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Abstract: In this work, nine new bromophenol derivatives were designed and synthesized. The
alkylation reactions of (2-bromo-4,5-dimethoxyphenyl)methanol (7) with substituted benzenes 8–12
produced new diaryl methanes 13–17. Targeted bromophenol derivatives 18–21 were synthesized
via the O-Me demethylation of diaryl methanes with BBr3. Moreover, the synthesized bromophenol
compounds were tested with some metabolic enzymes such as acetylcholinesterase (AChE), carbonic
anhydrase I (CA I), and II (CA II) isoenzymes. The novel synthesized bromophenol compounds
showed Ki values that ranged from 2.53 ± 0.25 to 25.67 ± 4.58 nM against hCA I, from 1.63 ± 0.11 to
15.05 ± 1.07 nM against hCA II, and from 6.54 ± 1.03 to 24.86 ± 5.30 nM against AChE. The studied
compounds in this work exhibited effective hCA isoenzyme and AChE enzyme inhibition effects.
The results show that they can be used for the treatment of glaucoma, epilepsy, Parkinson’s as well
as Alzheimer’s disease (AD) after some imperative pharmacological studies that would reveal their
drug potential.

Keywords: bromophenol; diaryl methane; demethylation; carbonic anhydrase; acetylcholinesterase

1. Introduction

Nature is an important source in drug development research [1]. Marine life is one of
the sources that produce naturally occurring bromophenols. In the last decades, there have
been many studies on the isolation of bromophenols from marine algae [2–4], sponges [5,6],
ascidians [7], and corals [8]. In these studies, all these natural bromophenols showed
important biological activities. For instance, 5,5′-methylenebis(3,4-dibromobenzene-1,2-
diol) (1), isolated from the marine algae Rhodomela confervoides and Leathesia nana showed
anti-cancer activity [9]. In another research work, the isolation of 3,4-dibromo-5-(2-bromo-
6-(ethoxymethyl)-3,4-dihydroxybenzyl)benzene-1,2-diol (2) from red alga (R. confervoides)
and its antidiabetic activity were reported [10]. Naturally occurring 3,4,6-tribromo-5-(2,5-
dibromo-3,4-dihydroxybenzyl)benzene-1,2-diol (3), derived from the red alga Symphyocladia
latiuscula, has been proven to inhibit the aldose reductase enzyme [11]. The isolation from
the red algae V. lanosa of 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(hydroxymethyl)benzyl)
benzene-1,2-diol (4) together with glucose 6-phosphate dehydrogenase and their antioxi-
dant properties has also been addressed [12]. In addition, compound 1 has been reported
to have isocitrate lyase [13], cytotoxicity [14], antimicrobial [15], and feeding deterrent [16]
properties. Moreover, it has been reported that compounds 2 and 4 have antibacterial
activities [17] (Figure 1).

In our ongoing project on the total synthesis and biological evaluation of natural
bromophenols and their derivatives, we have already reported the first synthesis of bro-
mophenols 1 [18], 2 [19], and 3 [20]. In these studies, the antioxidant properties of 1, the
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CA inhibition effects of 2 and 3 were described [18–20]. From our early studies, we con-
cluded that not only naturally occurring bromophenols but also their synthetic derivatives,
including 4-(2-bromo-4-hydroxybenzyl)benzene-1,2-diol (5) and 2-benzyl-5-bromobenzene-
1,4-diol (6), exhibit CA, AChE, and BChE inhibitory properties [21–23] (Figure 1).
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Figure 1. Some important natural and synthetic bromophenols. 

In our ongoing project on the total synthesis and biological evaluation of natural bro-
mophenols and their derivatives, we have already reported the first synthesis of bromo-
phenols 1 [18], 2 [19], and 3 [20]. In these studies, the antioxidant properties of 1, the CA 
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cluding 4-(2-bromo-4-hydroxybenzyl)benzene-1,2-diol (5) and 2-benzyl-5-bromoben-
zene-1,4-diol (6), exhibit CA, AChE, and BChE inhibitory properties [21–23] (Figure 1). 
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dioxide (CO2) to protons (H+) and bicarbonate ions (HCO3−) [24–26]. They take part in a 
variety of physiological functions, such as ion transport, fatty acid metabolism, bone re-
sorption, pH regulation, and gas exchange. Furthermore, edema and glaucoma occur 
when the activity of CAs reaches abnormal levels [27–29]. Sulfonamides are used as CA 
inhibitors [30], including N-substituted phthalazine sulfonamides [31], sulphonamide 
Schiff bases [32], imidazolinone-based benzenesulfonamides and thiourea-substituted 
benzenesulfonamides [33], imidazolinone-based benzenesulfonamides [34], pyrazoline 
benzensulfonamides [35–37], hetaryl sulfonamides [38], phenolic sulfonamides [39], and 
quinazolin-sulfonamide [40]. However, various sulfonamides unspecifically block all CA 
isoforms, which results in adverse side effects. The development of non-sulphonamide-
based CAIs is necessary because a sizable section of the population cannot be treated with 
sulphonamides due to sulfa allergies [41]. 

