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Abstract: Novel iron(II) coordination compounds containing a ligand 2,6-bis(1H-imidazol-2-yl)pyridine
(L), having such a composition as [FeL2]SO4·0.5H2O, [FeL2]Br2·H2O, [FeL2](ReO4)2, [FeL2]B10H10·H2O,
[FeL2]B12H12·1.5H2O had been synthesized and studied using UV-Vis (diffuse reflectance), infrared,
extended X-ray absorption fine structure (EXAFS), and Mössbauer spectroscopy methods, as well as X-
ray diffraction and static magnetic susceptibility methods. The analysis of the µeff(T) dependence in the
temperature range of 80–600 K have shown that all the obtained complexes exhibit a high-temperature
spin crossover 1A1↔ 5T2.

Keywords: iron(II) complexes; 2,6-bis(1H-imidazol-2-yl)pyridine; X-ray diffraction analysis; EXAFS;
Mössbauer; IR; UV-Vis (diffuse reflectance) spectroscopy methods; spin crossover

1. Introduction

Searching for novel coordination compounds wherein the spin state of the central
atom can be switched by an external action is an urgent problem. This is indicated by
regularly appearing publications in the literature devoted to this topic [1–8]. These com-
pounds include iron(II) complexes with spin crossover (SCO) 1A1 ↔ 5T2. The change in
spin multiplicity occurs owing to affecting temperature, pressure, irradiation with light of
a certain wavelength (LIESST effect), high-frequency magnetic or electric field, and other
factors. The transition from a low-spin (LS) to a high-spin (HS) state causes a change in
the magnetic, optical, and vibrational properties of the complexes. An important property
associated with the spin transition consists in changing metal–donor interatomic distance
amounting to 0.2 Å in the case of Fe(II) complexes. Owing to the universal properties of
complexes with SCO they have a wide range of potential applications in making opto-
electronic, molecular electronic, and spintronic devices [9–15]. At present, polyfunctional
materials combining SCO and other properties are under active study [16–19].

2,6-Bis(1H-imidazol-2-yl)pyridines represent a promising class of potential ligands
for the synthesis of complexes with SCO [20]. Earlier, we have reported the studies on
iron(II) complexes with 2,6-bis(benzimidazol-2-yl)- and 2,6-bis(4,5-dimethyl-1H-imidazol-
2-yl)pyridine [21–24], wherein SCO is exhibited. It seemed worthwhile to continue these
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investigations into synthesizing and studying Fe(II) complexes with 2,6-bis(1H-imidazol-
2-yl)pyridine (Scheme 1), which does not contain substituents at the imidazole fragment.
Earlier, this ligand was used in order to synthesize complexes with Ru(II), and with a
number of metals belonging to the first transition series [25–29]. The X-ray diffraction
data have shown that L is coordinated to the metal ion in a tridentate-cyclic manner by
two nitrogen atoms belonging to two imidazole rings and one nitrogen atom belonging
to pyridine.
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Scheme 1. 2,6-Bis(1H-imidazol-2-yl)pyridine (L).

2. Materials and Methods
2.1. Materials

Commercial metal salts and solvents without further purification were used in the
synthesis. 2,6-Bis(imidazol-2-yl)pyridine was synthesized as described in [30] (NMR spectra
of ligand given in the Supplementary Materials, Figures S1–S4); K2B10H10·2H2O, K2B12H12
were obtained according to the procedure [31].

2.2. Synthesis of [FeL2]SO4 0.5H2O (1·0.5H2O)

A 0.28 g (1 mmol) sample of FeSO4·7H2O with the addition of 0.1 g of ascorbic acid
was dissolved in 10 mL of water under heating; a 0.51 g (2 mmol) L was dissolved in 10 mL
of ethanol, and the solutions were then heated and mixed. The resulting solution was evap-
orated until a red-violet precipitate began to form. After the solution with the precipitate
was cooled in a crystallizer with ice, the precipitate was filtered off, washed twice with
small portions of water, and dried in air. Yield: 55%. Anal. Calc. for C22H19FeN10O9/2S,
(583.4): C, 45.3; H, 3.3; N, 24.0. Found: C, 46.2; H, 3.5; N, 23.4.

