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Abstract: In this paper, the Y188C mutant HIV-1 reverse transcriptase (Y188CM-RT) target protein
was constructed by homology modeling, and new ligands based on nevirapine (NVP) skeleton
were designed by means of fragment growth. The binding activity of new ligands to Y188CM-RT
was evaluated by structural analysis, ADMET prediction, molecular docking, energy calculation
and molecular dynamics. Results show that 10 new ligands had good absorbability, and their
binding energies to Y188CM-RT were significantly higher than those of wild-type HIV-1 reverse
transcriptase(wt). The binding mode explained that fragment growth contributed to larger ligands,
leading to improved suitability at the docking pocket. In the way of fragment growth, the larger
side chain with extensive contact at terminal is obviously better than substituted benzene ring. The
enhancement of docking activity is mainly due to the new fragments such as alkyl chains and rings
with amino groups at NVP terminal, resulting in a large increase in hydrophobic bonding and the
new addition of hydrogen bonding or salt bonding. This study is expected to provide reference for
the research on non-nucleoside reverse transcriptase inhibitors resistance and AIDS treatment.

Keywords: nevirapine; fragment growth; Y188C mutation HIV-1 reverse transcriptase; HIV-1; molec-
ular docking

1. Introduction

It is widely known that AIDS is a worldwide medical problem that needs to be overcome
urgently [1,2]. It is a malignant infectious disease caused by the HIV virus infection of T cells,
resulting in the destruction of immune function and opportunistic tumor growth [3,4]. HIV is
an RNA virus with two subtypes, HIV-1 and HIV-2, with the former being mainly studied
by scientific researchers due to its characteristics of strong infectivity, high mortality and
global popularity [5,6]. HIV-1 reverse transcriptase (RT) is a multifunctional and essential
enzyme in the life cycle of HIV-1 which has great activities with RNA-dependent DNA
polymerase, DNA-dependent DNA polymerase and ribonuclease [7–9]. Today, two kinds
of nucleoside reverse transcriptase inhibitors and non-nucleoside reverse transcriptase
inhibitors (NNRTI) are approved for the treatment of HIV-1 infection [6,10].

As a commonly used NNRTI for HIV-1 treatment, NVP can combine with HIV-1 RT
and destroy the catalytic site of RT, thus blocking the activity of DNA polymerase and HIV
replication [11,12]. However, continuous usage of nevirapine (NVP) induces drug-resistant
mutations in HIV-1 virus and further failure of NNRTI treatment [13–15]. Y188C mutant
HIV-1 reverse transcriptase (Y188CM-RT) is an important mutation that leads to NVP
resistance in vivo [16–18]. In order to overcome NVP resistance, it is urgent to optimize its
structure and improve inhibition activity against HIV-1 RT mutants.
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Molecular simulation performs well as a non-destructive technique with low cost and
simple operation which has increasingly wider application in molecular science and drug
design [19–22]. In this study, the 3D Y188CM-RT model constructed by homologous mod-
eling was selected as the target receptor, and new ligands based on the NVP skeleton were
designed by fragment growth. Then, structural analysis, ADMET prediction, molecular
docking and energy calculations were carried out to obtain the binding activity of new lig-
ands with Y188CM-RT. Finally, the interaction mode between the new NVP-based ligands
and Y188CM-RT was accurately explained by molecular docking and molecular dynamics
with vivid visualization. This study is expected to provide references for anti-HIV-1 drug
development and disease treatment.

2. Experimental

All ligand molecules applied in this paper were drawn using BIOVIA Draw 2016. All
molecular docking simulations, data analysis and binding energy calculations were com-
pleted using software Discovery Studio Client v16.1.0.15350 (DS 2016) [23] and visualized
with Pymol 2.3.0 (New York, NY, USA).

2.1. Homology Modeling, Model Evaluation and Target-Site Determination

The Protein Data Bank (PDB) was accessed to retrieve the amino acid sequence of
Y188CM-RT (PDB ID, 1JLF). Herein, Y188L mutant HIV-1 Reverse Transcriptase (PDB ID,
2ynf) was selected as a template and a Swiss model was applied for homology modeling,
achieving 3D structure model of Y188CM-RT. Subsequently, the evaluation of the Y188CM-
RT model was performed using DS 2016. Finally, the reasonable binding site for ligands
was determined after energy optimization [16,24].

