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Abstract: Conventional Staudinger reductions of organic azides are sluggish with aryl or bulky
aliphatic azides. In addition, Staudinger reduction usually requires a large excess of water to promote
the decomposition of the aza-ylide intermediate into phosphine oxide and amine products. To over-
come the challenges above, we designed a novel triaryl phosphine reagent 2c with an ortho-SO2NH2

substituent. Herein, we report that such phosphine reagents are able to mediate the Staudinger
reduction of both aryl and alkyl azides in either anhydrous or wet solvents. Good to excellent yields
were obtained in all cases (even at a diluted concentration of 0.01 M). The formation of B-TAP, a
cyclic aza-ylide, instead of phosphine oxide, eliminates the requirement of water in the Staudinger
reduction. In addition, computational studies disclose that the intramolecular protonation of the
aza-ylide by the ortho-SO2NH2 group is kinetically favorable and responsible for the acceleration of
Staudinger reduction of the aryl azides.

Keywords: Staudinger reaction; organic azide; aza-ylide; 1,2,3-thiazaphosphole; ortho-phosphinoar-
enesulfonamide

1. Introduction

Staudinger reduction [1–3] is one of the most common transformations used to prepare
amino compounds in organic synthesis. Recently, the biorthogonal property [4–11] of or-
ganic azides [12] has significantly enhanced the visibility of the Staudinger reaction in the
context of chemical biology and medicinal chemistry. The classic Staudinger protocol employs
trivalent phosphines, predominately triphenylphosphine, to mediate the reduction of organic
azides under aqueous conditions via an aza-ylide (or iminophosphorane) intermediate [13,14]
(Scheme 1A). Although thermodynamically the formation of triphenylphosphine oxide pro-
vides a sufficient driving force for the Staudinger reduction, reactions are sluggish when the
iminophosphorane intermediates are kinetically stable [15–17]. For example, iminophospho-
rane intermediates formed from aryl azides can be quite stable under neutral conditions,
thus requiring either acids or bases to mediate their hydrolysis [18,19]. In addition, the
amount of water in the system has a significant impact on the rate of Staudinger reduction,
particularly for highly hydrophobic substrates. Recently, Ito, Abe, and coworkers [20]
reported that o-(diphenylphosphino) benzamide accelerated the reduction of aryl and
alkyl azides towards the corresponding amines (Scheme 1B). In their report, aqueous
conditions were still required for the reduction of aromatic azides. The authors indicated
that a significant amount of by-product was formed without the addition of water. It
therefore remains highly desirable to design novel phosphorus reagents that are able to
mediate a broad-spectrum Staudinger reduction without the restriction of an aqueous
solvent. Very recently, our group prepared a novel class of cyclic iminophosphoranes,
namely (benzo[d])-1,2,3-thiazaphosphole (B-TAP) [21]. The improved stability of the B-TAP
heterocycle towards hydrolysis suggests that the stronger P=N of B-TAP bond may drive
a Staudinger reduction as the P=O of phosphine oxide did. Herein, we report the use of
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ortho-phosphinoarenesulfonamides as novel reagents to mediate the Staudinger reduction
of both aryl and alkyl azides under either anhydrous or aqueous conditions (Scheme 1C).
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2. Results and Discussions

The B-TAP heterocycle was originally synthesized in our laboratory by the annula-
tion of ortho-phosphinoarenesulfonyl fluorides with commercially available trimethylsilyl
azide [21]. Further studies indicated that B-TAP can also be prepared by the oxidative
condensation of ortho-phosphinoarenesulfonamide. We speculated that the formation of
B-TAP could be achieved by the use of an organic azide as an oxidant. This hypothesis
led us to explore ortho-phosphinoarenesulfonamide-mediated Staudinger reductions. We
proposed that the introduction of an acidic sulfonamide group at the ortho position would
facilitate the decomposition step of the original aza-ylide and thus the addition of water
would not be necessary. In this way, the formation of a B-TAP heterocycle with a more
stable P=N bond would provide the driving force for Staudinger reduction.