2.3. Synthesis of [FeL2]Br2·H2O (2·H2O) and [FeL2](ReO4)2 (3)

A 0.28 g (1 mmol) sample of FeSO4·7H2O was dissolved in 5 mL of distilled water
acidified with 0.1 g of ascorbic acid. An excess (0.43 g, 1.5 mmol) of KReO4 or KBr (0.36 g,
3 mmol) in 10 mL of water and a solution of L (0.51 g, 2 mmol) in 10 mL of ethanol
were successively added to the resulting solution under stirring. The resulting solution
was evaporated until a red-violet precipitate began to form. After the solution with the
precipitate was cooled in a crystallizer with ice, the precipitate was filtered off, washed
twice with small portions of water, and dried in air. Yield: 70% (2·H2O), 30% (3). Anal.
Calc. for C22H20Br2FeN10O, (656.1): C, 40.3; H, 3.1; N, 21.3. Found: C, 41.3; H, 3.2; N, 21.0.
Anal. Calc. for C22H18FeN10O8Re2, (978.7): C, 27.0; H, 1.9; N, 14.3. Found: C, 27.5; H, 2.2;
N, 14.6.

2.4. Synthesis of [FeL2]B10H10·H2O (4·H2O) and [FeL2]B12H12·1.5H2O (5·1.5H2O)

A 0.14 g (0.5 mmol) sample of FeSO4·7H2O was dissolved in 3 mL of distilled water
acidified with 0.05 g of ascorbic acid. An excess (0.23 g, 1 mmol) of K2B10H10·2H2O or
K2B12H12 (0.22 g, 1 mmol) in 10 mL of water and a solution of L (0.21 g, 1 mmol) in 5 mL
of ethanol were added to the resulting solution under stirring. Red-brown precipitates
began to form immediately. Each precipitate was filtered off, washed twice with small
portions of water and ethanol, and dried in air. Yield: 45% (4·H2O), 68% (5·1.5H2O). Anal.
Calc. for C22H30B10FeN10O, (614.5): C, 43.0; H, 4.9; N, 22.8. Found: C, 42.5; H, 5.0; N, 22.1.
Anal. Calc. for C22H33B12FeN10O3/2, (647.1): C, 40.8; H, 5.1; N, 21.6. Found: C, 40.6; H, 5.3;
N, 20.9.
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2.5. Measurement and Characterization

The data for elemental analysis of the complexes was acquired on a EURO EA 3000 an-
alyzer (EuroVector, Pavia, Italy).

X-ray absorption spectra (XAS) in the Fe K edge region (150 eV before and 800 eV
after) were measured in the transmission mode with the use of synchrotron radiation on
the 8 beamline, VEPP-3 storage ring at the Siberian Synchrotron and Terahertz Radiation
Center (Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences,
Novosibirsk, Russia) [32]. A Si(111) cut-off crystal was used as a two-crystal monochro-
mator. The operating mode of the storage ring during measurement: energy—2 GeV;
current—70–140 mA. For measurements, the samples were mixed with cellulose powder
as a filler and pressed into tablets. The mass of the sample was calculated so that the
absorption jump at the Fe K-edge was 0.8–1. The preprocessing of the absorption spectra
(selection of the oscillating part—EXAFS spectra) was performed with the use of the VIPER
10.17 program [33]. The “radial pair distribution function” (Figure 1) was obtained by
the Fourier transform of the k3-weighted EXAFS function in the range of wave vectors
k = 2.0–11.0 Å−1.
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Figure 1. Fe K–edge EXAFS spectra (left) and their Fourier transform modules without consideration
of the phase shift (right) of complexes 1–5.

