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Abstract: The photoinduced birefringence behaviors of host–guest systems based on heterocyclic
thiazole–azo dyes with different substituents, dispersed into PMMA matrix, were investigated under
three excitation wavelengths, i.e., 405 nm, 445 nm or 532 nm. The wavelengths fell on the blue side,
near the maximum or on the red side of the absorption bands of trans-azo dyes, respectively. We
found that photoinduced birefringence was generated at a similar extent in all studied systems,
except the system containing a 2-methyl-5-benzothiazolyl as thiazole–azo dye substituent. For this
material, the achieved birefringence value was the highest among the whole series, regardless of
the excitation wavelength. Moreover, we identified the optimal irradiation wavelength for efficient
birefringence generation and showed that large absorption of excitation light by trans isomer does
not account for achieving a significant degree of molecular alignment. The obtained results indicate
that thiazole–azo dye with a 2-methyl-5-benzothiazolyl substituent shows promising photoinduced
birefringence, and can be considered a dye potentially suitable for optical applications.

Keywords: thiazole–azo dye; photoinduced birefringence; thin films

1. Introduction

In the last decades, light-responsive molecules have been of interest in many applica-
tions, such as optical data storage, optical switches, optical memory, etc., [1–4].

Azo dyes are the best known family of photoresponsive compounds, which have
different properties and can also have a refractive index depending on the polarization and
propagation direction of light, namely birefringence.

Azobenzenes attract the attention of the scientific community due to their pho-
tochromic nature, ease of processing and simplicity of design [5–7]. These features allow
changing their physico-chemical properties for a particular application by appropriate
modification of their chemical structure [8–11]. It is well known that the core of azo dyes
is formed by the conjugated azo (-N = N-) chromophore group in combination with one
or more aromatic or heterocyclic systems. The addition of electron withdrawing and/or
electron donating substituents to the backbone of azo moiety can significantly influence the
absorption spectra of azo dyes by affecting the reorganization of electronic density [12–14].
The D–π–A system of azo compounds can provide a prerequisite ground state charge
asymmetry [15] as well as efficient intramolecular charge transfer (ICT) between donor and
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acceptor groups [16,17] because the π-conjugated bridge ensures a pathway for electronic
charges movement [15]. The transition from the ground state to the excited state upon
excitation causes almost instantaneous electronic polarization, which changes the dipole
moment of the molecules and generates a dipolar push–pull system [16–19]. Therefore,
substitution of one or more benzene rings with easily delocalizable electron-excessive
and/or electron-deficient hetero-aromatic rings, acting as an auxiliary electron donors
and/or acceptors, can result in enhanced intramolecular charge transfer [15–17].

The most important feature of azo compounds is a possibility of trans–cis photoisomer-
ization, which can be induced and reversed depending on the wavelength of the incident
light. It is well known that this photochromic behavior can differ due to the structure of
studied compounds (i.e., location and the shape of π–π* and n–π* bands) [6,8,9,20,21].

Another interesting feature of azo compounds is the photoinduced orientation. Gen-
eration of optical anisotropy in azo dye-containing materials (e.g., azo dyes dispersed in
polymer matrix or azopolymers) results from the orientation of azo chromophores induced
by linearly polarized light due to processes of selective absorption and reactions of trans–cis
isomerization [22,23]. After numerous trans–cis–trans isomerization processes, the long
axes of azo molecules tend to align in directions perpendicular to the polarization of light.
As a result, the material becomes birefringent and dichroic in the plane perpendicular to
the direction of light propagation [6,24,25].

The efficiency and dynamics of the light-induced birefringence generation strongly
depend on various factors, which are related to the chemical structure of azo dye (such
as substituents of the azo group and its bulkiness), a chromophore content and a type of
polymer matrix, but also with the experimental conditions (e.g., an excitation wavelength
and intensity) [26–28]. While some general principles govern the efficiency of the light-
induced processes in azo compounds, the optical response of a given material may be
substantially different than expected [29,30].

A polymeric material with unique properties, such as light weight, high flexibility and
low-cost of production, can be used to improve the quality of a prepared thin layer [31].
One of the most popular and widely used polymeric materials is poly(methyl methacrylate)
(PMMA). Its main advantages are excellent mechanical properties, high chemical resistance,
simple synthesis, low cost, good tensile strength, low optical loss in visible spectral range,
good insulation properties and thermal stability. PMMA-based matrices are well known not
only for their good optical transparency, but also for high resistance to laser damage [32,33].
PMMA is an excellent and suitable host material in the host-guest systems due to its optical
clarity and known chemical and physical properties. It should also be added that for the
samples based on PMMA it is possible to conduct research of the structure of matrices
and photophysical transitions connected with changes in the mobility of low molecular
structural units.