By hydrolyzing the neurotransmitter acetylcholine (ACh), the enzyme acetylcholin-
esterase (AChE) modulates cholinergic transmission at the synaptic level [42,43]. AChE 
affects cell adhesion, proliferation, and differentiation; the formation of tumors, apoptosis, 
and amyloid protein deposition in organs as well as AChE are all important cholinergic 
functions [44–46]. Abnormal levels of AChE are associated widely with neurodegenera-
tive disorders such as myasthenia gravis, Parkinson’s disease (PD), and Alzheimer’s dis-
ease (AD). Currently, oral active AChE inhibitors that only provide palliative, sympto-
matic relief are the mainstay of treatment for AD [47–49]. 

The construction or extension of chemical libraries is very important for the develop-
ment of novel lead compounds in the field of drug design and discovery. Therefore, in 
this study, we synthesized some novel bromophenols and evaluated their hCA I, hCA II, 
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2. Results and Discussion 
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To synthesize desired diaryl methane compounds 13–17, compound 7 was first synthe-
sized according to the procedure described by Crombie and Josephs [50]. The alkylation 
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Carbonic anhydrases (CAs) catalyze the reversible hydration of water and carbon
dioxide (CO2) to protons (H+) and bicarbonate ions (HCO3

−) [24–26]. They take part in
a variety of physiological functions, such as ion transport, fatty acid metabolism, bone
resorption, pH regulation, and gas exchange. Furthermore, edema and glaucoma occur
when the activity of CAs reaches abnormal levels [27–29]. Sulfonamides are used as CA
inhibitors [30], including N-substituted phthalazine sulfonamides [31], sulphonamide
Schiff bases [32], imidazolinone-based benzenesulfonamides and thiourea-substituted
benzenesulfonamides [33], imidazolinone-based benzenesulfonamides [34], pyrazoline
benzensulfonamides [35–37], hetaryl sulfonamides [38], phenolic sulfonamides [39], and
quinazolin-sulfonamide [40]. However, various sulfonamides unspecifically block all CA
isoforms, which results in adverse side effects. The development of non-sulphonamide-
based CAIs is necessary because a sizable section of the population cannot be treated with
sulphonamides due to sulfa allergies [41].

By hydrolyzing the neurotransmitter acetylcholine (ACh), the enzyme acetylcholinesterase
(AChE) modulates cholinergic transmission at the synaptic level [42,43]. AChE affects
cell adhesion, proliferation, and differentiation; the formation of tumors, apoptosis, and
amyloid protein deposition in organs as well as AChE are all important cholinergic func-
tions [44–46]. Abnormal levels of AChE are associated widely with neurodegenerative
disorders such as myasthenia gravis, Parkinson’s disease (PD), and Alzheimer’s disease
(AD). Currently, oral active AChE inhibitors that only provide palliative, symptomatic
relief are the mainstay of treatment for AD [47–49].

The construction or extension of chemical libraries is very important for the develop-
ment of novel lead compounds in the field of drug design and discovery. Therefore, in this
study, we synthesized some novel bromophenols and evaluated their hCA I, hCA II, and
AChE inhibitory properties.

2. Results and Discussion
2.1. Chemistry

In this study, novel bromophenol derivatives 18–21 were synthesized in two steps. To
synthesize desired diaryl methane compounds 13–17, compound 7 was first synthesized
according to the procedure described by Crombie and Josephs [50]. The alkylation of
substituted benzenes is a very important reaction for the synthesis of novel alkyl benzenes.
The synthesis of diaryl methanes can be achieved via the reaction of benzylalcohol with
substituted benzenes in the presence of AlCl3 [51]. The application of this methodology
to (2-bromo-4,5-dimethoxyphenyl)methanol (7) and benzene derivatives 8–12 in CH2Cl2
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(DCM) in the presence of AlCl3 afforded novel compounds 13–16 and a known compound
17 [52], with good yields (75–92%). The O-Me demethylation of arylmethyl ethers with
BBr3 is an important strategy for the synthesis of bioactive phenols [21]. Therefore, the
targeted novel bromophenols 18–21 were synthesized from the demethylation reaction of
13–16 with BBr3 in DCM, with the yields ranging from 73 to 82% (Scheme 1). The structures
of all the compounds described in this paper were characterized by IR, elemental analysis,
and the 1H and 13C-NMR techniques.
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2.2. Biochemistry

Since abnormal levels or behaviors of the majority of the sixteen hCA isoenzymes
have frequently been linked to several human diseases [53–55]. These CA isoforms are
intensively found in different tissues and are involved in many important mechanisms
such as electrolyte secretion, cell differentiation, bone resorption, calcification, pH and
CO2 homeostasis, gluconeogenesis, and neurotransmission in mammals [56–58]. Hence,
many pharmaceutical uses have notable goals for a variety of CA isoforms, including
antiglaucoma drugs, anticonvulsant factors/diagnostic, diuretics, antiobesity, and antitu-
mor tools [59,60]. For instance, inhibitors of the hCAs IX and XII isozymes have been used
as antitumor and antimetastatic agents [61,62].