2.2. Fragment Growth and ADMET Prediction

After hydrogenation and energy optimization of NVP, fragment growth was generated
by protocol of De Novo Evolution based on receptor–ligand interaction [25,26]. Referring
to publications [27–29], these new ligands were added fragments without changing binding
site inside Y188CM-RT, named Lig 1 to Lig 10, respectively.

ADMET prediction was performed using DS 2016 to evaluate absorption and toxicity
of new NVP-based ligands. Here, aqueous solubility, blood–brain barrier (BBB) penetration
level, cytochrome P450 2D6 enzyme inhibition (CYP 2D6), and human intestinal absorption
(HIA) level were estimated. Meanwhile, features of the hepatotoxicity, mutagenicity,
degradability and rat oral LD50 were predicted to screen Y188CM-RT inhibitors.

2.3. Molecular Docking

Optimized NVP was semi-flexibly docked with Y188CM-RT using the CDOCKER
model in DS 2016, with the parameters setting to default values. The clustering radius
and resolution were set to 0.5 Å and 2.5Å, respectively. The energy function (-CDOCKER
interaction energy) was selected as the evaluation value, in which the effects of non-bonding
interactions were considered to be including hydrogen bonding, hydrophobic bonding,
van der Waals force and electrostatic interactions. Obviously, the higher energy indicates
a more stable complex and better associativity. The docking conformation with highest
docking energy was the optimum, which was visualized by DS 2016 and Pymol.

The new ligands, Lig 1 to Lig 10, were completed in the same fashion as above.

2.4. Molecular Dynamics Simulation

Molecular dynamics simulation can verify the binding affinity between Y188CM-RT
and NVP-based ligands [29,30]. The process was implemented by DS 2016 as follows:
(1) we deleted redundant peptides, prepared a structure and applied a CHARm force
field. (2) As shown in Figure 1, the complexes were placed into a cubic box filled with an
aqueous solution (19,428 water molecules), while the whole system charge was balanced
with 51 Na+ (purple sphere) and 55 Cl− (green sphere). (3) Molecular dynamics simulation
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was completed by Standard Dynamics Cascade function, including energy optimization
(default parameters), heating (20 ps), equilibration (300 ps) and production (400 ps). (4) Af-
ter molecular dynamics simulation, results were analyzed using the Analyze Trajectory
function. In addition, the averaged MM/PBSA protein–ligand binding free energy was
calculated through MD trajectory.
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Figure 1. Docking complexes placed in a cubic box filled with water. Y188CM−RT and Lig 1 are
shown as cartoon and stick models, respectively.

3. Results and Discussion
3.1. Homology Modeling and Evaluation

The crystal structure of the Y188L mutant HIV-1 reverse transcriptase displayed an
91%-identified sequence with Y188CM-RT, and was selected as a template homology
modeling. Then, 3D model of Y188CM-RT was achieved using Swiss model Figure 2a).
Besides, the stereochemical structure of the Y188CM-RT model was detected, and its
Ramachandran Plot was obtained by evaluating stereochemical stability of both main and
side chains (Figure 2b). Results show that 99.40% amino acids are in the conformationally
allowed regions and most are in the favored allowed regions, indicating the rationality of
the Y188CM-RT model.
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3.2. Binding Analysis of NVP-Y188CM-RT