Studying the correlation between structure and material properties is a fascinating
field of research, which is very important for the development of novel materials for specific
applications such as optical data storage. Typically, measurements of photoinduced bire-
fringence generation were carried out at a single excitation wavelength located on the red
side of the azo moiety absorption band. However, the measurements performed for various
excitation wavelengths may provide valuable information on the optimal experimental
conditions leading to the most efficient process of azo chromophore alignment.

The aim of this work was to characterize the photoinduced birefringence generation
in thiazole–azo dyes host–guest systems under irradiation with linearly polarized violet,
blue or green light. The motivation for this research is the possibility of using thiazole–azo
dyes in photonic devices for recording optical information (optical data storage), which
are becoming increasingly important in many fields. In this article, we focus on the effect
of an additional 2-methylthiazole group on the efficiency photoinduced birefringence
generated in thiazole–azo dyes dispersed into a poly(methyl methacrylate) (PMMA) matrix.
Furthermore, we introduce the benzene ring into a thiazole fragment in the position
of 4, which can improve solubility of the compounds. The key structural feature of the
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investigated materials is the presence of a heterocyclic thiazole fragment in the azo molecule,
which leads to the change in the distribution of the electron density of the conjugation
system in comparison with azobenzenes without a heterocyclic fragment. We show that
upon irradiation with polarized violet, blue or green light, the studied azo dye systems
can exhibit photoinduced birefringence. To the best of our knowledge, the photoinduced
birefringence generation for these heterocyclic thiazole–azo dyes dispersed into a PMMA
matrix at 405 nm, 445 nm and 532 nm are presented for the first time.

2. Results and Discussion
2.1. UV-Vis Spectra

Figure 1 shows the UV-Vis spectra of the studied thiazole–azo dyes dispersed in the
PMMA matrix thin films (T–azo–OCH3, T–azo2–OCH3, T–azo–H). One can see that the
π–π* and n–π* bands are completely overlapped in this region, and the absorption bands
of T–azo–OCH3, T–azo2–OCH3 samples are redshifted relative to the thin film of T–azo–H
without any substitution in para-position [8]. We also found that the absorption band of
T–azo2–OCH3 thin film with 2-methyl-5-benzothiazolyl moiety is redshifted compared to
T–azo–OCH3 film with a phenyl ring.

It should also be noted that the excitation wavelength of 445 nm used in the pho-
toinduced birefringence measurement was the most strongly absorbed by the examined
samples compared to the excitation wavelengths of 405 nm and 532 nm. The samples were
transparent at the probing wavelengths (690 nm or 783 nm, respectively).
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Figure 1. Normalized UV-Vis spectra of thiazole–azo dyes (molar concentration of dyes 27.2 mM)
dispersed in PMMA matrix thin films: T–azo2–OCH3, T–azo–OCH3, T–azo–H with thickness 877 nm,
1128 nm, 1312 nm, respectively. The arrows indicate the absorbance of studied samples at the
excitation wavelengths used.

Figure 2 presents the changes in the absorption spectra observed for the T–azo2–
OCH3 sample under irradiation with 445 nm light. The trans–cis isomerization process was
confirmed by the presence of isosbestic points (at 405 nm for T–azo2–OCH3) and decrease
in the trans-isomer band intensity.
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Figure 2. Absorption spectra of T–azo2–OCH3 before (0 s) and during irradiation (1 s–20 s) with 445 nm.