The local environment of the Fe ion [interatomic distances (Ri) and angles (Qi), coordi-
nation numbers (Ni), and Debye–Waller factors (σ2)] was modeled using the EXCURVE
98 cod [34]. In this program phase and amplitude characteristics were calculated in the von-
Bart and Hedin approximation. The amplitude suppression factor S0

2 due to multielectron
processes was determined for the crystallographically characterized compound (S0

2 = 0.85)
and fixed during further modeling of the studied compounds spectra. The Debye–Waller
factor was the same separately for nitrogen and carbon atoms.

IR spectra were taken on a Scimitar FTS 2000 in the range of 4000–400 cm−1 and a
Vertex 80 in the range of 600–100 cm−1. Compound samples were prepared as suspensions
in vaseline and fluorinated oils and in polyethylene.

The Kubelka-Munk diffuse reflectance spectra were obtained on a Shimadzu UV-3101
PC scanning spectrometer.

The XRD investigation of polycrystalline samples was performed using a Shimadzu
XRD 7000 diffractometer (CuKα radiation).

The static magnetic susceptibility was measured using Faraday balance type setup
equipped with electromagnetic compensating torsion quartz microbalance. The Delta
DTB9696 temperature controller (Delta Electronics Inc., Taipei, Taiwan) was used for the
investigated compounds temperature stabilization (~1 K) in the range of temperatures
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80–600 K. The temperature scanning rate for the process of heating or cooling samples was
~1 K/min. The magnetic field strength (7300 Oe) stabilization precision was ~2%. The
compounds studied were sealed in quartz cellules filled with atmospheric air at 760 Torr.
In order to study the effect of crystallization water, the samples were placed in open
quartz ampoules and vacuumed at 10−2 Torr, after which the helium atmosphere at 5 Torr
was formed.

The effective magnetic moment of studied compounds was calculated as:

µe f f =

(
3k

NAµ2
B
· χT

)1/2

≈ (8χT)1/2,

k—Boltzmann constant, NA—Avogadro constant, and µB—Bohr magneton. In the above
formula, the diamagnetic contribution in total magnetic susceptibility (χ) was taken into
account using the method of Pascal’s constants. The direct (Tc↑) and reverse (Tc↓) transi-
tions temperatures were obtained using condition the magnetic moment second derivative
zero value (d2(µeff(T))/dT2 = 0).

The Mössbauer spectra were collected with a spectrometer NP-610 (KFKI, Budapest,
Hungary), using 57Co in a metal Rh matrix as a radioactive source. The spectra were
measured at a room temperature. The spectra were processed to find the values of isomer
shift δ and quadrupole splitting ε. The isomer shifts are given relative to metal iron.

3. Results and Discussion

Iron(II) complexes with 2,6-bis(1H-imidazol-2-yl)pyridine were isolated from aqueous-
ethanol solutions. To maintain the oxidation state of iron(II), ascorbic acid was added to
the solution.

Complex 1·0.5H2O was synthesized by reacting stoichiometric amounts of FeSO4 and
L. Syntheses 2·H2O, 3, 4·H2O, 5·1.5H2O were carried out in two stages. At the first stage,
the corresponding iron(II) salts were obtained by adding a 1.5- or 2-fold excess of KBr,
KReO4, K2B10H10 or K2B12H12 into a solution of FeSO4 salt. At the second stage, a solution
of the ligand in ethanol was added to the resulting salt solution. The obtained diffraction
patterns show that the synthesized compounds are crystalline, while [FeL2]SO4·0.5H2O
and [FeL2]Br2·H2O, as well as [FeL2]B10H10·H2O and [FeL2]B12H12·1.5H2O are isotypical.

