathogen Streptococcus
pyogenes [105], (B) a potent DPP-IV inhibitor evaluated for the treatment of type II diabetes [7], and
(C), an identified BACE-1 inhibitor [6].

Based on the antidiabetic 1,2,4-triazolopiperazine-containing drug Sitagliptin (brand
name Januvia), Shan and coworkers [7] identified a dipeptidyl peptidase (DPP) IV inhibitor
containing a 1,2,3-triazolopiperazine (Structure B, Figure 7) for use in the treatment of
type II diabetes.

Partially saturated 1,2,3-triazolo[1,5-a]pyrazines have demonstrated BACE-1 inhi-
bition, an enzyme implicated in the formation of amyloid beta in Alzheimer’s disease.
Oehlrich and coworkers [6] identified one such candidate, (R)-N-(3-(4-amino-6-methyl-6,7-
dihydro-[1,2,3]triazolo[1,5-a]pyrazin-6-yl)-4-fluorophenyl)-5-cyanopicolinamide, (Structure
C, Figure 7). This demonstrated an inhibition of the BACE-1 enzyme of pIC50 = 8.70.

These reports, while not exhaustive, demonstrate recent applications of compounds
containing the 1,2,3-triazolo[1,5-a]pyrazine scaffold or congeners thereof. Particularly
prominent in the literature are benzo-fused and piperazine-containing analogs.

3.5. Applications of 1,2,3-Triazolo[1,5-b]pyridazines

There are no reported applications of compounds containing the 1,2,3-triazolo[1,5-
b]pyridazine ring system, and little regarding its physiological and/or pharmacological
effects are known. Aside from one recent patent [106] regarding immunoregulatory func-
tions, additional applications remain scarce at the time of this review.
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4. Conclusions

In reviewing synthetic approaches to and reported applications of members of the 1,2,3-
triazolodiazine family of fused bicyclic heterocycles, the following conclusions can be drawn
regarding the most common synthetic methods and applications in the present literature:

(a) 1,2,3-Triazolo[4,5-b]pyrazines: The most common synthetic method is cyclization of
an ortho-substituted diaminopyrazine [2], in which one of the amines does not need
to be primary [18,25]. Given the current commercial availability and affordability of 2-
amino-3,5-dibromopyrazine, this serves as a convenient starting material. Other meth-
ods include condensation of a dicarbonyl species with a 4,5-diamino-1,2,3-triazole [16],
cyclization of a 2-azido-3-cyanoquinoxaline [17], or formation of azapentalenes from
tetrazolopyrazines [19] or pyrazolopyrazines [21] with loss of nitrogen. Primary Appli-
cations: Primarily c-Met inhibition [1,2,25,96] and use as fluorescent probes in optical
and/or cellular imaging [20,23,99].

(b) 1,2,3-Triazolo[1,5-a]pyrazines: For non-fused derivatives, the most common meth-
ods are: intramolecular cyclization of pyrazinyl hydrazones [36,42], formation of
1,2,3-triazolo[1,5-a]pyrazinium-5-olates from cyano and amide groups [37,40], or
reaction of iodopropiolamides to form triazolopiperazine [43]. For benzo-fused
derivatives (i.e., those containing quinoxaline or quinoxalinone), the most common
methods are: cyclization of a ring-bound 1,2,3-triazole with an ortho-substituted
amine [52] or nitro [45] group (if a nitro group, either PBu3 to give a quinoxaline [45]
or FeCl3 [48] to give a quinoxalinone), cyclization of 1-azido-2-isocyanoarenes or
1-triazolyl-2-isocyanoarenes [54,55], or intramolecular cyclization of alkynes [53,57].
Primary Applications: Primarily GABAA modulating activity [3], and patents detailing
use as Janus-family kinase modulators [101] or for the treatment of Huntington’s
disease [100]. There also exist recent patents describing use as herbicides [102] and plant
growth attenuators [103].

(c) 1,2,3-Triazolo[4,5-d]pyridazines: The most common synthetic method is reaction of a 4,5-
dicarbonyl-1,2,3-triazole species with hydrazine to form the hydrazone, followed
by acid or heat promoted cyclization [5,64–70,73–78,104]. The second most common
method is treatment of the respective diaminopyridazine with nitrite [80–83]. Ring-
opening/ring-closing of lactams has also been reported [84]. Primary Applications: Use
as highly conjugated linkers in triazole-based polymers [4] for the evaluation of solar
cell materials is the main reported application.

(d) 1,2,3-Triazolo[1,5-b]pyridazines: The most common synthetic method is treatment of
a keto-substituted pyridazine with p-bromophenyl hydrazine hydrochloride forming
the hydrazone, then treatment with TBP in DCM [87,88]. A report of intramolecular
cyclization of a diketo-oxime has been reported [86]. Primary Applications: Benzo-fused
or saturated piperazine-containing analogs are common. Notable reports include
identification of a 1,2,3-triazole-fused quinoxalinone as inducing Rgg2/3-related
gene expression in the human pathogen Streptococcus pyrogenes, as a potent DPP IV
inhibitor [7], and as a BACE-1 inhibitor [6].

(e) 1,2,3-Triazolo[4,5-c]pyridazines: The most common method is cyclization of the re-
spective diaminopyridazine with nitrite [3,74,91–93]. The intramolecular cyclization
to form a pyridazine [94] or a tricyclic ylide have also been reported [22]. Primary
Applications: Outside of a patent [106] detailing immunoregulatory functions, no other
applications exist in the literature at the time of this review.

The potential for new synthetic contributions is considerable for the triazole-fused
pyrazines and pyridazines. Given the diversity of synthetic methods summarized in this
review, new contributions that could be most beneficial are new routes to some of the
precursors of the fused systems. In many of the reports cited, the starting materials are
either not available commercially or are very expensive. For example, some diamino
pyrazines are available as unsubstituted compounds or as halogenated derivatives, but all
are USD 500–1000 per gram. Future studies of methods employing additional intramolec-
ular cycloadditions leading to 1,2,3-triazolo[1,5-a]pyrazine derivatives would appear to
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have potential. Work on synthesis of the 1H-1,2,3-triazolo[4,5-c]pyridazines and the 1,2,3-
triazolo[1,5-b]pyridazines would be welcome for these less frequently studied areas.

Overall, diverse methods exist for the preparation of 1,2,3-triazole-fused diazines,
spanning the last seven decades with numerous reports in the last five years. Currently,
drugs containing these ring systems remain scarce with only a handful of exceptions, par-
ticularly containing either the 1,2,3-triazolo[4,5-b]pyrazine or 1,2,3-triazolo[4,5-c]pyridazine
scaffold. Applications of the aforementioned types of compounds span from medicinal
chemistry into the development of dyes, probes, and inhibitors of enzymes implicated in
various diseases. Despite this, there lies underrealized and exciting potential for employing
triazolopyrazines and triazolopyridazines as diverse substrates in the generation of novel
molecules with a wide array of applications.
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