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Abstract: Diosmin is widely used in the treatment of chronic venous diseases and hemorrhoids. Based
on Raman and infrared reflection spectra of powdered tablets in the mid- and near-infrared regions
and results of reference high-performance liquid chromatographic analysis, partial least squares
models that enable fast and reliable quantification of the studied active ingredient in tablets, without
the need for extraction, were elaborated. Eight commercial preparations containing diosmin in the
66–92% (w/w) range were analyzed. In order to assess and compare the quality of the developed
chemometric models, the relative standard errors of prediction for calibration and validation sets
were calculated. We found these errors to be in the 1.0–2.4% range for the three spectroscopic
techniques used. Diosmin content in the analyzed preparations was obtained with recoveries in the
99.5–100.5% range.

Keywords: diosmin; Raman; infrared; NIR; quantitative analysis; pharmaceutical preparations;
PCA; PLS

1. Introduction

Diosmin, a 7-rhamnoglucoside of 3′,5,7-trihydroxy-4′-methoxyflavone, IUPAC name of
5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy- 6-[[(2R,3R,
4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychro-en-4-one, is
a chemical compound belonging to a group of flavonoids originating in the Rutaceae
family [1]. It was first isolated in 1925 from Scrophularia nodosa L. [2]. Diosmin is a gray-
yellow powder. Similar to other flavonoids, it dissolves poorly in polar and nonpolar protic
solvents but much better in aprotic solvents (e.g., DMSO) [3]. The poor solubility of diosmin
in most solvents creates a problem when it is used as a drug. For this reason, various
technological processes are applied, including micronization, to increase the solubility and
thus bioavailability of this flavonoid [4]. Currently, diosmin is isolated from the flesh, skin
and seeds of citrus fruits (Citrus genus), mainly from the fruits of bitter orange (Citrus
aurantium). It is obtained synthetically from hesperidin through treatment with an aqueous
solution of sodium hydroxide in the presence of iodine and pyridine with an efficiency
of 66% or in the process of acetyl hesperidin bromination using N-bromosuccinimide,
benzoyl peroxide and chloroform, achieving an efficiency equal to 44%, as well as using
ionic liquids [5,6]. The obtained compound may be accompanied by various impurities.
Their presence affects the quality of the final products. Depending on the method used to
process plant material and the synthetic route, diosmin may be contaminated by diosmetin,
rhamnose, glucose, eriocitrin and other compounds [7,8]. It is worth noting that diosmin is
usually accompanied by hesperidin, from which it is synthesized.

Diosmin is widely used in the treatment of chronic venous insufficiency, hemorrhoids,
lymphoedema and varicose veins [9]. Preparations containing diosmin prevent inflamma-
tion [10,11] and intensify lymphatic drainage supporting microcirculation [12,13]. These
actions reduce symptoms such as swelling, heaviness, cramps and pain in the calves, accel-
erate the healing of venous ulcers and improve quality of life [14,15]. Diosmin also demon-
strates antioxidant [16], antiproliferative [17] and antidiabetic [18] properties. Hundreds
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of pharmaceutical preparations containing from 300 to 1000 mg of this active substance in
one tablet are distributed all over the world. Therefore, the existing analytical methods are
constantly being improved, and new methods are sought for the analysis of this active com-
pound. Several methods can be applied for the determination of diosmin in pharmaceutical
preparations. The most frequently used is high-performance liquid chromatography [1].
Among other techniques, thin-layer chromatography [19], voltammetry [20,21] and differ-
ent spectroscopic methods can be listed [3,22,23]. Prior to analysis, using the enumerated
methods, diosmin has to be extracted from the analyzed drug. Extraction is not required
when vibrational spectroscopy is applied. Fourier transform infrared and Raman spec-
troscopy, assisted by multidimensional data analysis techniques, become more and more
widely used in the pharmaceutical industry, both for qualitative and quantitative analysis
of interesting compounds. These methods are easy to perform and time-efficient compared
to chromatographic methods. They enable the analysis of active substances present in
pharmaceuticals without active substance extraction or additional sample pre-treatment,
which significantly shortens and simplifies the analysis [24–26].

Although the application of near-infrared spectroscopy (NIR) is well established in
many areas [27–29], other, less common techniques, including attenuated total reflection
(ATR) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) in the
mid-infrared region (MIR) and Raman spectroscopy, offer unique possibilities with regard
to medicines, foods, body fluids and plant and animal tissue analysis [25,26,29–33]. The
most important advantages of these methods include minimal requirements for sample
preparation, simplicity of implementation, short analysis time and the ability to automate
the process. In combination with chemometrics, they enable fast and detailed qualitative
and quantitative analysis of a variety of objects, often in their native form [33–35].