The structure of the whole molecule for all complexes in the LS state (T = 297 ◦C)
was established from the EXAFS data using the multiple scattering approximation within
the software package EXCURV (except for [FeL2](ReO4)2 (3)) excluding hydrogen atoms,
and anions that exert only a weak effect on the shape of the EXAFS spectrum owing to
their spatial separation from the central iron ion. For complex 3, the signal-to-noise ratio
in the EXAFS spectrum is worse than that for the spectra of other complexes owing to
the presence of a heavy anion ReO4

−. Simulation of the whole molecule in the multiple
scattering approximation gives too large errors in determining the parameters. Therefore,
the simulation of the EXAFS spectrum for complex 3 could be carried out only in a single
scattering approximation. The structure of the complexes in the LS state (by the example of
complex 4·H2O) obtained by means of EXAFS spectra simulation is presented in Figure 2.

Table 1 lists the microstructure parameters of the coordination site for complexes
1·0.5H2O, 2·H2O, 4·H2O, 5·1.5H2O.

The structure of the coordination site of complex [FeL2](ReO4)2 (3) in the LS state
was obtained from modeling the spectrum filtered in real space (∆R = 0.9 to 3.0 Å). The
simulation data are presented in Table 2. The coordination numbers of the nearest spheres of
the iron ion environment were fixed in accordance with the data obtained in the simulation
of complexes in the LS state in the multiple scattering approximation.
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Table 1. Microstructure parameters of the Fe coordination site for the complexes at T = 300 K
(LS) obtained by EXAFS fitting with multiple scattering approximation (Ri—interatomic distance,
2σi

2—Debye–Waller factor, Fi—the statistical error of the fitting).

Bonds
Ri, Å

Angles
Ω, Deg.

1·0.5H2O 2·H2O 4·H2O 5·1.5H2O 1·0.5H2O 2·H2O 4·H2O 5·1.5H2O

Fe(1)-N(1) 1.96 1.97 1.98 1.94 N(1)Fe(1)N(8) 107.9 102.6 105.9 102.6

Fe(1)-N(3) 1.96 1.91 1.93 1.95 N(1)Fe(1)N(6) 95.3 92.5 95.1 100.1

Fe(1)-N(4) 1.95 1.97 1.98 1.93 N(1)Fe(1)N(9) 97.1 92.1 96.6 102.2

Fe(1)-N(6) 1.95 1.96 1.98 1.96 N(1)Fe(1)N(3) 75.2 79.8 75.6 85.3

Fe(1)-N(8) 1.86 1.88 1.90 1.86 N(3)Fe(1)N(9) 97.8 102.1 100.3 102.9

Fe(1)-N(9) 1.96 1.95 1.96 1.96 N(3)Fe(1)N(4) 75.8 81.2 80.6 73.7

2σ2 (Fe-N), Å2 0.014 0.013 0.013 0.012 Fi (*) 2.7 2.5 1.8 1.6

* The determination accuracy for parameters (interatomic distances and angles) based on the EXAFS data is ±1%

(for the nearest sphere of the environment). Fi = ∑N
i w2

i
(
χ

exp
i (k)− χth

i (k)
)2

, wi =
kn

i
∑N

i kn
i ∨χ

exp
j (k)∨

.

Table 2. Microstructure parameters for complex [FeL2](ReO4)2 in the LS state obtained by single-
scattering EXAFS data fitting.

Compound Central Ion–Scattering Atom Ni Ri, Å 2σi
2, Å2 Fi

[FeL2](ReO4)2

Fe–N 6 1.96 0.010
2.7Fe–C 8 2.78 0.014

Fe–C 4 3.20

Figure 3 illustrates a comparison of the experimental and simulated radial distribution
function for [FeL2]B10H10·H2O. The simulation was carried out using a multiple scattering
approximation.
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Table 3 and Figures S5–S7 show the main vibration frequencies in the spectra of L
and Fe(II) complexes. In the high-frequency spectral region for 1·0.5H2O, 2·H2O, 4·H2O,
5·1.5H2O, ν(OH) vibrations are observed; in the wave number range of 3200–3050 cm−1

for all the complexes there are stretching vibrations of NH-groups, and in the range of
3100–2850 cm–1 there are vibrations of ν(CH). In the wave number range of 1650–1450 cm−1,
there are stretching and bending vibration bands inherent in heterocyclic rings. The spectra
of the complexes in the range of ring vibrations exhibit a change in the number and position
of the imidazole and pyridine bands in comparison with the spectrum of the ligand, which
indicates the coordination of nitrogen atoms of the rings to Fe(II) ions. The presence of
non-split bands inherent in stretching vibrations characteristic of the SO4