2.2. Photoinduced Birefringence

Figure 3 present the birefringence growth and relaxation curves for the thiazole–azo
dyes dispersed in PMMA matrix thin films, where λexc. = 405 nm and λprobe = 690 nm were
used. We found that the irradiation time of a few hundred seconds was already sufficient
to observe saturation of birefringence in the studied compounds (see Figure 3a). We also
found that thiazole–azo-PMMA samples T–azo–OCH3 and T–azo2–OCH3 have a higher
saturation level of birefringence compare to the T–azo–H one without substituent in para-
position. Moreover, T–azo2–OCH3 with a heterocyclic fragment (R1) has the highest final
birefringence, which is almost twice as that for T–azo–OCH3 with a phenyl fragment (R1).
At the same time, T–azo2–OCH3 exhibits the most stable birefringence after irradiation
among the series (Figure 3b). One can also see that the T–azo–OCH3 sample with a phenyl
ring (R1) and electron donating group (R2) has almost a similar birefringence value after
relaxation with T–azo–H and it is almost two times smaller than for T–azo2–OCH3.
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The curves of birefringence growth under 445 nm excitation and birefringence relax-
ation for the studied films are shown in Figure 4. It is interesting that despite a strong
film absorbance at this wavelength, the values of final birefringence observed for all the
samples were lower than the values obtained in the case of 405 nm excitation. The result
may be explained on the basis of the recorded changes in the absorption spectra under
irradiation. Both trans- and cis-isomers are involved in the process of optical birefringence
generation, and thus, light absorption by the cis form is essential for obtaining a significant
degree of molecular order. Cis-isomers more effectively absorb the 405 nm wavelength than
445 nm light, which compensates for the effect of a lower absorption of 405 nm light by
trans-isomers.

As in the case of 405 nm excitation, we found that the highest birefringence, un-
der 445 nm, was also induced in T–azo2–OCH3 film (thiazole–azo dye with 2-methyl-5-
benzothiazolyl substituent—R1 and methoxy group R2), which again correlates with the
slowest birefringence relaxation rate (see Figure 4b). Its final birefringence is almost twice
as large as the final induced birefringence compared to T–azo–OCH3 due to an additional
2-methylthiazole group. We also found that host-guest film of thiazole–azo compound
T–azo–OCH3 with a phenyl ring (R1) and electron donating group (R2) demonstrate higher
birefringence saturation level compared to T–azo–H without a substituent in para- position
(R2). Figure 4b shows the normalized birefringence relaxation curves after turning off the
beam at 445 nm. One can see that the type of substituent strongly affects the relaxation
of birefringence. We found that T–azo2–OCH3 exhibits the lowest relaxation, which may
be associated with different geometry of chromophores T–azo2–OCH3 vs. T–azo–OCH3
and T–azo–H with more compact structure. It is difficult to relax the molecules to the
isotropic state by thermal movement if the chromophores have a big volume. The 2-methyl-
5-benzothiazolyl group in T–azo2–OCH3 increases the steric effect and slows down the
relaxation of birefringence of T–azo2–OCH3. However, a thiazole–azo compound with
a phenyl ring (R1) and electron donating group (R2) (T–azo–OCH3) has similar birefrin-
gence to T–azo–H. Therefore, the role of various substituents in thiazole–azo dyes in the
photoinduced birefringence measurements is evident.
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dispersed in PMMA matrix thin films (λexc. = 445 nm, λprobe = 690 nm).

Figure 5 presents the birefringence growth and relaxation curves for the thiazole–azo
dyes dispersed in PMMA matrix thin films, where λexc. = 532 nm and λprobe = 783 nm were
used. Apart from T—azo2–OCH3, the irradiation time of about 300 s was sufficient to ob-
serve birefringence saturation for all samples. We also found that the highest birefringence
saturation level was induced in T–azo2–OCH3 with the highest absorption value at 532 nm.
This can be explained by a significantly red-shifted absorption band and arising strongest
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absorption of 532 nm light among the series. Nevertheless, the values of photoinduced bire-
fringence generated under 532 nm irradiation were very low. The result can be attributed to
low sample absorbance, i.e., the excitation wavelength falls on the tails of trans absorption
bands for all the samples.
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From Figure 5a, it can be seen that the birefringence saturation level decreases as
follows: T–azo2–OCH3 > T–azo–OCH3 > T–azo–H. Thus, the thiazole–azo compound
with 2-methyl-5-benzothiazolyl substituent (R1) (T–azo2–OCH3) has a higher saturation
level of birefringence compared to thiazole–azo dyes with a phenyl ring (R1). Similar
behavior was visible in absorbance. For 532 nm excitation (see Figure 5b), the relaxation of
birefringence was similar for all studied compounds.

Figure 6 presents the examples of birefringence growth and relaxation curves for the
thiazole–azo dyes dispersed in PMMA matrix thin films for three excitation wavelengths,
i.e., 405 nm, 445 nm and 532 nm. In all cases, we observed the rapid increase of birefringence
at the beginning of pumping (see Figure 6), which was due to the molecular arrangement
orientation of the thiazole–azo dye, which gradually tended to be perpendicular to the
polarization direction of the pumping light; thus the detecting light intensity began to
increase gradually. Then we can see a slow increase to the saturation level with different
speeds depending on the type of substituent. When the pumping light was turned off,
the curves decreased sharply due to the molecular relaxation. The anisotropic state re-
establishes the originally mixed and disordered distribution. However, this type of recovery
is not complete, because some azo molecules achieve equilibrium, and some still remain at
an orientation distribution state.