The stable crystal form of diosmin is its monohydrate (Figure 1). The anhydrous form
can be prepared by heating DSNM at 110–140 ◦C. The obtained form is hygroscopic and
transforms on air into a monohydrate within 72 h [36]. As a result, diosmin monohydrate
is an active pharmaceutical ingredient (API) in commercial preparations.
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Figure 1. Structure of diosmin hydrate (DSNM).

2. Experiment
2.1. Materials and Sample Preparation

Diosmin was isolated from Preparation 1 (Table S1 in Supplementary Materials).
According to manufacturer’s declaration, except for diosmin consisting of more than 89%
of the tablet weight, magnesium stearate, polyvinyl alcohol and sodium croscarmellose
were present. After weighing, tablets were thoroughly pulverized using an FW100 grinder
(ChemLand, Stargard, Poland). Next, 14 mL of 0.5 M sodium hydroxide solution was added
per tablet. Then, the mixture was vigorously stirred for 15 min, and it was allowed to sit
until the next day. The solution was gravity filtered. Next, twice as much demineralized
water was added. After 15 min of stirring, 1.2 M hydrochloric acid was added to the
solution, to a pH value of 7, to precipitate the diosmin. The pH of the solution was
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controlled with universal papers. The mixture was filtered through a Buchner funnel. The
resulting precipitate was washed with demineralized water and dried in a desiccator at
room temperature. Its purity was checked using the HPLC method. The diosmin was
isolated in two series with an efficiency reaching 90%. Raman, MIR and NIR spectra
of isolated diosmin were identical with the respective spectra of the diosmin analytical
standard (Sigma-Aldrich, Saint Louis, USA). A set of 83 calibration samples, consisting of
diosmin, magnesium stearate (Sigma-Aldrich, Saint Louis, MO, USA), polyvinyl alcohol
(POCH, Gliwice, Poland) and croscarmellose sodium (Sigma-Aldrich, Saint Louis, MO,
USA) (Table S2 in Supplementary Materials) was prepared. Raman, MIR and NIR spectra of
diosmin and the remaining ingredients are shown in Figure S1 in Supplementary Materials.

2.2. Reference Analysis

The content of the diosmin and hesperidin was determined (Table S3 in Supplementary
Materials) in the analyzed pharmaceutical preparations using high-performance liquid
chromatography with diode-array detection (HPLC-DAD). The appropriate amount of
powdered tablet, for which the content of diosmin was about 450 mg, was dissolved
in 50 mL of a 0.5 M NaOH solution, in a 250 mL volumetric flask. Then, the solution
was sonicated for 15 min. After the sample reached room temperature, the volumetric
flask was refilled with a mixture of 0.01 M trisodium buffer (pH = 12.4) and methanol
(60:40, v/v). A total of 25 mL of the prepared solution was diluted again to 100 mL
with the aforementioned solvent mixture. The determination of diosmin and hesperidin
concentration was carried out in the analyzed preparations with the X-Bridge RP C18
3.5 µm column, 150 × 4.6 mm. The injection volume of the sample was 30 µL. For the
separation of active ingredients, the mixture of methanol: water (+0.1% H3PO4, 50:50 v/v)
was used as the mobile phase. The mobile phases were passed through a 3.5 µm thick
membrane filter, and the flow rate was adjusted to 0.7 mL/min. The active substance
concentration was determined by measuring the absorbance at 270 nm [37,38].

2.3. Apparatus

A Nicolet Magna 860 FT-IR spectrometer with a Nicolet Raman unit (Thermo Nicolet,
Madison, WI, USA) was used to register the spectra. DRIFTS reflection spectra were
obtained using DTGS detector and a Seagull (Harrick, New York, NY, USA) optical assembly
set to DRIFTS mode. A KBr beamsplitter was applied to measure the mid-infrared spectra,
and a CaF2 beamsplitter in the NIR region was used. A total of 128 interferograms for NIR
measurements and 256 for MIR and Raman were averaged. Interferograms were Happ–
Genzel apodized and Fourier transformed using a zero filling factor of 2, giving spectra in
the ranges of 400–4000 cm−1 for MIR, 3700–10,000 cm−1 for NIR and 100–3700 cm−1 for
Raman with a resolution of 4 cm−1. To register the Raman spectra, an InGaAs detector,
CaF2 beamsplitter, 180◦ backscattering geometry and a rotating sample holder enabling
sample rotation at a constant speed of 200 rpm were applied. The spectra were excited
using an Nd: YVO4 laser with a power of about 400 mW at the sample. All measurements
were performed at room temperature.