We selected methyl 4-azidobenzoate (1a) as a model substrate (Table 1). As expected,
when 2a was applied the major product was the triphenylphosphine-derived aza-ylide
while the characteristic signals of methyl 4-aminobenzoate (3a) were not observed in
the 1H NMR (entry 1, Table 1). Interestingly, ortho-phosphinoarenesulfonamide (2b and
2c)-mediated reductions were both complete within 3 h. Reductions at lower concentration
(0.01 M) with shorter reaction times indicated that 2c gave faster rates than 2b (entries
4–5, Table 1) and therefore 2c was chosen for further investigation. The 2c-mediated
Staudinger reduction was found compatible with a broad range of organic solvents (entries
8–12, Table 1). The rate of 2c-mediated Staudinger reduction in aqueous solvent (entry 13,
Table 1) was similar to anhydrous solvents. This suggested that the addition of water did
not affect the Staudinger reduction. This is in sharp contrast to other known staudinger
reduction processes where water accelerates the hydrolysis step. Notably, the majority of
B-TAP 4c (>90%) survived in aqueous THF and was not hydrolyzed to the corresponding
phosphine oxide.
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Table 1. Staudinger reduction of methyl 4-azidobenzoate (1a) a.
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Next, we explored the substrate scope of the 2c-mediated Staudinger reduction
(Scheme 2). Applying our standardized conditions, all aromatic azides evaluated gave
excellent yields (1a–1m, Scheme 2). Reductions of aliphatic azides were relatively slow
at 30 ◦C and required elevated temperatures and longer reaction times for reaction com-
pletion, likely attributed to the decreased electrophilicity of alkyl azides. Gratifyingly, the
reduction of aliphatic substrates 1n–1v proceeded smoothly under the modified condi-
tions, with satisfactory yields being obtained in all cases (Scheme 2). Indeed, 2c-mediated
Staudinger reduction tolerated a broad range of functional groups and various substitution
patterns. For instance, substrates with electron-withdrawing groups (1a–1c, 1h, and 1i),
electron-donating groups (1d and 1f) or reactive functionalities (1e, 1g, and 1j) are all fully
compatible with the current protocol. Moreover, sterically-encumbered amines such as 3k,
3l, 3n, and 3o were obtained in high yields when ortho-substituted or branched substrates
were used.

To demonstrate the synthetic potential of this methodology in a more complex setting,
we explored the synthesis of a highly functional and sterically-hindered cinchonine-derived
amine (3w). Staudinger reductions of cinchona alkaloid-derived azides have been reported
to be problematic in some cases [22]. Their corresponding aza-ylide intermediates are
reluctant to hydrolyze and are even able to be isolated by flash column chromatography.
We proposed that accelerated hydrolysis could occur for 2c-mediated Staudinger reduc-
tion since the ortho-SO2NH2 may facilitate the decomposition of the aza-ylide through
intramolecular protonation. To our delight, the above proposal was verified by experiments
with 2c promoting an efficient Staudinger reduction of azide 1w. The reduction was con-
ducted on a 5.00-mmol scale and 1.21 g of product 3w was isolated in 84% yield (Scheme 3).

To elucidate the mechanism of the 2c-mediated Staudinger reduction, we examined
both the 2c- and PPh3-mediated Staudinger reductions by DFT calculation (Figure 1) [23].
Both reductions share a three-step reaction pathway. In the initial step, the nucleophilic
attack of either of the phosphine reagents on the azide generates a betaine intermediate.
Then, this intermediate loses one equivalent of nitrogen gas to form an aza-ylide inter-
mediate. Finally, the decomposition of the aza-ylide yields the amine product. In the
conventional PPh3-mediated Staudinger reduction, the rate-determining step was the step
from Int-2′ to TS-3′. The high activation barrier (33.4 kcal/mol) was consistent with the
fact that Int-2′ was resistant to hydrolysis. In the 2c-mediated Staudinger reduction, the
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rate-determining step was the step from Int-1 to TS-2 with a moderate activation barrier
(24.7 kcal/mol). In addition, several mechanistic insights have been disclosed by compar-
ing both reaction pathways. The activation barrier for the formation of aza-ylide in the
2c-mediated process (24.7 kcal/mol) was slightly higher than the one in PPh3-mediated
processes (21.7 kcal/mol). However, the free energy barrier for the decomposition of
aza-ylide Int-2 (18.8 kcal/mol) was significantly lower than the one for the decomposi-
tion of aza-ylide Int-2′ (33.4 kcal/mol). Notably, the difference in the enthalpy barriers
between both processes was much smaller (18.5 kcal/mol vs. 21.1 kcal/mol). Apparently,
the proximal SO2NH2 group in 2c plays an important role in the protonation of aza-ylide
Int-2. Its significant contribution to entropy greatly lowers the free energy barrier. We
also note that the PPh3-mediated reduction is more thermodynamically favorable than
the 2c-mediated Staudinger reduction. Therefore, it is most likely that the 2c-mediated
process is largely controlled by favorable kinetics. The rate acceleration in the 2c-mediated
reduction probably originated from the rapid intramolecular proton transfer in the aza-ylide
decomposition step.
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Figure 1. DFT calculated reaction pathways: ortho-Phosphinoarenesulfonamide-mediated Staudinger
reduction (blue); triphenylphosphine-mediated Staudinger reduction (red).