High amounts of the hCA I isoform have been found in the red blood cells and the
gastrointestinal tract of mammals. The inhibition of this enzyme can be a key component
in the treatment of conditions or diseases, including cerebral and retinal edema [63,64].
The enzyme results are given in Table 1 and Figure 2. In the current study, all the novel,
synthesized a series of bromophenols (13–21) efficiently inhibited the hCA I isozyme, with
IC50 values ranging from 12.38 to 38.50 nM and Ki values ranging from 2.53 ± 0.25 to
25.67 ± 4.58 nM. The compound 1-bromo-4,5-dimethoxy-2-(5-methoxy-2-methylbenzyl)
benzene (14) demonstrated the best inhibition (Ki: 2.53 ± 0.25 nM) (Figure 2). However,
the Ki values of novel compounds (13–21) towards hCA I were decreased as follows: 14
(2.53 ± 0.25 nM) > 15 (9.35 ± 1.88 nM) > 21 (11.00 ± 3.83 nM) > 18 (12.49 ± 0.66 nM) > 16
(12.80 ± 0.52 nM) > 20 (13.37 ± 2.29 nM) > 17 (18.76 ± 4.97 nM) > 19 (20.35 ± 2.92 nM)
> 13 (25.67 ± 4.58 nM). Similarly, all the novel, synthesized a series of bromophenols
(13–21) demonstrated competitive inhibition against hCA I isozyme. According to Table 1,
the binding of the bromo group to the 4th position of compound 16 caused a 1.37-fold
decrease in the Ki value, which increased the inhibition efficiency (15, Ki: 9.35 ± 1.88 nM).
In compound 16, methyl bonding (14) instead of the methoxy group showed a 5.06-fold
greater effect on inhibition. The methoxy group instead of the -OH group in the compounds
were more effective in inhibiting hCA I. For example, when compounds 14 and 19 are
compared with each other, there is an 8.04-fold difference in the inhibition value.
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Table 1. Inhibition parameters of the novel synthesized bromophenols (13–21) against AChE, hCA I,
and hCA II enzymes.

Compounds
IC50 (nM) Ki (nM)

hCA I r2 hCA II r2 AChE r2 hCA I hCA II AChE

13 38.50 0.9848 21.00 0.9778 14.74 0.9862 25.67 ± 4.58 1.63 ± 0.11 11.04 ± 0.61
14 19.80 0.9833 14.74 0.9821 11.95 0.9743 2.53 ± 0.25 4.28 ± 0.86 11.62 ± 2.75
15 20.38 0.9837 15.07 0.9870 13.08 0.9734 9.35 ± 1.88 2.62 ± 0.13 24.86 ± 5.30
16 21.00 0.9748 15.75 0.9817 13.86 0.9882 12.80 ± 0.52 7.77 ± 0.57 16.27 ± 2.98
17 27.72 0.9845 23.10 0.9824 21.00 0.9767 18.76 ± 4.97 10.33 ± 1.88 21.04 ± 4.72
18 15.40 0.9714 11.36 0.9972 8.35 0.9825 12.49 ± 0.66 9.15 ± 1.36 7.92 ± 1.38
19 31.50 0.9868 27.72 0.9800 20.38 0.9871 20.35 ± 2.92 15.05 ± 1.07 17.43 ± 3.15
20 19.25 0.9812 14.14 0.9841 11.75 0.9921 13.37 ± 2.29 6.21 ± 1.01 8.32 ± 0.69
21 12.38 0.9783 7.45 0.9836 9.90 0.9869 11.00 ± 3.83 4.97 ± 0.59 6.54 ± 1.03

Acetazolamide 48.15 0.9812 30.12 0.9856 - - 40.44 ± 4.67 28.13 ± 3.56 -
Tacrine - - - - 38.45 0.9756 - - 32.44 ± 2.13

Donepezil - - - - 23.05 0.9989 17.93 ± 2.83

The dominant cytosolic hCA II isoform plays a critical function in disorders such as
glaucoma [65]. In fact, the production of HCO3

− acts as a method to introduce water and
Na+ ions into the eye, increasing intraocular pressure. As a result, hCA II isozyme inhibition
lowers HCO3