For the DRIFTS measurements, samples were diluted with potassium bromide, cal-
cined for two hours at 200 ◦C, at a ratio of 1:49. Pellets for the Raman spectra measurement
were prepared.

HPLC analyses were performed using Waters HPLC 600 Quat Pump, 717 Plus Au-
tosampler and 2996 Detector chromatograph (Markham, ON, Canada).

2.4. Software and Numerical Data Treatment

The principal components analysis (PCA) of the obtained data was performed using
the PLS Toolbox (ver. 6.2, Eigenvector Research, Wenatchee, WA, USA) in a Matlab R2010a
environment (MathWorks, Natwick, MA, USA). TQ Analyst (ver.7, Nicolet, Madison,
WI, USA) chemometrics software was used to construct the partial least squares (PLS)
models [39,40].
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In order to characterize and compare the prognostic abilities of the developed cal-
ibration models, the relative standard error of prediction (RSEP) was calculated for the
calibration and validation samples, according to the equation:

RSEP(%) =

√√√√∑n
i=1 (Ci −CA

i )
2

∑n
i=1 CA2

i

× 100, (1)

where Ci
A is the actual content of the active substance in the preparation, Ci is content

determined on the basis of the model, and n is the number of samples [26].
Density functional theory (DFT) calculations were performed at the B3LYP/6-311++G(d,p)

level of theory using the Gaussian09 suite of programs [41]. We found all stationary points
to be true minima because no imaginary frequencies were obtained.

3. Results and Discussion
3.1. Vibrational Spectra

Raman spectra recorded for the hydrated and anhydrous forms of this flavonoid
(Figure S2 in Supplementary Materials) do not show significant changes in the position,
shape and intensity of the main vibrational bands. More pronounced differences are
observed in the IR spectra (Figure S2 in Supplementary Materials), mainly in the 865–1085,
1350–1670 and 2800–3700 cm−1 wavenumber ranges, corresponding to ν(C-O), ν(C-OH)
stretching, δ(C-OH), δ(CC-H) deformation and ν(O-H) stretching vibrations [42,43].

These changes result from the presence of a water molecule in the structure of the
crystalline form of hydrated diosmin [44]. The most intense bands located in the Raman
spectrum at 1501, 1572 and 1611 cm−1 and at 1514, 1567 and 1611 cm−1 in the DRIFTS/MIR
spectrum are attributed to the ν(C=C) stretching of the phenolic ring and δ(C-OH) and
δ(CC-H) deformation vibrations. Vibrations of the carbonyl group ν(C=O) result in a band
with a maximum at 1660 cm−1. Bands with a maximum at 1142 and 1289 cm−1 in the Raman
spectrum and at 1142 cm−1 in the MIR spectrum are related to the vibrational movements
of the C-O-C and C-OH fragments present in diosmin molecules. Stretching vibrations of
hydroxyl groups ν(O-H) give bands located in the 3200–3700 cm−1 range. Spectral features
related to vibrations of the C-OH fragments are observed at 1010, 1074 and 1098 cm−1 in
the MIR spectrum. Bands at 1453 and 1470 cm−1 are assigned to δ(CH3) vibrations of the
methyl groups and those located in the 2850–3080 cm−1 range in Raman and MIR spectra
to ν(C-H) stretching vibrations [42,43]. The assignment of the most important diosmin
vibrational bands is summarized in Table S4 in the Supplementary Materials.

The theoretical and experimental IR and Raman spectra of the hydrated (DSNM)
and anhydrous (DSNA) forms of diosmin (Figure 2 and Figure S3 in the Supplementary
Materials) are very similar, regarding the number and position of the bands, except for the
ν(O-H) stretching vibration region. In the theoretical DSNM Raman spectrum, a weak band,
located at 1079 cm−1, is shifted toward lower wavenumbers relative to the corresponding
DSNA band. This band reflects movements of the C-OH fragments of the compound
(Table S4 in the Supplementary Materials). Some changes in the relative intensity of
bands are observed, mainly in the 1060–1150, 1530–1670 and 2840–2970 cm−1 wavenumber
regions. A similar difference is observed in the theoretical IR spectra of the hydrated
and anhydrous forms of diosmin (Figure S3 in the Supplementary Materials). In the
DSNM spectra, an additional band of medium intensity, with a maximum at 1594 cm−1