2− and ReO4
−

anions indicates the fact that they are in outer-sphere position. The vibration bands of the
B–H bonds of the outer-sphere anions B10H10

2− and B12H12
2− are centered at the wave

numbers of 2470 (ν(BH)) and 1075 cm−1 (δ(BBH)). In the case of the spectra for 4·H2O,
5·1.5H2O they are shifted with respect to those observed in the spectra of the initial salts,
which could be, to all appearance, caused by the formation of H2Oδ− . . . δ+H–B bonds.
In the far region of the spectra of all the complexes, Fe(3d6)–ligand(π) charge-transfer
transition bands and vibration bands (M-N) are observed. The position of these bands is
typical for the spectra of low-spin octahedral iron(II) complexes [35].

The diffuse reflectance spectra (DRS, Figures S8–S12) of all the obtained complexes
exhibit intense metal-ligand charge transfer bands ν1(eg → π*

L) in the wavelength range of
300–350 nm (λmax ≈ 324–326 nm). The DRS of 4·H2O and 5·1.5H2O exhibit three absorption
bands, too, (see Table 4); they correspond to the 1A1 → 1T2, 1A1 → 1T1 and 1A1 → 1A2
transitions in the strong octahedral field of the ligands. For low-spin axially distorted
octahedral iron(II) complexes, the term 1T1 is transformed according to the representation
of 1E + 1A2, whereas term 1T2 is transformed according to the representation of 1E + 1B2 [36].
Therefore, the 1A1 → 1B2, 1A1 → 1A2 and 1A1 → 1E wide transition bands (see Table 4)
observed in the spectra of 1·0.5H2O, 2·H2O and 3, indicate the fact that an axial distortion
of the octahedral coordination of these complexes occur. Low-intensity transitions and
overlapping three wide bands do not make it possible to perform reliable quantitative
calculations of crystal field parameters in this case. The spectra of all the complexes do
not exhibit the 5T2 → 5E band, which is caused by the HS state of iron(II). We were able to
calculate the splitting parameters based on the difference between 1A1→ 1T2 and 1A1→ 1T1
absorption frequencies [36] for low-spin (LS) forms of complexes with closo-borate anions.
The B values were computed using the formula 16B = [ν (1A1→ 1T2)− ν (1A1→ 1T1)]. The
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values C and ∆LS (Table 4) were calculated using the equations: νLS = ∆LS − C + 86B2/∆LS
and C = 4.41·B [36–38]. The obtained data show that 2,6-bis(1H-imidazol-2-yl)pyridine is
a strong field ligand. In addition, these data, as well as the values obtained for a number
of previously synthesized Fe(II) complexes with 2,6-bis(benzimidazol-2-yl)pyridine and
2,6-bis(4,5-dimethyl-1H-imidazole) [22–24], obey the inequality that reflects the condition
for the manifestation of SCO [37]: 19.000 cm−1 ≤ ∆LS ≤ 22.000 cm−1.

Table 3. The main vibrational frequencies (cm−1) in the spectra of L and complexes.

L 1·0.5H2O 2·H2O 3 4·H2O 5·1.5H2O Assignment

3485 3433 3225 3269 ν(OH)

3100w 3020w
3147
3116 3050w

3151
3130

3148
3129 ν(NH)

3079
3035

3060
3021 3067 3067

2954
2924
2854

2988
2040
2849

ν(CH)

1598
1573
1552

1595
1570
1550

1569
1551
1479

1593
1566
1552

1622
1558
1490
1469

1622
1558
1490
1471

Rring

1118
1085
1070

ν(SO4)

903 ν(ReO4)

2473 2493 ν(B-H)

1086
1036

1105
1054 δ(BBH)

496 491 485 485 484 Fe(3d6)–ligand (π)
charge-transfer transition

385
356
330

376
334

381
321 334 333 ν(M-N)

Table 4. Parameters of diffuse reflectance spectra.