− generation and eye pressure [66,67]. In the current study, bromophenols (13–
21) effectively inhibited hCA II with IC50s ranging from 7.45 to 27.72 nM and Kis ranging
from 1.63 ± 0.11 to 15.05 ± 1.07 nM. Compound 13 demonstrated the best inhibition effects
(Ki: 1.63 ± 0.11 nM) (Figure 2). When the Ki values of the studied compounds (13–21)
were evaluated against hCA II, the following order was found: 13 (1.63 ± 0.11 nM) > 15
(2.62 ± 0.13 nM) > 14 (4.28 ± 0.86 nM) > 21 (4.97 ± 0.59 nM) > 20 (6.21 ± 1.01 nM) > 16
(7.77 ± 0.57 nM) > 18 (9.15 ± 1.36 nM) > 17 (10.33 ± 1.88 nM) > 19 (15.05 ± 1.07 nM). Fur-
thermore, all the novel, synthesized a series of bromophenols (13–21) exhibited competitive
inhibition against the physiologically dominant hCA II isoenzyme. The proposed interac-
tion between the most powerful bromophenols (20) and the CA II isoforms is illustrated
in Figure 3. Bromophenol (20) has two dihydroxy benzyl rings. A second hydrogen bond
was modeled between the oxygen atom, which attached to the -OH group at the phenol
moiety in the ortho-position, and the amide NH of Thr199, a universally conserved amino
acid residue in CAs. Thus, phenolic compounds and derivatives bind non-classically to
CA, providing clues for the identification of new types of CA inhibitors. Such inhibition
mechanisms of phenolic compounds, including bromophenols, are known [68,69]. As
shown in Table 1, the attachment of three methoxy groups caused a decrease in the hCA
II inhibition value. The methoxy group at positions 2, 3, and 4 may have created a steric
hindrance in enzyme inhibition. As in the hCA I isoform, the presence of the methoxy
group instead of the hydroxyl group in the compounds was more effective in inhibiting
hCA II. When the compounds of 19 and 21 were compared with each other, the presence of
the hydroxyl group instead of the methyl group caused a 3.03-fold increase in the inhibition
value. A similar situation was observed in hCA I inhibition. This may be because the
hydroxyl group is more electronegative than the methyl group.

ACh is used as a neurotransmitter component, and AChE is a crucial enzyme that
catalyzes ACh breakdown. This enzyme has been linked to therapeutic targets for AD [70,71].
The hypothesis was put forth to explain AD that synaptic depression is hampered because
the cholinergic neuron cells impede ACh hydrolysis [72,73]. ACh hydrolysis is hindered
because of AChE inhibition. As a result, the development of AChE enzyme inhibitor drugs
and/or modulators is of great interest because it is currently one of the main goals in the
fight against AD [74,75]. In the current study, bromophenols (13–21) effectively inhibited
AChE with IC50s ranging from 8.35 to 21.00 nM and Kis ranging from 6.54 ± 1.03 to
24.86 ± 5.30 nM. The inhibitor effects of the studied compounds (13–21) against AChE
were decreased as follows: 21 (6.54 ± 1.03 nM) > 18 (7.92 ± 1.38 nM) > 20 (8.32 ± 0.69 nM)
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> 13 (11.04 ± 0.61 nM) > 14 (11.62 ± 2.75 nM) > 16 (16.27 ± 2.98 nM) > 19 (17.43 ± 3.15 nM)
> 17 (21.04 ± 4.72 nM) > 15 (24.86 ± 5.30 nM). In addition, all the novel synthesized a series
of bromophenols (13–21) showed competitive inhibition against the cholinergic enzyme of
AChE. As shown in Table 1, in the methoxy-bonded compound groups, the fact that the
methyl group (14) is attached instead of the bromine ion (13) did not cause any change in
inhibition. When compounds 15 and 16 are compared, the addition of the bromine group
to the 4th position caused a rise in the inhibition value. The presence of the -OCH3 groups
in the middle position without the bromine group was more effective in AChE inhibition
(15, Ki: 24.86 ± 5.30 nM; 16, Ki: 16.27 ± 2.98 nM). As in hCA I and II, the presence of
the methoxy group instead of the hydroxyl group in the compounds was more effective
in inhibiting AChE. When compounds 19 and 21 were compared with each other, the
presence of the hydroxyl group instead of the methyl group caused a 2.67-fold increase in
the inhibition value.

Molecules 2022, 27, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 3. The proposed binding mechanism between the CA II isoenzyme and 4-bromo-5-(4-bromo-
2,5-dihydroxybenzyl)benzene-1,2-diol (20) by anchoring to the zinc ion (Zn2+) coordinated water 
(H2O)/hydroxide ion (-OH). 