appears, not observed in the spectrum of its anhydrous form. This band is attributed to
deformation vibrations of the hydroxyl group δ(H-OH) of the water molecule present in
DSNM. Bands of the symmetrical and asymmetrical stretching vibrations of the water
molecule with a maximum at 3507, 3587 and 3812 cm−1 are present. The band located
in the 1015–1045 cm−1 range in the DSNA spectrum consists of two bands, while in the
DSNM spectrum, a single, symmetrical band is observed. The most pronounced differences
in the relative intensities of the bands are observed in the 965–1120, 1360–1430, 1585–1610
and 2800–3700 cm−1 ranges.
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Figure 2. Experimental (red) and calculated (black) Raman (left) and IR (right) spectra of hydrated
diosmin (DSNM); for calculated spectra abscissa scale multiplied by a factor of 0.98; Gauss-Lorentz
profile with a half-width of 8.9 cm−1 was used to obtain calculated spectra.

Despite the superficial similarity of IR spectra of both diosmin forms (Figure S2
in the Supplementary Materials), the contribution of the water molecule present in the
crystal structure of DSNM is clearly visible in the difference spectrum. A broad band
located approximately at 3300 cm−1 can be assigned to the ν(O–H) stretching vibrations
of the hydrogen-bonded water molecule. Additionally, in the difference spectrum, the
contribution resulting from changes in a δ(CC–H) deformation and ν(C=C) stretching
vibrations of the hydrated and anhydrous form carbohydrate fragment can be noticed in
the 1375–1550 cm−1 wavenumber range. In the IR difference spectrum obtained from the
DFT calculation, bands with maxima at 1594, 3507, 3587 and 3812 cm−1 are observed.

The recorded NIR spectra of the hydrated and anhydrous forms of diosmin (Figure S2
in Supplementary Materials) show no pronounced differences, except in the 4400–5200 and
6200–7000 cm−1 ranges. A broad band of medium intensity, with a maximum at 6737 cm−1,
can be attributed to the first overtone of the hydroxyl group stretching vibrations and
those located at around 6000 cm−1 to the first overtones of the ν(C–H) vibrations. In the
4800–4890 cm−1 frequency range, combination bands of ν(O–H) and ν(C=C) stretching
vibrations are present [44–47]. In the NIR difference spectrum of the hydrated and anhy-
drous forms of diosmin, bands that can be attributed to the vibrations of the water molecule
bonded to the diosmin carbohydrate fragment are observed at 4490 and 6950 cm−1 [48].

FT-Raman, DRIFTS/MIR and DRIFTS/NIR spectra of the representative calibration
sample and the studied pharmaceutical preparations are shown in Figure 3. The analyzed
preparations, apart from API, the content of which varied in the 65.3–89.4% range as
declared by the manufacturers, contained croscarmellose sodium, carboxymethyl starch,
microcrystalline cellulose or starch, polyvinyl alcohol or povidone and magnesium stearate
or stearic acid. In some of them, colloidal silica and talk were also present. Detailed data
on the composition of the analyzed preparations is presented in Table S1 in Supplementary
Materials. Despite the slightly different chemical compositions of the analyzed tablets, their
vibrational spectra are similar to each other. These differences become visible in the space
of the first two principal components (PC1/PC2) (Figure 3). Figure S4 in Supplementary
Materials shows the loadings plots for PC1 and PC1 principal components obtained on the
basis of Raman, MIR and NIR spectra of calibration samples.
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Figure 3. From the top: Raman, MIR and NIR spectra (left) of the studied preparations and distribu-
tion of samples in the PC1/PC2 space with the 99% confidence interval (right); black dots—calibration
mixtures, colored dots—pharmaceutical tablets.

3.2. Chemometric Analysis

Keeping in mind that diosmin contributes from approximately 65 to 90% of the
analyzed preparations and the fact that the excipients present are the same or related chem-
ical compounds, we have decided to prepare calibration samples composed of diosmin,
polyvinyl alcohol, sodium croscarmellose and magnesium stearate. Their mass fractions
ranged from 0.603 to 0.926 for diosmin, from 0.005 to 0.054 for magnesium stearate, from
0.016 to 0.222 for polyvinyl alcohol and from 0.017 to 0.202 for sodium croscarmellose. In
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the prepared mixtures, concentrations of individual components did not correlate with
each other. A set of 83 samples was used to construct PLS models, with approximately
25% of them selected using a bootstrap method and a sample distribution in PC1/PC2
space as test samples. Some of them have been omitted, but not more than 10 in each
case. We summarize the type of spectra preprocessing and spectral ranges selected for
analysis in Table 1 and Table S5 in Supplementary Materials. Figure S5 in Supplementary
Materials shows regression vectors obtained on the basis of Raman, MIR and NIR spectra
of calibration samples.