3. Materials and Methods
3.1. Reagents and General Methods

All anhydrous solvents except toluene and dichloromethane were obtained from com-
mon suppliers and used as received. Toluene and dichloromethane were purified according
to standard procedures [24]. Analytical thin-layer chromatography was performed on
20 × 50 mm silica gel 60 GF254 plates (Leyan, China). Visualization was accomplished with
UV light, potassium permanganate, or ninhydrin stain followed by heating. Flash column
chromatography was performed on 200−300 mesh silica gel (Leyan, China). Unless other-
wise stated, all reagents were purchased from commercial sources and used without further
purification. All reactions were conducted under an atmosphere of nitrogen in oven-dried
glassware unless otherwise noted. 2-Iodo-5-methylbenzenesulfonamide was prepared
according to the literature methods [25,26]. Bis(4-methoxyphenyl)phosphane [27,28] and
organic azides except 1j, 1s, and 1w were prepared according to the literature methods (for
1a [29], 1b-i, 1k-m, 1o, 1p, 1r, 1t-v [30], 1n and 1q [31]).

High-resolution mass spectra (HRMS) were recorded on a Thermo Fisher Scientific’s
Q Exactive UHMR Hybrid Quadrupole-Orbitrap Mass Spectrometer LC/MS (ESI); melting
points were obtained with INESA WRS-3 apparatus; GC/MS spectra were recorded using
a gas chromatograph mass spectrometer (GCMS-QP2010 SE; Shimadzu Corp.) with the
electron impact ionization (EI) mode; 1H, 13C, 19F, and 31P NMR spectra were recorded on
a Bruker AVANCE III 400 MHz spectrometer at 298 K and referenced to residual protium
in the NMR solvent (CHCl3, δ 7.26 in 1H NMR) and the carbon resonances of the solvent
(CDCl3, δ 77.16 in 13C NMR). Chemical shifts were reported in parts per million (ppm, δ)
downfield from tetramethylsilane. NMR peaks are described as singlet (s), doublet (d),
triplet (t), multiplet (m), complex (comp), approximate (app), and broad (br).
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3.2. Synthetic Procedures
3.2.1. Synthesis of 2-(Diarylphosphaneyl)-5-methylbenzenesulfonamide

General Procedure: Under a N2 atmosphere, 2-iodo-5-methylbenzenesulfonamide
(12.0 g, 40.0 mmol, 1.0 equiv), diarylphosphine (48.0 mmol, 1.2 equiv), PdCl2(dppf)
(296.4 mg, 0.40 mmol, 0.01 equiv), diisopropylethylamine (DIPEA, 10.3 g, 80.0 mmol,
2.0 equiv), and anhydrous N,N-dimethylformamide (40 mL) were placed into a heavy-
walled Schlenk tube. The tube was sealed and stirred at 120 ◦C in an oil bath for 12 h. After
completion, the mixture was diluted with dichloromethane (200 mL) and washed with
water (200 mL). The separated organic layer was further washed with water (100 mL), dried
over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product
was purified by flash column chromatography to afford the pure product.