Based on energy optimal conformation, analysis of an NVP-Y188CM-RT docking
complex was performed, according to the specification of the publications [31–33]. The
-CDOCKER interaction energy was 38.89 kcal/moL. Figure 3 presents the binding mode of
the NVP-Y188CM-RT docking system. Figure 3a shows the active site on Y188CM-RT, and
Figure 3b illustrates the docking pocket with NVP inside. Through amino acid sequence
matching and Figure 3e, it is found that NVP inserted into the hydrophobic central cavity
of Y188CM-RT and interacted with surrounding amino acid residues. Considering the
2D schematic diagram (Figure 3d) and certain amino acid residues (Figure 3c), Trp 229,
Cys188, Leu 234, Tyr 181, Val 79, Val 105, Leu 100 and Lys 101 were involved in the binding
process between NVP and Y188CM-RT. Specifically, there are 12 favorable bonds, including
11 hydrophobic bonds and 1 hydrogen bond (Lys 101, 2.54 Å). The hydrophobic bonds
include 9 alky/π-alky (Leu 100, 4.36 Å; Val 106, 4.69 and 4.09 Å; Val 179, 5.38 Å; Leu 234,
5.50 Å; Cys 188, 5.05 and 4.49 Å; Trp 229, 4.33 Å), π–π stacked (Tyr 181, 5.04 Å) and π–σ
(Leu 100, 2.78 Å) interactions. The results indicate that hydrophobic interaction mainly
contributed to the stability of the NVP-Y188CM-RT complex.
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Figure 3. The binding mode between ligand NVP and receptor Y188CM−RT. (a) Spatial structure of
Y188CM−RT (green) with the active binding site (red). The protein is presented as a cartoon model.
(b) Docking pocket of Y188CM−RT with NVP inside. NVP is represented as a ball−stick model. C,
N, O and H atoms are in gray, blue, red and white, respectively. (c) Active amino acid residues in
the docking center. (d) 2D schematic interaction diagram between NVP and Y188CM−RT. (e) 3D
docking mode between NVP and Y188CM-RT with surface of hydrophobic potential.

3.3. Structural Analysis

After treatment with De Novo Evolution, new NVP-based ligands were designed by
means of fragment growth based on the NVP structure (shown in Figure 4). The structure
characteristics of NVP are three carbon nitrogen heterocycles and one ternary carbon ring,
while the main binding force with Y188CM-RT is driven by hydrophobic interactions.
Therefore, two ways were promoted to effectively improve the binding affinity between
NVP and Y188CM-RT. One method was to enhance hydrophobic interactions by adding
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hydrophobic carbon ring, and the other was to add new hydrogen bonds or salt bonds by
adding N and O atoms.
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Figure 4. New ligands generated from NVP by means of fragment growth. Three positions to
generate new fragments (red dotted line) and new fragments with purple-red marks.

Fragment growth was performed to fill the binding site, based on the residue properties
and cavity size of receptor Y188CM-RT [34,35]. Herein, Figure 5 presents the fragment
growth of Lig 1 as a typical example. It can be considered to introduce groups into P1 and
P2 because of the large cavities at the positions. The cavity at P1 is smaller than that at P2
and is surrounded by the amino residues Trp and Val. Therefore, looping and introducing
double bonds at P1 increased the hydrophobic interactions with Trp and Val, whereas
the cavity at P2 is much larger than P1 and surrounded by amino residues Glu, Lys and
Val. The imidazole group was introduced into the terminal, while it was found that the
imidazole was too small to fill the cavity and a linker (methyl) was used as a connection.
After connection, the imidazole group was close to the nearby amino acids, resulting in
the formation of salt bridge and hydrophobic interactions. Theoretically, fragment growth
would not change the interactions between original ligand and receptor, but only increase
or strengthen some interactions.
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3.4. ADMET Prediction

Pharmacokinetic parameters and toxicity are important evaluation indicators reflect-
ing applicability and feasibility, as well as solubility, permeability, bioavailability and
distribution. The predicted values of ADMET parameters of NVP and derivatives are
shown in Table 1. Acceptable range of some parameters are aqueous solubility ≥ 2, CYP
2D6 < 0, hepatotoxicity < 0, and HIA level ≤ 1.

Table 1. Predicted values of ADMET parameters of NVP and derivatives.