The decay of birefringence after turning off the excitation light was caused by the
thermal cis–trans isomerization of thiazole–azo chromophores and a thermal randomization
of the molecular orientation.

We found that the final birefringence generated after irradiation with 405 nm light
was the highest for all studied thiazole–azo dyes. The difference between the increase in
the birefringence for the studied wavelengths strongly depends on the type of substituents
in thiazole–azo compounds.
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The birefringence growth and birefringence relaxation with time are often described
by the following biexponential equations [25]:

∆n = A
[

1 − exp
(
−t
τ1

)]
+ B

[
1 − exp

(
−t
τ2

)]
(1)

∆n = Cexp
(
−t
τ3

)
+ Dexp

(
−t
τ4

)
+ E (2)

where τ1, τ2 are time constants for writing processes, τ3, τ4 are time constants for relaxation
processes, A, B, C and D are amplitudes associated with different physical processes
appearing upon illumination, and E is the residual birefringence.

Using Equations (1) and (2), one can perform the curve fitting, which allows us
to quantitatively compare the obtained birefringence signals. It should be noted that the
biexponential growth and biexponential relaxation reproduced the results of the experiment
well. The values of the fitted parameter for T–azo–H, T–azo–OCH3 and T–azo2–OCH3 are
presented in Tables 1 and 2. The contributions of various processes to birefringence growth
and relaxation were calculated using Equation (3):

Xin =
Xi

∑i Xi
(3)

where Xi = A, B and C, D, E for birefringence growth and relaxation, respectively.
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Table 1. Fitted parameters for the birefringence growths of T–azo–H, T–azo–OCH3 and T–azo2–
OCH3 for 405 nm, 445 nm and 532 nm.

T–azo–H T–azo–OCH3 T–azo2–OCH3

405 nm
An 0.65 0.65 0.51

τ1 [s] 0.41 0.72 6.38
Bn 0.35 0.35 0.49

τ2 [s] 45.90 39.98 64.07

445 nm
An 0.62 0.74 0.59

τ1 [s] 0.08 0.13 3.22
Bn 0.38 0.26 0.41

τ2 [s] 137.70 54.80 40.31

532 nm
An 0.73 0.75 0.50

τ1 [s] 5.43 3.57 5.86
Bn 0.27 0.25 0.50

τ2 [s] 80.02 75.35 101.40

Table 2. Fitted parameters for the birefringence relaxation of T–azo–H, T–azo–OCH3 and T–azo2–
OCH3 for 405 nm, 445 nm and 532 nm.

T–azo–H T–azo–OCH3 T–azo2–OCH3

405 nm
Cn 0.40 0.30 0.14

τ3 [s] 5.79 7.15 17.80
Dn 0.29 0.26 0.21

τ4 [s] 110.20 121.70 271.80
En 0.31 0.43 0.65

445 nm
Cn 0.41 0.34 0.19

τ3 [s] 6.40 4.80 11.40
Dn 0.31 0.31 0.27

τ4 [s] 142.50 90.80 164.80
En 0.28 0.34 0.53

532 nm
Cn 0.60 0.54 0.56

τ3 [s] 97.20 72.93 132.64
Dn 0.30 0.38 0.33

τ4 [s] 1200.00 813.90 1162.80
En 0.10 0.08 0.11

When excited with 405 nm light, for samples T–azo–H and T–azo–OCH3, the fast and
slow processes contributions to the birefringence growth are the same for both materials and
are 0.65 and 0.35, respectively. The time factors for both components are of the same order.
For the sample T–azo2–OCH3, the slow component has more impact on birefringence
growth than for the other materials, and the fast and slow processes’ contributions are 0.51
and 0.49, respectively. The time factors are noticeably longer than for the other two samples,
especially for the slow component, whose time factor is one order of magnitude higher.

Upon excitation with 445 nm light, the fast process contribution to birefringence
growth is higher than the slow process contribution. For the samples T–azo–H and
T–azo2–OCH3, the fast and slow processes contributions are around 0.6 and 0.4, while
for the sample T–azo–OCH3 it is 0.74 and 0.26, respectively. The time factors for the fast
process are the same order for T–azo–H and T–azo–OCH3, and for T–azo2–OCH3 they are
one order of magnitude higher. The time factor for the slow component is the lowest for
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the sample T–azo2–OCH3, and for T–azo–H, it is one order of magnitude higher than for
the other samples.