2-(Diphenylphosphaneyl)-5-methylbenzenesulfonamide (2b) [32]

Following the General Procedure, compound 2b was obtained as a white solid (11.4 g,
80%). mp 212–213 ◦C (dichloromethane). Rf = 0.45 (petroleum ether/ethyl acetate, 2:1 v/v).
1H NMR (400 MHz, CDCl3) δ 7.99 (dd, J = 4.2, 1.8 Hz, 1H), 7.41–7.31 (comp, 6H), 7.31–7.21
(comp, 5H), 7.11 (dd, J = 7.7, 3.8 Hz, 1H), 5.51 (br s, 2H), 2.41 (s, 3H). 13C{1H} NMR (CDCl3,
101 MHz): δ 147.1 (d, JC-P = 26.2 Hz), 140.4, 136.7, 135.7 (d, JC-P = 5.9 Hz, 2C), 133.7 (d,
JC-P = 19.4 Hz, 4C), 133.2, 131.9 (d, JC-P = 20.3 Hz), 129.2 (2C), 128.8 (d, JC-P = 7.1 Hz, 4C),
128.7 (d, JC-P = 7.8 Hz), 21.3. 31P NMR (162 MHz, CDCl3): δ −13.2. HRMS-ESI (m/z) for
C19H18NO2PS [M+H]+: calcd 356.0869, found 356.0861.

2-(Bis(4-methoxyphenyl)phosphaneyl)-5-methylbenzenesulfonamide (2c)

Following the General Procedure, the reaction was conducted on a 2.00-mmol scale
with higher loading of palladium catalyst (0.02 equiv) instead. Compound 2c was obtained
as a white solid (423.7 mg, 51%). mp 90–93 ◦C (dichloromethane). Rf = 0.35 (petroleum
ether/ethyl acetate, 2:1 v/v). 1H NMR (400 MHz, CDCl3) δ 7.96 (dd, J = 3.9, 1.9 Hz, 1H),
7.31–7.23 (m, 1H), 7.19 (app t, J = 8.2 Hz, 4H), 7.10 (dd, J = 7.8, 3.8 Hz, 1H), 6.88 (app d,
J = 7.9 Hz, 4H), 5.47 (br s, 2H), 3.80 (s, 6H), 2.40 (s, 3H). 13C{1H} NMR (CDCl3, 101 MHz):
δ 160.6 (2C), 146.7 (d, JC-P = 25.7 Hz), 140.0, 136.2, 135.2 (d, JC-P = 20.7 Hz, 4C), 133.1
(d, JC-P = 21.0 Hz), 133.1, 128.7 (d, JC-P = 4.4 Hz), 126.6 (d, JC-P = 2.6 Hz, 2C), 114.5 (d,
JC-P = 8.2 Hz, 4C), 55.4 (2C), 21.3. 31P NMR (162 MHz, CDCl3): δ −15.9. HRMS-ESI (m/z)
for C21H22NO4PS [M+H]+: calcd 416.1080, found 416.1074.

3.2.2. Synthesis of Organic Azides

Organic azides except 1j, 1s, and 1w were prepared from the literature methods and
their analytical data were consistent with the literature data (see Supplementary Materials).
Azides 1j, 1s and 1w were prepared by the procedures below.

Perfluorophenyl 4-azidobenzoate (1j)

A solution of 4-azidobenzoic acid (163.0 mg, 1.00 mmol, 1.0 equiv) and 2,3,4,5,6-
pentafluorophenol (220.8 mg, 1.20 mmol, 1.2 equiv) in dichloromethane (5 mL) was cooled
down to 0 ◦C. To this solution was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
hydrochloride (287.6 mg, 1.50 mmol, 1.5 equiv) and 4-dimethylaminopyridine (12.2 mg,
0.10 mmol, 0.1 equiv). The mixture was allowed to warm up to room temperature and
stirred for 12 h. The solvent was concentrated in vacuo and the crude product was purified
by flash column chromatography to afford the product 1j as a white solid (255.8 mg, 78%).
mp 78–79 ◦C (dichloromethane). Rf = 0.46 (petroleum ether/ethyl acetate, 100:1 v/v). 1H
NMR (400 MHz, CDCl3): δ 8.19 (d, J = 8.8 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H). 13C{1H} NMR
(CDCl3, 101 MHz): δ 161.9, 146.9, 143.0–140.1 (m, 2C), 141.3–138.1 (m), 139.7–136.6 (m, 2C),
132.8 (2C), 125.9–125.2 (m), 123.4, 119.5 (2C). 19F NMR (377 MHz, CDCl3): δ −152.42 to
−152.57 (m, 2F), −157.83 (t, J = 21.7 Hz), −162.16 to −162.37 (m, 2F).
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2-Azido-N-(4-bromobenzyl)acetamide (1s)