Entry Aqueous
Solubility

BBB
Penetration

Level
CYP 2D6 Hepatotoxicity HIA Level TOPKAT Ames

Prediction
TOPKAT Aerobic
Biodegradability

TOPKAT
Rat Oral

LD50

NVP 2 2 −22.2017 −1.29011 0 Non-Mutagen Non-Degradable 1.30686
Lig. 1 2 3 −5.4824 −1.58513 0 Non-Mutagen Non-Degradable 1.21532
Lig. 2 2 3 −10.559 −1.27281 0 Non-Mutagen Non-Degradable 0.13506
Lig. 3 3 3 −10.2184 −0.44516 0 Non-Mutagen Non-Degradable 0.71373
Lig. 4 2 2 −8.29288 −1.20287 0 Non-Mutagen Non-Degradable 0.32569
Lig. 5 3 3 −8.18333 −1.91685 0 Non-Mutagen Non-Degradable 0.88734
Lig. 6 3 3 -8.99978 −0.95539 0 Non-Mutagen Non-Degradable 0.07502
Lig. 7 3 3 −9.23876 −1.77251 0 Non-Mutagen Non-Degradable 0.64649
Lig. 8 2 1 −7.08521 −1.85011 0 Non-Mutagen Non-Degradable 0.98136
Lig. 9 3 3 −9.9088 −2.42656 0 Non-Mutagen Non-Degradable 0.36748
Lig. 10 3 3 −6.8001 −2.66234 0 Non-Mutagen Non-Degradable 0.37014

LD50: dose of toxic compound required to kill half of the total rats.

All ligands have memorable aqueous solubility and intestinal absorption. Moreover,
they are free of cytochrome inhibition, hepatotoxicity, mutagenicity and degradation.
Predicted values of rat oral LD50 are within expected ranges. Evidently, the predicted BBB
penetration level of ligands are equal or higher than NVP, except Lig 8. This indicates a low
BBB permeability and low destructiveness of environmental stability in brain tissue. The
above shows that these 10 NVP-based ligands have good pharmaceutical properties and
excellent bioavailability.

3.5. Molecular Docking Studies

HIV-1 RT is an important target for developing AIDS drugs. NVP can non-competitively
bind to HIV-1 RT, blocking the binding events between substrates and RT [36]. Theoreti-
cally, the better the affinity of drugs to RT, the higher the inhibition against the HIV-1 virus.
Molecular docking was performed for binding evaluation between NVP and RT, including
wt and Y188CM-RT. A total of 10 new ligands with higher scores are screened (Table 2),
and herein wt was employed as a comparison with Y188CM-RT.
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Table 2. Results of molecular docking.

Name
-CDOCKER Interaction Energy (kcal/mol)

wt Y188CM-RT

NVP 40.9570 38.8888
Lig 1 34.7014 52.3722
Lig 2 26.4688 42.9788
Lig 3 27.6387 44.7056
Lig 4 26.7918 41.0572
Lig 5 40.0960 45.3174
Lig 6 43.7165 45.1867
Lig 7 38.3035 46.1387
Lig 8 38.5926 47.2030
Lig 9 38.5508 48.2571

Lig 10 41.6896 48.7245

Through binding energies, it was possible to observe that several results were de-
lineated here: (i) For NVP, the binding energy with wt (40.9570 kcal/mol) is higher than
Y188CM-RT (38.8888 kcal/mol), illustrating the resistance of the Y188CM-RT virus against
NVP. (ii) For NVP-based ligands, binding energies with Y188CM-RT are commonly higher
than wt, revealing better inhibitory activities against Y188CM-RT. (iii) In comparison be-
tween ligands, the binding energies targeting the Y188CM-RT of 10 derivatives are higher
than NVP itself. Among the 10 ligands, the 3 ligands with the highest binding energies are
Lig 1 (52.3722 kcal/mol), Lig 9 (48.2571 kcal/mol) and Lig 10 (48.7245 kcal/mol), respectively.

To quantify the differences in binding energies with Y188CM-RT and wt, -CDOCKER
interaction energies of NVP-based ligands were assessed by paired t test (Table 3). Results
show statistical differences (p < 0.05) between Y188CM-RT and wt. Specifically, the mean
value of Y188CM-RT (46.1941 kcal/mol) is significantly higher than wt (35.6550 kcal/mol).
The above also shows the feasibility of drug optimization by fragment growth to overcome
the drug resistance.