ACh is used as a neurotransmitter component, and AChE is a crucial enzyme that 
catalyzes ACh breakdown. This enzyme has been linked to therapeutic targets for AD 
[70,71]. The hypothesis was put forth to explain AD that synaptic depression is hampered 
because the cholinergic neuron cells impede ACh hydrolysis [72,73]. ACh hydrolysis is 
hindered because of AChE inhibition. As a result, the development of AChE enzyme in-
hibitor drugs and/or modulators is of great interest because it is currently one of the main 
goals in the fight against AD [74,75]. In the current study, bromophenols (13–21) effec-
tively inhibited AChE with IC50s ranging from 8.35 to 21.00 nM and Kis ranging from 6.54 
± 1.03 to 24.86 ± 5.30 nM. The inhibitor effects of the studied compounds (13–21) against 
AChE were decreased as follows: 21 (6.54 ± 1.03 nM) > 18 (7.92 ± 1.38 nM) > 20 (8.32 ± 0.69 
nM) > 13 (11.04 ± 0.61 nM) > 14 (11.62 ± 2.75 nM) > 16 (16.27 ± 2.98 nM) > 19 (17.43 ± 3.15 
nM) > 17 (21.04 ± 4.72 nM) > 15 (24.86 ± 5.30 nM). In addition, all the novel synthesized a 
series of bromophenols (13–21) showed competitive inhibition against the cholinergic en-
zyme of AChE. As shown in Table 1, in the methoxy-bonded compound groups, the fact 
that the methyl group (14) is attached instead of the bromine ion (13) did not cause any 
change in inhibition. When compounds 15 and 16 are compared, the addition of the bro-
mine group to the 4th position caused a rise in the inhibition value. The presence of the -
OCH3 groups in the middle position without the bromine group was more effective in 
AChE inhibition (15, Ki: 24.86 ± 5.30 nM; 16, Ki: 16.27 ± 2.98 nM). As in hCA I and II, the 
presence of the methoxy group instead of the hydroxyl group in the compounds was more 
effective in inhibiting AChE. When compounds 19 and 21 were compared with each other, 
the presence of the hydroxyl group instead of the methyl group caused a 2.67-fold increase 
in the inhibition value.  
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2,5-dihydroxybenzyl)benzene-1,2-diol (20) by anchoring to the zinc ion (Zn2+) coordinated water
(H2O)/hydroxide ion (-OH).

3. Materials and Methods
3.1. General

Commercially purchased chemicals were used without further purification. Solvents
were used after distillation or after drying with various drying agents. The melting points
were determined using a capillary melting equipment and were not corrected (Buechi
530). A PerkinElmer spectrophotometer was used to collect IR spectra (Lancashire, Great
Britain) from liquids in 0.1 mm cells. On a 400 (100) MHz (Varian, Danbury, CT) and 400
(100) MHz (Bruker, Fallanden, Switzerland) spectrometers, the 1H and 13C NMR spectra
were collected; d was in ppm, with Me4Si as the internal standard. On a Leco CHNS-932
apparatus (St. Joseph, Missouri, USA), elemental analyses were performed. The silica gel
was used for column chromatography (60-mesh, Merck, Darmstadt, Germany). PLC stands
for preparative thick-layer chromatography, which used 1 mm of silica gel (60 PF, Merck,
Darmstadt, Germany) on glass plates. The synthesized compounds’ 1HNMR and 13C NMR
spectra are provided as Supplementary Materials.
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3.2. Chemistry

The synthesis of compound 7 was performed according to procedure of Crombie
and Joseph [50]. The synthesis of compounds 8–12 were carried out according to the
method given in the literature [51]. The compound 1-(2-bromo-4,5-dimethoxybenzyl)-2,3,4-
trimethoxy benzene (17) was synthesized differently in this work [52].

3.2.1. General Synthesis Procedure for the Synthesis of Compounds 13–17

The compound 2-Bromo-4,5-dimethoxybenzenemethanol (7) (5 mmol), the correspond-
ing benzene derivatives (8–12) (5 mmol), and AlCl3 (7 mmol) were dissolved in 30 mL
of dry CH2Cl2. The solution was cooled to 0 ◦C in an ice bath and stirred for 24 h. The
reaction mixture was quenched by ice-cold water (20 mL) to remove unreacted AlCl3. The
organic phase was separated, and the water phase was extracted with CH2Cl2 (2 × 30 mL).
The combined organic layers were dried over anhydrous Na2SO4, and the solvent was
evaporated. Then, the crude products were separated on a silica gel column by using
hexane/EtOAc to obtain the pure products.

3.2.2. 1-Bromo-2-(2-bromo-4-methoxybenzyl)-4,5-dimethoxybenzene (13)

Yield: 83%, Rf: 0.53, cream solid. M.p. 84–86 ◦C. 1H-NMR (400 MHz, CDCl3) δ: 7.15
(1H, d, J = 2.6 Hz, Ar-H), 7.06 (1H, s, Ar-H), 6.89 (1H, d, J = 8.5 Hz, Ar-H), 6.77 (1H, dd,
J = 8.5 Hz, 2.6 Hz, Ar-H), 6.57 (1H, s, Ar-H), 4.06 (2H, s, C-H), 3.87 (3H, s, OCH3), 3.78
(3H, s, OCH3), 3.75 (3H, s, OCH3). 13C-NMR (100 MHz, CDCl3) δ: 158.6 (OC), 148.2 (OC),
138.7 (OC), 131.2 (C), 131.2 (C), 130.7 (CH), 124.8 (C-Br), 118.0 (CH), 115.6 (C-Br), 114.7
(CH), 113.6 (CH), 113.5 (CH), 56.2 (OCH3), 56.0 (OCH3), 55.5 (OCH3), 40.6 (CH2). IR (cm−1,
CH2Cl2): 3080, 3001, 2906, 2837, 1603,1567, 1504, 1463, 1435, 1379, 1341, 1256, 1218, 1162,
1031, 961, 845. Anal. Calcld for C16H16Br2O3; C, 46.18; H,3.88. Found: C, 45.88; H, 3.90.