When excited with 532 nm light, the fast and slow processes’ contributions to the
birefringence growth are similar for T–azo–H and T–azo–OCH3 samples, and their values
are around 0.74 and 0.26, respectively. For the sample T–azo2–OCH3, the fast and slow
processes’ contributions are both equal, and their value is 0.50. The time factors for the fast
and slow processes are the same order of magnitude. The values of the time factors of the
slow process are similar for the T–azo–H and T–azo2–OCH3, and it is the lowest for the T–
azo–OCH3 sample, while for the fast process, the time factors are similar for the T–azo–H
and T–azo–OCH3 samples, and it is slightly higher for the T–azo2–OCH3 sample.

Table 2 shows the fitted parameters for the birefringence relaxation. After excitation
with 405 nm light, the fast process contribution to birefringence relaxation is slightly higher
than the slow process contribution. The sample T–azo2–OCH3 exhibits the highest residual
birefringence, while for the sample T–azo–H, it is the lowest. Both time factors for the fast
and slow processes are the lowest for the T–azo–H sample, and they are the highest for the
T–azo2–OCH3 sample.

The fast processes contribution to birefringence relaxation after 445 nm excitation
is slightly higher than the slow process contribution. Again, the sample T–azo2–OCH3
exhibits the highest residual birefringence, and the sample T–azo–H has the lowest. Time
factors are the same order of magnitude, and both time factors are the lowest for the
T–azo–OCH3 sample. They are the highest for the T–azo2–OCH3 sample.

The fast process contribution to the birefringence relaxation is considerably higher than
the slow process contribution after excitation with 532 nm light, for all the samples. The
residual birefringence is similar, and it is around 0.1 of the maximum birefringence value.
Time factors, separately, are the same order of magnitude. Both time factors are the lowest
for the T–azo–OCH3 sample. The fast process time factor is the highest for the T–azo2–
OCH3 sample, while the slow process time factor is the highest for the T–azo–H sample.

Table 3 summarizes the ratios between the maximum birefringence and absorbance for
the given excitation wavelengths. As can be seen, there is no clear influence of the amount
of the absorbed light on the maximum birefringence value. Even though the absorbance at
405 nm and 445 nm is the lowest for the T–azo2–OCH3 sample, the birefringence values
are the highest. For the 532 nm light, the absorbance of the T–zo2–OCH3 sample is the
highest amongst the three studied samples, and the birefringence value is the highest as
well. However, the ratio between the two parameters is the lowest.

Table 3. Maximum birefringence values, absorbance at the excitation wavelengths and their ratio for
T–azo–H, T–azo–OCH3 and T–azo2–OCH3 samples.

T–azo–H T–azo–OCH3 T–azo2–OCH3

405 nm
∆nmax 0.0034 0.0051 0.0089

Absorbance 0.7329 0.8815 0.4198
∆nmax/Abs. 0.0046 0.0058 0.0212

445 nm
∆nmax 0.0029 0.0035 0.0067

Absorbance 0.9743 1.5295 0.8983
∆nmax/Abs. 0.0030 0.0023 0.0075

532 nm
∆nmax 0.0012 0.0016 0.0022

Absorbance 0.0461 0.1526 0.3501
∆nmax/Abs. 0.0260 0.0105 0.0063
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3. Materials and Methods
3.1. Chemical Structure

Figure 7 shows the chemical structure of the studied thiazole–azo dyes. The synthesis
procedure for T–azo–H, T–azo–OCH3 and T–azo2–OCH3 is described elsewhere [8,9,20,34].
1H NMR (400 MHz) spectra were recorded on a Mercury (Varian) 400 spectrometer.

4-(4-Methoxyphenyl)-5-[(2-methyl-1,3-benzothiazol-5-yl)diazenyl]-1,3-thiazol-2-amine:
dark red crystals, yield 80%. 1H NMR (400 MHz, DMSO-d6): δ = 2.83 (s, 3H, CH3), 3.88 (s,
3H, OCH3), 7.01 (d, J = 8 Hz, 2H, Ar), 7.75 (d, J = 7.2 Hz, 1H, Het), 7.88 (d, J = 7.2 Hz, 1H,
Het), 8.13 (s, 1H, Het), 8.25 (d, J = 8 Hz, 2H, Ar), 8.49 (br. s, 2H, NH2) ppm.