Table 3. Difference in binding energy with Y188CM-RT and wt.

Type Samples Mean ± SD p

wt 10 35.6550 ± 6.4401
<0.05 *Y188CM-RT 10 46.1941 ± 3.1723

p value < 0.05 was considered statistically significant (Pearson Correlation Coefficient). * Represent significant
difference.

Y188CM is a missense mutation, with Tyr substituted by Cys at codon 188 [16,23].
After mutation, the pocket of RT combined with NNTRIs changed, and the internal space
increased significantly [37,38]. Thence, the ligands with a larger size were suitably ac-
commodated into the docking pocket. NVP-based ligands with fragment growth hold
larger MW and structural size, demonstrating consistency with docking pockets inside
Y188CM-RT. In addition, NVP is more dependent on ring-stacking interactions due to its
multi-ring skeleton, so as to lose more binding energy with the mutant. For NVP, increasing
the side chain with extensive contact at the end is significantly better than the substitute
benzene ring. Therefore, Lig 1, 5, 7, 8, 9 and 10 have higher docking scores than other
ligands, which is attributed to the addition of longer chains on the tail ternary ring.

In order to deeply analyze the binding interactions between new NVP-based ligands
and active amino acid residues, the interaction modes of the docking complexes were
clearly visualized. Figure 6 shows the docking mode of Lig 1, Lig 9 and Lig 10 as examples.
Herein, Figure 6a–c are the 2D schematic interaction diagrams, presenting active residues
as well as interaction type (including distance). Figure 6d exhibits the conformations of
ligands (Lig 1, Lig 9, Lig 10 and NVP) in the binding pocket as tangential mode; these
share an overlapping presentation due to the structural similarity among the four ligands.
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Thereby, the panorama of the active pocket with ligands inside is shown in Figure 6e, so
as to promote the identification and visualization for different ligands. Figure 6f shows
the comparison of active docking structures of Lig 9 and Lig 10 with NVP, while Figure 6g
shows Lig 1. By associating Figure 6d–f, high similarities can be found in the docking
conformations of Lig 9, Lig 10 and NVP, which is attributed to the similar derivations
from the NVP molecular skeleton. Accordingly, the generated new fragments are mainly
located at the edge area of the docking pocket, which neither significantly increases the
steric hindrance of the ligand structure itself, nor affects the interaction between NVP’s
own structural group, or atom and amino acid residues. Therefore, there are no significant
changes in Y188CM-Lig 9 and Y188CM-Lig 10 complexes compared with Y188CM-NVP.
The generated pyridine ring at P1 has no impact on their binding affinities. The newly
added chain merely increases 1 hydrogen bond, on the basis of retaining other interactions.

Figure 6. Cont.



Molecules 2022, 27, 7348 9 of 12

Figure 6. The binding mode between ligands (Lig 1, Lig 9 and Lig 10) and Y188CM-RT. (a–c) 2D
schematic interaction diagram between ligands (Lig 1, Lig 9 and Lig 10, respectively) and Y188CM-RT.
(d) The conformations of ligands in the binding pocket as tangential mode. (e) The docking pocket
with the ligands inside. Ligands are shown as in the stick model. Lig 1, Lig 9, Lig 10 and NVP are in
green, red, blue and cyan, respectively. (f,g) Comparison of active structures of Lig 9/10 and Lig 1
with NVP.