3.2.3. 1-Bromo-4,5-dimethoxy-2-(5-methoxy-2-methylbenzyl)benzene (14)

Yield: 86%, Rf: 0.53, white solid. M.p. 93–95 ◦C. 1H NMR (400 MHz, CDCl3) δ: 7.03
(1H, s, Ar-H), 6.99 (1H, dd, J = 8.4, 1.6 Hz, Ar-H), 6.78 (1H, s, Ar-H), 6.76 (1H, d, J = 8.4 Hz,
Ar-H), 6.67 (1H, s, Ar-H), 3.98 (2H, s, C-H), 3.85 (3H, s, OCH3), 3.81 (3H, s, OCH3), 3.74 (3H,
s, OCH3), 2.22 (3H, s, CH3),13C NMR (100 MHz, CDCl3) δ: 155.2 (OC), 148.3 (OC), 147.8
(OC), 132.2 (C), 130.6 (C), 129.7 (CH), 128.0 (C), 127.7 (CH), 115.4 (C-Br), 114.7 (CH), 113.8
(CH), 110.2 (CH), 56.2 (OCH3), 55.9 (OCH3), 55.5 (OCH3),35.4 (CH2), 20.6 (CH3). Anal.
Calcld for C17H19Br2O3; 58.13; H, 5.45. Found: C, 57.65; H, 5.39.

3.2.4. 1-Bromo-2-(4-bromo-2,5-dimethoxybenzyl)-4,5-dimethoxybenzene (15)

Yield: 90%, Rf: 0.43, white solid. M.p. 104–106 ◦C. 1H NMR (400 MHz, CDCl3) δ: 7.06
(1H, s, Ar-H), 7.03 (1H, s, Ar-H), 6.67 (1H, s, Ar-H), 6.64 (1H, s, Ar-H), 3.96 (2H, s, C-H), 3.85
(3H, s, OCH3), 3.80 (3H, s, OCH3), 3.76 (3H, s, OCH3), 3.74 (3H, s, OCH3), 13C NMR (100
MHz, CDCl3) δ: 151.7 (OC), 150.1 (OC), 148.4 (OC), 148.1 (OC), 131.3 (C), 128.6 (C), 115.8
(C-Br), 115.5, 114.7 (CH), 114.6 (CH), 113.6 (CH), 109.2 (CH), 56.9 (OCH3), 56.1 (2.OCH3),
56.0 (OCH3), 35.4 (CH2). IR (cm−1, CH2Cl2): 2934, 2838, 1602, 1449, 1463, 1378, 1257, 1212,
1163, 1034, 852. Anal. Calcld for C17H18Br2O4: C, 45.77; H, 4.07. Found: C, 45.60; H, 4.05

3.2.5. 1-Bromo-2-(2,5-dimethoxybenzyl)-4,5-dimethoxybenzene (16)

Yield: 75%, Rf: 0.56, cream solid. M.p. 97–99 ◦C. 1H NMR (400 MHz, CDCl3) δ: 7.03
(1H, s, Ar-H), 6.81 (1H, d, J = 8.0 Hz, Ar-H), 6.72 (1H, dd, J = 8.0 Hz, 3.0 Hz, Ar-H), 6.69 (1H,
s, Ar-H), 6.57 (1H, d, J = 3.0 Hz, Ar-H), 3.99 (2H, s, C-H), 3.86 (3H, s, OCH3), 3.81 (3H, s,
OCH3), 3.75 (3H, s, OCH3), 3.71 (3H, s, OCH3), 13C NMR (100 MHz, CDCl3) δ: 153.5 (OC),
151.6 (OC), 148.4 (OC), 147.9 (OC), 131.7 (C), 129.6 (C), 116.5 (CH), 115.4 (C-Br), 114.7 (CH),
113.7 (CH), 111.2 (CH), 111.1 (CH), 56.1 (OCH3), 55.9 (OCH3), 55.8 (OCH3), 55.6 (OCH3),
35.5 (CH2). IR (cm−1, CH2Cl2): 2997, 2937, 2834, 1602, 1574, 1500, 1463, 1436, 1379, 1257,
1217, 1163, 1112, 1030, 933, 860. Anal. Calcld for C17H19BrO4; C, 55.60; H,5.21. Found: C,
54.95; H, 5.22.
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3.2.6. 1-Bromo-2-(2,5-dimethoxybenzyl)-4,5-dimethoxybenzene (17)

1-(2-bromo-4,5dimethoxybenzyl)-2,3,4-trimethoxybenzene (17) was synthesized by a
different method than that of described previously [52].