4-Phenyl-5-(phenyldiazenyl)-1,3-thiazol-2-amine: Dark red crystals, yield 84%. 1H
NMR (400 MHz, DMSO-d6): δ = 7.30 (t, J = 7.6 Hz, 1H), 7.40–7.47 (m, 5H), 7.63 (d, J = 7.6 Hz,
2H), 8.14 (d, J = 7.2 Hz, 2H), 8.42 (br. s, 2H, NH2) ppm.

4-(4-Methoxyphenyl)-5-(phenyldiazenyl)-1,3-thiazol-2-amine: Red solid residue, yield:
88%. 1H NMR (400 MHz, DMSO-d6): δ = 3.87 (s, 3H, OCH3), 6.99 (d, J = 7.2 Hz, 2H, Ar),
7.28 (t, J = 6.8 Hz, 1H, Ph), 7.41 (t, J = 6.8 Hz, 2H, Ph), 7.62 (d, J = 6.8 Hz, 2H, Ph), 8.23 (d,
J = 7.2 Hz, 2H, Ar), 8.46 (br. s, 2H, NH2) ppm.
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3.2. Preparation of Thin Films

The standard procedure was used to prepare thin films of studied thiazole–azo
dyes dispersed in the PMMA (poly(methylmethacrylate)) matrix using a spin-coating
method [8,9]. THF solutions including PMMA and the thiazole–azo dyes were prepared
first. PMMA was purchased from Sigma-Aldrich and was used as it was. Films were
formed on glass substrates using a spin-coating method with the spinning time of 60 s.
After that, films were baked at 60 ◦C for 3 h in a vacuum chamber. The thickness of the
samples was in the range of 900–1300 nm.

3.3. UV-Vis Absorption

The absorption spectra of all studied thin layers of heterocyclic thiazole–azo com-
pounds dispersed in the PMMA matrix were measured with a spectrometer (Shimadzu
UV-1800) in the range 350–600 nm.

3.4. Photoinduced Birefringence Measurements

Photoinduced birefringence measurements were performed for 405 nm, 445 nm and
532 nm excitation wavelengths. The experimental configuration used in the studies with
violet and blue irradiation was presented elsewhere [35]. The intensity of each beam
(from diode lasers) was 100 mW/cm2. The time-evolution of birefringence generation and
birefringence decrease after switching on and off the excitation light was probed by 690 nm
wave. The excitation and probe beams were linearly polarized in the directions forming an
angle of 45◦. The measurement technique is based on detecting the intensity of the probe
beam after passing through the thin film situated between two crossed polarizers [35].
The details of the experimental configuration were described elsewhere [36–38], whereas
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Figure 8 shows the experimental configuration of photoinduced birefringence at excitation
of a CW laser (λexc. = 532 nm, 0.365 mW, I~29 mW/cm2). The details of this setup were
described elsewhere [24].
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4. Conclusions

The optical birefringence was induced in three heterocyclic thiazole–azo dyes with
different substituents dispersed in a PMMA matrix, upon polarized violet, blue and green
irradiation. We found that the role of the substituents in thiazole–azo dyes and irradiation
wavelength is visible during the birefringence generation.

We noticed that the photoinduced birefringence response at 405 nm, 445 nm or 532
nm of most studied host-guest thin films of PMMA–thiazole–azo dyes with different sub-
stituents is similar, except for thiazole–azo dye with 2-methyl-5-benzothiazolyl substituent
(i.e., T–azo2–OCH3). It was found that this molecule had the highest saturation level of
birefringence compared to other studied thiazole–azo dyes for all three induced irradiation
wavelengths (i.e., 405 nm, 445 nm and 532 nm). This dye also exhibited the lowest relaxation
after ceasing the irradiation 405 nm and 445 nm wavelengths. We suppose that the high
∆n value obtained for T–azo2–OCH3, despite its lower absorption at these wavelengths,
can be attributed to the free space in the polymer, created by the bulky T–azo2–OCH3
chromophores, giving them the opportunity to reorient.

The chemical structure is the main factor influencing the photoinduced behavior of
the studied thiazole–azo dyes. The introduction of the thiazole–azobenzene unit into
PMMA matrix, restricts the chromophore motions during the writing process. In the host–
guest polymers, the chromophores are typically more mobile, which can induce a faster
inscription of ∆n. Therefore, the appropriate design of thiazole–azo dyes can increase the
properties of photoinduced birefringence, which contributes to their use in new photonic
devices such as optical data storage.
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