Whereas, the docking conformation of Lig 1 is obviously different from NVP through
Figure 6e,g. It presents a conspicuous deformation with a certain angle torsion, changing
the distances between atoms on Lig 1 and active residues. Inevitably, the interactions
between Y188CM-RT and Lig 1 change accordingly. It is inferred that Lig 1 has the largest
generated fragment, the longest chain and most atoms among all ligands. Taking Lig 1 as
an example, the effect of fragment growth on binding interactions was interpreted in detail.
Overall, Lig 1 retains original interactions between NVP and Y188CM-RT, and the newly
added groups promote interactions with amino acid residues farther away. Obviously, the
docking system newly increased 4 hydrophobic bonds (Lys 103, 4.49 Å; Val 108, 5.04 Å; Phe
227, 4.83 Å; Pro 236, 5.24 Å) and shortened the distance between the hydrogen donor on
the ligand and the residue Lys 101 from 2.72 Å to 1.88 Å, resulting in the strengthening of
the hydrogen bonding (Lys 101, 1.88 Å). Moreover, a salt bond (Glu 138, 2.40 Å) was newly
generated due to the existence of amino groups on 1,3-imidazole. Essentially, adding new
fragments at the NVP terminal can effectively improve its binding energy with Y188CM-RT
by greatly increasing the hydrophobic bond and adding hydrogen bond or salt bond, which
is consistent with the fragment growth theory. In addition, this effect is more obvious when
the growth fragment is large enough.

3.6. Molecular Dynamics Simulation

Based on the above, the docking complexes Y188CM–ligands (NVP, Lig 1, Lig 9 and
Lig 10) were selected for molecular dynamics simulation to explore their binding affinity.
Root-mean-square deviations (RMSD) and residue root-mean-square fluctuations (RMSF)
of Y188CM-ligand complexes were recorded and shown in Figure 7, which was compared
with the first frame of docking complexes. It was observed that RMSD values gradually
increased, but finally stabilized around specific values. The flexibility of amino acid residues
in complexes was evaluated by estimating RMSF from MD trajectory. Figure 7b was unable
to distinguish the difference in the flexibility that arises in response to different ligands
binding to the same protein.
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The averaged MM/PBSA Y188CM ligand binding free energies were calculated to
estimate stability, and the results are displayed in Table 4. In general, the binding energy
values of the three NVP-based ligands are slightly higher than those of NVP. Electrostatic
energy performed a major role as the component of binding energies. Meanwhile, Van der
Waals energy and polar solvation energy facilitated the protein–ligand binding, although
the effect was weak. However, the surface solvation energy was unfavorable.

Table 4. MM/PBSA binding free energies of top 3 ligands with Y188CM-RT.

Entry ∆GMM/Van(kcal/mol) ∆GMM/Ele(kcal/mol) ∆GPB (kcal/mol) ∆GSA (kcal/mol) ∆GBind (kcal/mol)

Lig 1 −3981.3802 −22,549.8082 −7350.4749 159.4452 −25,725.4551
Lig 9 −4029.5507 −22,448.9056 −7365.6155 160.0775 −25,970.9303

Lig 10 −4024.0403 −22,799.7019 −7020.5051 161.0332 −25,752.7602
NVP −3987.5892 −22,500.7683 −7328.0362 162.2186 −25,005.7664

∆GMM/Van: Van der Waals energy; ∆GMM/Ele: Electrostatic energy; ∆GPB: polar solvation, Poisson–Boltzmann
term; ∆GSA: non-polar solvation −94.7252.

4. Conclusions

In this study, new NVP-based ligands were designed by a fragment growth method,
and their binding affinities with Y188CM-RT were studied. Fragment growth based on
receptor–ligand binding sites is an effective method for structural optimization, which
increases affinities with Y188CM-RT by filling the cavity with fragments or linkers. A total
of 10 NVP-based ligands have significantly higher affinities with Y188CM-RT than wt,
indicating the potential applicability to overcome NNTRI resistances. Besides, the binding
mode demonstrated that adding large side chains with extensive contact at the terminal
is an efficient way, including of nitrogen-containing alkyl chains or nitrogen-containing
ring structures. On the basis of maintaining the interactions between NVP and Y188CM-RT
binding complexes additionally added hydrogen bonds or salt bonds. Additionally, the
larger the new fragment at the NVP’s terminal, the stronger binding affinity of the ligands
with Y188CM-RT. Furthermore, molecular dynamics results showed the good stability of
Y188CM-ligand complexes. Overall, this study shows that the NVP-based ligands with
fragment-growth have stronger binding affinity with Y188CM-RT, which can provide
references for NNTRIs development and AIDS treatment.
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