Yield: 92%, Rf: 0.30, white solid. M.p. 79–80 ◦C, Lit. Mp:75–77 ◦C, 1H NMR (400
MHz, CDCl3) δ: 7.02 (1H, s, Ar-H), 6.68 (1H, d, J = 8.5 Hz, Ar-H), 6.63 (1H, s, Ar-H), 6.57
(1H, d, J = 8.6 Hz, Ar-H), 3.96 (2H, s, C-H), 3.87 (3H, s, OCH3), 3.84 (3H, s, OCH3), 3.83 (3H,
s, OCH3), 3.82 (3H, s, OCH3), 3.73 (3H, s, OCH3). 13C NMR (100 MHz, CDCl3) δ: 152.6
(OC), 152.0 (OC), 148.5 (OC), 148.1 (OC), 142.5 (OC), 132.5 (C), 126.1 (C), 124.3 (CH), 115.5
(CH), 114.7 (C-Br), 113.8 (CH), 107.3 (CH), 56.4 (OCH3), 56.3 (OCH3), 56.2 (OCH3), 56.1
(OCH3), 56.0 (OCH3), 35.4 (CH2). Anal. Calcld for C18H21BrO5; C, 54.42; H, 5.33. Found: C,
54.10; H, 5.21.

3.2.7. General Procedure for the Synthesis of Bromophenols 18–21

Diaryl methane compounds (13–17) were dissolved in CH2Cl2. The solutions were
cooled to 0 ◦C. To these solutions, for each methoxy group in the structure of these com-
pounds, 3 equivalents of BBr3 were added dropwise under N2 atmosphere. Then, the
mixtures were stirred at rt for 24 h. The reaction medium was cooled to 0 ◦C. Ice (20 g)
and CH2Cl2 (50 mL) were added to the reaction medium and the organic phases were
separated. Then, the water phase was extracted with ethyl acetate (2 × 50 mL). The organic
layers were combined, dried over anhydrous Na2SO4 and the solvents were evaporated.
The residue was crystallized from EtOAc/Hexane.

3.2.8. 4-Bromo-5-(2-bromo-4-hydroxybenzyl)benzene-1,2-diol (18)

Yield: 75%, white solid. M.p. 150–153 ◦C. 1H NMR (400 MHz, Acetone-d6) δ: 6.99
(1H, d, J = 2.5 Hz, Ar-H), 6.95–6.91 (1H, m, Ar-H), 6.80 (1H, d, J = 8.4 Hz, Ar-H), 6.68
(1H, dd, J = 8.4, 2.5 Hz, Ar-H), 6.36 (1H, s, Ar-H), 3.80 (2H, s, CH). 13C NMR (100 MHz,
Acetone-d6) δ: 157.7 (OC), 145.4 (OC), 140.3 (OC), 132.3 (C), 130.8 (C), 127.2 (C-Br), 120.0
(CH), 119.8 (CH), 117.8 (C-Br), 117.2 (CH), 115.7 (CH), 113.3 (CH), 40.2 (CH2). IR (cm−1,
CH2Cl2): 3324, 2392, 1686, 1605, 1490, 1429, 1350, 1274, 1226, 1185, 1143, 1031, 919, 872.
Anal. Calcld for C13H10Br2O3; C41.75; H, 2.69. Found: C, 41.97; H, 2.63.

3.2.9. 4-Bromo-5-(2-bromo-4-hydroxybenzyl)benzene-1,2-diol (19)

Yield: 78%, cream solid. M.p.157–159 ◦C. 1H NMR (400 MHz, Acetone-d6) δ 6.91 (1H,
s, Ar-H), 6.74 (1H, dd, J = 8.0, 2.0 Hz, Ar-H), 6.65 (1H, s, Ar-H), 6.64 (1H, d, J = 8.0 Hz, Ar-H),
6.49 (1H, s, Ar-H), 3.75 (2H, s, CH), 2.04 (3H, s, CH3). 13C NMR (100 MHz, Acetone-d6) δ
153.6 (OC), 145.5 (OC), 145.1 (OC), 132.2 (C), 131.6 (C), 128.5 (C), 127.0 (CH), 122.1 (CH),
119.5 (CH), 118.1 (CH), 115.6 (C-Br), 113.4 (CH), 35.4 (CH2), 20.3 (CH3). IR (cm−1, CH2Cl2):
3200, 2389, 1502, 1502, 1421, 1356, 1276, 1182, 1045, 919, 814. Anal. Calcld for C14H13BrO3;
C 54.39; H, 4.24. Found: C, 54.10; H, 4.06.

3.2.10. 4-Bromo-5-(4-bromo-2,5-dihydroxybenzyl)benzene-1,2-diol (20)

Yield: 70%, cream solid. M.p.159–161 ◦C. 1H NMR (400 MHz, Acetone-d6) δ 8.11
(1H, s, OH), 8.08 (1H, s, OH), 8.04 (1H, s, OH), 7.99 (1H, s, OH), 6.91 (1H, s, Ar-H), 6.89
(1H, s, Ar-H), 6.54 (1H, s, Ar-H), 6.39 (1H, s, Ar-H), 3.69 (2H, s, CH). 13C NMR (100 MHz,
Acetone-d6) δ 149.4 (OC), 147.9 (OC), 145.7 (OC), 145.5 (OC), 131.3 (C), 128.5 (C), 119.7
(CH), 119.4 (CH), 118.3 (C-Br and CH), 113.5 (CH), 107.2 (C-Br), 35.3 (CH2). IR (cm−1,
CH2Cl2): 3215, 1685, 1602, 1500, 1420, 1355, 1274, 1192, 997, 935, 873. Anal. Calcld for
C13H10Br2O4; C 40.03; H, 2.58. Found: C, 40.41; H, 2.50.