N-(4-bromobenzyl)-2-chloroacetamide (7.88 g, 30.0 mmol, 1.0 equiv), sodium fluoride
(3.15 g, 75.0 mmol, 2.5 equiv) and trimethylsilyl azide (5.18 g, 45.0 mmol, 1.5 equiv) were
dissolved in THF/water (75 mL, 3:1 v:v). The mixture was heated at 85 ◦C for 12 h. The
reaction mixture was concentrated in vacuo and extracted with ethyl acetate (3 × 80 mL).
The organic layer was separated, washed with saturated brine, dried over anhydrous
sodium sulfate, filtered, and concentrated in vacuo. The crude mixture was purified by
flash column chromatography to afford the product 1s as a white solid (6.78 g, 84%). mp
93.0 ◦C (dichloromethane). Rf = 0.23 (petroleum ether/ethyl acetate, 3:1 v/v). 1H NMR
(400 MHz, CDCl3): δ 7.47 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 6.62 (br, 1H), 4.43 (d,
J = 6.0 Hz, 2H), 4.05 (s, 2H). 13C{1H} NMR (CDCl3, 101 MHz): δ 166.6, 136.7, 132.1 (2C),
129.7 (2C), 121.9, 52.9, 43.0. HRMS-ESI (m/z) for C9H11BrN2O [M−H]-: calcd 266.9886
(79Br), 268.9867 (81Br), found 266.9984 (79Br), 268.9864 (81Br).

(1S,2R,4S,5R)-2-((R)-Azido(quinolin-4-yl)methyl)-5-vinylquinuclidine (1w)

Following the literature method [33], cinchonine (2.94 g, 10.0 mmol, 1.0 equiv) and
triphenylphosphine (3.26 g, 12.0 mmol, 1.2 equiv) were dissolved in 100 mL anhydrous
tetrahydrofuran under a N2 atmosphere. The mixture was cooled down to 0 ◦C and then
diisopropyl azodicarboxylate (DIAD, 2.32 mL, 12.0 mmol, 1.2 equiv) and a solution of
diphenylphosphoryl azide (DPPA, 2.56 mL, 12.0 mmol, 1.2 equiv) in anhydrous tetrahydro-
furan (20 mL) were added dropwise. The mixture was stirred at room temperature for 12 h
and at 50 ◦C for another 2 h. The mixture was concentrated in vacuo and the residue was
dissolved in dichloromethane and 10% hydrochloric acid (1:1, 100 mL). The aqueous phase
was separated and further washed with dichloromethane (4 × 50 mL). Then the aqueous
phase was made alkaline (pH ≥ 9) with an excess of concentrated aqueous ammonia
(22–25%) and was extracted with dichloromethane (4 × 50 mL). The combined organic
phases were dried over anhydrous sodium sulfate and concentrated. The crude product
was purified by flash column chromatography and the title compound 1w was obtained as
a yellowish viscous oil (2.24 g, 70%). Rf = 0.14 (ethyl acetate). 1H NMR (400 MHz, CDCl3):
δ 8.92 (dd, J = 4.5, 1.4 Hz, 1H), 8.21 (d, J = 8.5 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.79–7.69 (m,
1H), 7.68–7.55 (m, 1H), 7.38 (dd, J = 4.5, 1.3 Hz, 1H), 5.81–5.65 (m, 1H), 5.11 (d, J = 10.6 Hz,
1H), 5.03–4.86 (comp, 2H), 3.43–3.11 (comp, 3H), 2.96–2.74 (comp, 2H), 2.32–2.15 (m, 1H),
1.65–1.59 (m, 1H), 1.59–1.46 (comp, 2H), 1.45–1.29 (m, 1H), 0.77–0.63 (m, 1H). 13C{1H} NMR
(CDCl3, 101 MHz): δ 150.1, 148.9, 142.4, 141.4, 130.8, 129.6, 127.3, 126.7, 123.1, 120.4, 114.7,
62.7, 59.7, 56.1, 41.0, 39.5, 28.0, 27.3, 26.2. HRMS-ESI (m/z) for C19H21N5 [M+H]+: calcd
320.1870, found 320.1863.