Table 1. Parameters of PLS models developed for Preparation 1.

Parameter RAMAN MIR NIR

Rcal 0.9920 0.9882 0.9905
Rtest 0.9932 0.9838 0.9877
Rcv 0.9641 0.9536 0.9568

RSEPcal 1.30 1.41 1.32
RSEPtest 1.25 1.59 1.39

Number of PLS factors 5 7 7
Wavenumber range [cm−1] 488–963 1478–1633 3811–3957

3036–3119 2391–3452 4379–4762
6153–6683

Normalization SNV None SNV
R—correlation coefficient, RCV—correlation coefficient of cross-validation, cal—calibration set, test—test set,
SNV—standard normal variate.

To assess the spectral identity of the prepared calibration mixtures and the commercial
diosmin preparations, PCA was performed. For each of the applied spectroscopic tech-
niques, points corresponding to the analyzed preparations, as shown in Figure 3, are evenly
distributed in the PC1/PC2 space, constructed based on calibration sample spectra. To de-
termine diosmin content, PLS models were developed for each of the analyzed preparations
and techniques applied separately. Spectral ranges selected for the analysis differ slightly
depending on the preparation, due to the differences in the composition of tablets originat-
ing from different manufacturers, as we have mentioned before. Elaborated PLS models
are of similar quality within a given spectroscopic technique. Relative standard errors of
prediction are in the range of 1.0–2.4% and 1.1–2.4% for the calibration and test sample
sets, respectively (Table 1 and Table S5 in Supplementary Materials). Internal validation
of the models using a leave-one-out (LOO) procedure resulted in correlation coefficients
of cross-validation in the 0.944–0.964 range. Characteristics of the constructed models are
presented in Figure 4, Table 1 and Table S5 in Supplementary Materials. The number of
latent variables (5, 6 or 7) was selected based on the RMSECV plots. We determined the
diosmin content on the basis of vibrational spectra of the analyzed tablets with a recovery
of 99.5–100.5% (Figure 5) with a standard deviation varying in the 0.6–3.4% range (Table S6
in Supplementary Materials). Selectivity ratio (SR), presented in Figure 4, shows spec-
tral contributions of the variables in the projection used in the PLS models. For Raman
data, the highest contributions are observed in the frequency range of 1000–1750 cm−1

and 490–790 cm−1. For MIR data, regions 1000–1800 cm−1 and 3000–3700 cm−1 are the
most important, while for NIR data, these contributions are large in the 4050–5300 and
6900–7250 cm−1 ranges.
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Figure 4. Prediction plots, relative errors, experimental spectra of hydrated diosmin (DSNM) (blue)
and selectivity ratio (SR) (black) obtained on the basis of Raman, MIR and NIR spectra of calibration
samples for Preparation 1; from the top.
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A similar analysis was performed based on ATR data for selected diosmin preparations,
and results of comparable quality were obtained.

4. Conclusions

Here, for the first time, the suitability of Raman and NIR spectroscopy for the determi-
nation of diosmin content in intact pharmaceutical preparations was demonstrated. Eight
commercial tablets containing diosmin as an active ingredient in the 66–92% (w/w) range
were successfully quantified using PLS models based on Raman and infrared reflection
spectra of powdered tablets in the mid- and near-infrared regions, with an error below 2.4%.
The concentration of diosmin in commercial pharmaceutical preparations determined based
on PLS models is consistent with the results of the reference analysis with a recovery of
99.5–100.5%. The quality of determinations is comparable for the three methods used. The
described procedure enables efficient, fast and reliable quantification of active ingredients
in tablets, supporting the analysis of pharmaceutical products containing diosmin.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27238276/s1, Figure S1: Raman, MIR and NIR spectra of
Preparation 1, diosmin hydrate, polyvinyl alcohol, croscarmellose sodium and magnesium stearate,
Figure S2: Experimental Raman, MIR and NIR spectra of hydrated (DSNM) and anhydrous (DSNA)
diosmin, Figure S3: Calculated Raman and IR spectra of hydrated (DSNM) and anhydrous (DSNA)
diosmin, Figure S4: Loadings plots of PCA models obtained on the basis of Raman, MIR and
NIR spectra of calibration samples, Figure S5: Regression vectors obtained on the basis of Raman,
MIR and NIR spectra of calibration samples, Table S1: Basic data on the analyzed preparations,
Table S2: Composition of calibration samples, Table S3: API content in the studied preparations,
Table S4: Band assignment in the Raman and MIR spectra of diosmin, Table S5: Parameters of PLS
models for preparations 2–8, Table S6: Diosmin recovery.
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