3.2.11. 4-Bromo-5-(2,5-dihydroxybenzyl)benzene-1,2-diol (21)

Yield: 82%, dark yellow. M.p.150–153 ◦C. 1H NMR (400 MHz, Acetone-d6) δ 6.91 (1H,
s, Ar-H), 6.58 (1H, d, J = 8.5 Hz, Ar-H), 6.53 (1H, s, Ar-H), 6.40 (1H, dd, J = 8.5, 3.0 Hz,
Ar-H), 6.27 (1H, d, J = 3.0 Hz, Ar-H), 3.76 (2H, s, CH). 13C NMR (100 MHz, Acetone-d6)
δ 151.15 (OC), 148.65 (OC), 145.52 (OC), 145.20 (OC), 145.18 (OC), 132.06 (C), 128.15 (C),
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119.61 (CH), 118.31 (CH), 117.44 (CH), 117.44 (CH), 116.28 (C-Br), 114.22 (CH), 35.59 (CH2).
IR (cm−1, CH2Cl2): 3217, 2395, 2230, 1687, 1595, 1502, 1422, 1279, 1195, 1049, 876.Anal.
Calcld for C13H11BrO4; C 50.18; H, 3.56. Found: C, 50.20; H, 3.45.

3.3. Biochemical Studies
3.3.1. Enzyme Activity Assays

In this work, the in vitro inhibition effects of bromophenols (13–21) on AChE activity
were determined by Ellman’s method [76], as previously described [77]. The results were
recorded spectrophotometrically at 412 nm. Acetylthiocholine iodide (AChI) was used as
substrate, according to a prior study [78]. Both hCA isoforms were purified by using the
Sepharose-4B-L-Tyrosine-sulfanilamide affinity technique [79]. Then, the purity of these
CA isoenzymes was defined via the SDS-PAGE purity technique [80,81]. Furthermore,
the hCA activity was determined using the esterase method at 348 nm, according to the
method of Verpoorte et al. [82] and as given in prior studies [83,84].

3.3.2. Enzyme Inhibition Assays

In order to investigate the in vitro inhibitory mechanisms of bromophenols (13–21),
kinetic studies were performed at different concentrations of bromophenols and various
substrates [85,86]. From the Lineweaver–Burk graphs, the IC50 and Ki values of bromophe-
nol (13–21) derivatives were calculated, and the inhibition type of bromophenols (13–21)
against AChE and hCAs was determined, as given in prior studies [87–89].

3.3.3. Statistical Analyses

Statistical analyses were performed via an unpaired Student’s t-test with the use of
the statistical program IBM SPSS Statistics 20. The results were recorded as means with
their standard deviation (SD). p < 0.05 was the minimum significance level.

4. Conclusions

In the current study, new bromophenols were synthesized, and their hCAs and AChE
inhibitory properties were investigated. The presence of different biologically functional
groups (-OH, -OCH3, and -Br) in aromatic scaffolds of synthesized compounds influenced
the activity of the studied enzymes. Our findings indicate that the investigated compounds
13–21 exhibited efficient hCA I, II, and AChE inhibition effects in the low nanomolar levels.
These experimental findings confirm that substituted methoxy (-OCH3) and bromophenols
may be used as leads for generating potent CAI and AChE inhibitors associated with some
global disorders, including AD, epilepsy, and glaucoma.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217426/s1. 1H NMR and 13C NMR spectra of syn-
thesized compounds.
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V.; et al. Synthesis and bioactivity of several new hetaryl sulfonamides. J. Enzyme Inhib. Med. Chem. 2017, 32, 137–145. [CrossRef]

39. Gocer, H.; Akıncıoglu, A.; Goksu, S.; Gulcin, I. Carbonic anhydrase inhibitory properties of phenolic sulfonamides derived from
dopamine related compounds. Arab. J. Chem. 2017, 10, 398–402. [CrossRef]

40. Sepheri, N.; Mohammadi-Khanaposhtani, M.; Asemanipoor, N.; Hosseini, S.; Biglar, M.; Larijani, B.; Mahdavi, M.; Hamedifar, H.;
Taslimi, P.; Sadeghian, N.; et al. Novel quinazolin-sulfonamid derivatives: Synthesis, characterization, biological evaluation, and
molecular docking studies. J. Biomol. Struct. 2022, 40, 3359–3370.

41. Aydin, B.O.; Anil, D.; Demir, Y. Synthesis of N-alkylated pyrazolo [3,4-d] pyrimidine analogs and evaluation of acetylcholinesterase
and carbonic anhydrase inhibition properties. Arch. Pharm. 2021, 354, 2000330. [CrossRef] [PubMed]
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