3.2.3. Synthesis of Amines

General Procedure A (for the substrates 1a–1m): Under a N2 atmosphere, the corre-
sponding organic azide (1.00 mmol, 1.0 equiv) was dissolved in anhydrous tetrahydrofuran
(10 mL), followed by the addition of 2c (1.10 mmol, 1.1 equiv). The mixture was stirred
at 30 ◦C for 3 h. Upon completion, the mixture was concentrated in vacuo and the crude
product was purified by flash column chromatography.

General Procedure B (for the substrates 1n–1w): Under a N2 atmosphere, the corre-
sponding organic azide (1.00 mmol, 1.0 equiv) was dissolved in anhydrous tetrahydrofuran
(10 mL), followed by the addition of 2c (1.10 mmol, 1.1 equiv). The mixture was stirred at
60 ◦C for 15 h. Upon completion, the mixture was concentrated in vacuo and the crude
product was purified by flash column chromatography. For 1w, 5.00 mmol of azide was
used instead.

All amines except 3j and 3s are known compounds and their analytical data were
consistent with the literature data (see Supplementary Materials). Their isolated yields
were reported in Scheme 2.
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Perfluorophenyl 4-aminobenzoate (3j)

Following General Procedure A, the title compound 3j was obtained as a white solid
(275.7 mg, 91%) from the azide 1j (1.00 mmol, 329.0 mg). mp 129 ◦C (dichloromethane). Rf = 0.44
(petroleum ether/ethyl acetate, 3:1 v/v). 1H NMR (400 MHz, CDCl3): δ 7.99 (d, J = 8.7 Hz, 2H),
6.69 (d, J = 8.7 Hz, 2H), 4.29 (br, 2H). 13C{1H} NMR (CDCl3, 101 MHz): δ 162.7, 152.6, 143.3–140.1
(m, 2C), 141.0–137.8 (m), 139.7–136.4 (m, 2C), 133.2 (2C), 126.2–125.6 (m), 115.8, 114.0 (2C). 19F
NMR (377 MHz, CDCl3): δ −152.56 to −152.76 (m, 2F), −158.88 (t, J = 21.6 Hz), −162.87
(td, J = 22.4, 5.0 Hz, 2F). GC-MS (EI, 70 eV) m/z: 303 [M]+.

2-Amino-N-(4-bromobenzyl)acetamide (3s)

Following General Procedure B, the title compound was obtained as a white solid
(178.0 mg, 82%) from the azide 1s (0.50 mmol, 121.5 mg). mp 93 ◦C (dichloromethane).
Rf = 0.19 (ethyl acetate/methanol/aqueous ammonia, 100:10:1 v/v/v). 1H NMR (400 MHz,
CDCl3): δ 7.65 (br, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 4.41 (d, J = 6.1 Hz,
2H), 3.39 (s, 2H), 1.61 (br, 2H, overlapped water). 13C{1H} NMR (101 MHz, CDCl3): δ 172.8,
137.6, 131.9, 129.6, 121.4, 44.8, 42.5. HRMS-ESI (m/z) for C9H11BrN2O [M+H]+: calcd
243.0128 (79Br), 245.0107 (81Br), found 243.0124 (79Br), 245.0104 (81Br).

3.3. Computational Methods

The calculations were carried out with the Gaussian 09 software package [34]. The
structures were optimized by the density functional theory (DFT) [35] with the B3LYP
functional [36,37] with basis set 6-31G(d) [38,39] in the gas phase. Frequency analysis was
conducted at the same level of theory to verify the stationary points to be real minima or
saddle points and to obtain the thermodynamic energy corrections at 298.15 K. Intrinsic
reaction coordinate (IRC) [40–42] calculations were performed to confirm the connection
between two correct minima for a transition state. More accurate electronic energy results
were refined by calculating the single-point energy at the B3LYP-D3(BJ) [43]/6-311++G(2df,
2p) [38,39] level of theory with the SMD model [44] (solvent = THF).

4. Conclusions

In conclusion, we developed the first ortho-phosphinoarenesulfonamide-mediated
Staudinger reduction without the need for water. Computational studies suggest that the
ortho-SO2NH2 substituent of the phosphine reagent is significant for favorable reaction
kinetics. We are currently investigating other aza-ylide-driven Staudinger-type transforma-
tions which will be reported in due course.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27175707/s1, the corresponding Cartesian coordinates
in DFT studies, copies of NMR spectra for all new compounds, and a reference list for the characteri-
zation data of all known compounds [45–64].
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