Complex λ(1A1 → 1T2) λ(1A1 → 1B2) λ(1A1 → 1T1) λ(1A1 → 1A2) λ(1A1 → 1E)
Calculated Parameter

B C ∆LS

1·0.5H2O 454 613 536

2·H2O 454 624 539

3 432 603 503

4·H2O 475 518 620 109.3 482.0 1.97 × 104

5·1.5H2O 465 518 620 137.5 606.5 1.98 × 104

The Mössbauer spectra of complexes 1·0.5H2O, 2·H2O, 3 and 5·1.5H2O represent
quadrupole doublets whose parameters correspond to the LS state of iron(II) (Figure 4).
The spectrum of 4·H2O also exhibits a broadened doublet related to the HS form of the
complex (36%). The parameters of the Mössbauer spectra are presented in Table 5.
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Table 5. Mössbauer spectra parameters of the complexes.

Complex δ, mm/s ε, mm/s Γ, mm/s

1·0.5H2O 0.269 0.364 0.33

2·H2O 0.266 0.342 0.25

3 0.288 0.464 0.28

4·H2O 0.278 (64%)
0.925 (36%)

0.420
2.224

0.26
0.80

5·1.5H2O 0.282 0.465 0.25

The temperature dependences of the effective magnetic moment for the analyzed com-
plexes are shown in Figure 5. Spin crossover (SCO) is observed for all the compounds under
investigation. In the case of complexes 1·0.5H2O, 2·H2O, 3 the µeff values observed in the
thermal stability range (2.35, 2.1 and 3.35 µB, respectively), are significantly lower than the
theoretical spin-only value of 4.9 µB for the Fe(II) ion. The 4·H2O and 5·1.5H2O complexes
are more stable and thus a temperature of 600 K could be reached. For these compounds, a
complete spin-crossover is observed. However, the µeff values observed in the HS state of
these compounds are also lower than the theoretical value for Fe(II). It should be noted that
the experimental µeff values for 4·H2O and 5·1.5H2O complexes are in the range of 4.6–5.7
observed for Fe(II) compounds [39,40]. In the case of 1·0.5H2O and 2·H2O the residual
effective magnetic moment in LS state (0.65 and 0.4 µB, respectively), is presented by µeff(T)
dependences. This fact could be connected with temperature-independent paramagnetism.
Complexes 3, 4·H2O and 5·1.5H2O in LS state exhibit diamagnetism with a zero µeff value.
Despite the fact that low µeff values are achieved in the investigated temperature range
for 1·0.5H2O and 3, the condition of d2(µeff(T))/dT2 = 0 could be satisfied and some val-
ues of SCO temperature could be determined. Table 6 shows the temperature values of
direct (Tc↑) and inverse (Tc↓) transitions. For the [FeL2]Br2·H2O one could suggest that
the SCO temperature is higher than 420 K. The determined temperature of the inverse
transition increases in a series of [FeL2](ReO4)2 → [FeL2]SO4·0.5H2O→ FeL2]B10H10·H2O
→ [FeL2]B12H12·1.5H2O.
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composition of the dehydrated complexes occurs in a lower temperature range than it is 
observed for initial compounds. Nevertheless, the SCO has been observed in this case, too. 
The μeff value of 4.65 μΒ achieved in HS state for 4 corresponds to the value observed for 
the initial complex. In the case of 5 complex, the μeff value (4.6 μΒ) exhibits an increase after 
dehydration. Residual μeff values (~1–1.5 μΒ) have been registered to occur for both com-
plexes in the LS state. The SCO temperature increases after dehydration; however, the 5 
complex demonstrates the highest SCO temperature values as it is observed in the case of 
the initial compound. Thus, the dehydration of 4·H2O and 5·1.5H2O complexes lead to 
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samples cooling and heating processes respectively.
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Table 6. The temperatures of direct (Tc↑) and inverse (Tc↓) SCO for the studied complexes.

Complex Tc↑, K Tc↓, K

[FeL2]SO4·0.5H2O >420 409
[FeL2]Br2·H2O >420 >420
[FeL2](ReO4)2 340 340

[FeL2]B10H10·H2O 436 436
[FeL2]B12H12·1.5H2O 455 455

[FeL2]B10H10 447 440
[FeL2]B12H12 458 458

The effect of the crystallization of water has been studied for 4·H2O and 5·1.5H2O
complexes (Figure 6). It should be noted that in the case of rarefied atmosphere the
decomposition of the dehydrated complexes occurs in a lower temperature range than it
is observed for initial compounds. Nevertheless, the SCO has been observed in this case,
too. The µeff value of 4.65 µB achieved in HS state for 4 corresponds to the value observed
for the initial complex. In the case of 5 complex, the µeff value (4.6 µB) exhibits an increase
after dehydration. Residual µeff values (~1–1.5 µB) have been registered to occur for both
complexes in the LS state. The SCO temperature increases after dehydration; however, the
5 complex demonstrates the highest SCO temperature values as it is observed in the case of
the initial compound. Thus, the dehydration of 4·H2O and 5·1.5H2O complexes lead to
appearing residual µeff value and to an increase in the temperature of SCO.
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4. Conclusions

In this work, we have synthesized and investigated five novel coordination com-
pounds of various iron(II) salts with 2,6-bis(1H-imidazol-2-yl)pyridine (L). The structure of
the coordination core of the complexes has been determined by means of EXAFS spectra
simulation. Two ligand molecules are coordinated to the iron(II) ion in a tridentate-cyclic
fashion by the nitrogen atom belonging to pyridine and two nitrogen atoms belonging to



Molecules 2022, 27, 5093 11 of 13

imidazole rings. Thus, the complexes have the distorted-octahedral structure of the coordi-
nation polyhedron, the FeN6 core. The studies on the µeff(T) dependence have shown that
complexes having such a composition as [FeL2]SO4·0.5H2O, [FeL2]Br2·H2O, [FeL2](ReO4)2,
[FeL2]B10H10·H2O, [FeL2]B12H12·1.5H2O exhibit an 1A1 ↔ 5T2 high-temperature spin
crossover. A comparison of the data obtained for the synthesized compounds with those
obtained by us earlier [21–24] shows that spin-crossover 1A1 ↔ 5T2 is observed in all
complexes of Fe(II) with 2,6-bis(imidazole-2-yl)pyridines. The temperatures of direct SCO,
Tc↑, in most compounds are significantly higher than room temperature.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27165093/s1, Figure S1: NMR 1H of 2,6-di(1H-imidazol-
2-yl)pyridine, 100 MHz, NS 24; Figure S2: NMR 13C of 2,6-di(1H-imidazol-2-yl)pyridine, 100 MHz,
NS 96; Figure S3: NMR 13C of 2,6-di(1H-imidazol-2-yl)pyridine, 100 MHz, NS 7376; Figure S4:
NMR 13C of 2,6-di(1H-imidazol-2-yl)pyridine, 100 MHz, NS 176; Figure S5: IR spectrum of 2,6-
bis(1H-imidazol-2-yl)pyridine (L); Figure S6: IR spectrum of [FeL2]B10H10·H2O (4·H2O); Figure S7:
IR spectrum of [FeL2]B12H12·1.5H2O (5·1.5H2O); Figure S8: Comparison of the experimental DRS
and model for complex [FeL2]SO4·0.5H2O; Figure S9: Comparison of the experimental DRS and
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