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Abstract: The purpose of this research study was to develop an analytical method for the quantifi-
cation of 7-nitroso-3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1,2,4] triazolo [4,3-a] pyrazine (7-nitroso
impurity), which is a potential genotoxic impurity. Since sitagliptin is an anti-diabetic medication
used to treat type 2 diabetes and the duration of the treatment is long-term, the content of nitroso
impurity must be controlled by using suitable techniques. To quantify this impurity, a highly sensitive
and reproducible ultraperformance liquid chromatography with triple quadrupole mass spectrom-
etry (UHPLC-MS/MS) method was developed. The analysis was performed on a Kromasil-100,
with a C18 column (100 mm × 4.6 mm with a particle size of 3.5 µm) at an oven temperature of
approximately 40 ◦C. The mobile phase was composed of 0.12% formic acid in water, with methanol
as mobile phases A and B, and the flow rate was set to 0.6 mL/min. The method was validated
according to the current International Council for Harmonisation (ICH) guidelines with respect to
acceptable limits, specificity, reproducibility, accuracy, linearity, precision, ruggedness and robustness.
This method is useful for the detection of the impurity at the lowest limit of detection (LOD), which
was 0.002 ppm, and the lowest limit of quantification (LOQ), which was 0.005 ppm. This method
was linear in the range of 0.005 to 0.06 ppm and the square of the correlation coefficient (R2) was
determined to be > 0.99. This method could help to determine the impurity in the regular analysis of
sitagliptin drug substances and drug products.

Keywords: sitagliptin; 7-nitroso impurity; nitrosamine; UHPLC-MS/MS; ICH

1. Introduction

In the process of producing pharmaceutical products, there is a high risk of product
contamination from the starting materials, reaction byproducts and other impurities, which
negatively influences the safety and toxicological profile of the final drug [1]. Additionally,
the final products (active pharmaceutical ingredients) may also produce genotoxic impuri-
ties due to degradation during synthesis, the formulation of dosage forms, storage, and
aging, etc. [2]. For example, the generation of contaminants may be due to the degradation
of penicillins and cephalosporins, etc. [3]. Among various impurities, organic contaminants
that can potentially induce genetic mutations, chromosomal breaks, etc., are regarded as
potential genotoxic impurities, which can be responsible for causing cancers in humans [4].
Therefore, the generation of these impurities must be controlled and monitored, which
is typically attempted during the process of production [5]. However, the complete re-
moval of these contaminants is often not assured, and thus the process must be carefully
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monitored to avoid unnecessary clinical holds or delays caused by regulatory agencies [6].
Therefore, the development of analytical techniques for the accurate analysis and detection
of genotoxic impurities in pharmaceuticals is both imperative and challenging for analysts
and scientists [7].

The defined limits for genotoxic impurities are recommended in the ICH Q3A guide-
lines [8]. These genotoxic impurities include nitrosamines. The ICH M7 (R1) [9] guideline
defines N-nitrosamines as substances in the “cohort of concern”, which are medicinal
products that have limits referred to as the substance-specific acceptable intake (AI) (the
threshold of toxicological concern (TTC) has a value of 1.5 ug/day and this cannot be
applied). Therefore, it is recommended that such nitroso-compounds should be controlled
as they are mutagenic carcinogen impurities.

Sitagliptin phosphate monohydrate (Figure 1) is chemically known as 7-[(3R)-3-amino-1-
oxo-4-(2,4,5-trifluorophenyl)butyl]-5,6,7,8-tetrahydro-3-(trifluoromethyl)-1,2,4-triazolo [4,3-a]
pyrazine phosphate (1:1) monohydrate [10]. It is an anti-diabetic drug used in the treatment
of type 2 diabetes and it belongs in the class of dipeptidyl peptidase-4 (DPP-4) inhibitors.
It works by increasing insulin production and decreasing the production of glucagon in
the pancreas. The U.S. Food and Drug Administration (FDA) [11] approved sitagliptin in
October 2006 [12]. In the United States of America, Merck & Co market the drug under the
name of JANUVIA.
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Figure 1. Structures of sitagliptin phosphate monohydrate and 7-nitroso impurity with MRM spectrum.

In sitagliptin, product-related nitrosamine impurities are present in the form of
7-nitroso-3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a] pyrazine (Figure 1).
This research study is significant because if a drug product contains even a single N-
nitrosamine, which is a reported 7-nitroso impurity and a potential genotoxic impurity
(according to the EMA) with a limit of 37 ng/day [13], it can have a harmful long-term
impact on humans.

All of the regulatory agencies, such as FDA, EMA and other agencies, were directed
to control N-nitroso impurities and the FDA has recalled several products since 2018
including ARBs, ranitidine, nizatidine, and metformin. Therefore, very sensitive analyt-
ical approaches are required to detect and identify very low levels of these impurities.
In the literature, various methods are reported for the analysis of sitagliptin drug sub-
stances and drug products including the SFC-MS/MS [14], RP-HPLC [15,16], HPTLC [17],
HPLC [18–21], HPLC-CD [22], LC-UV, LC-MS, and FT-IR method [23], as well as the UV
spectrophotometric [24] and UPLC-MS/MS [25] method; however, these are not sophisti-
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cated enough to analyze a particular 7-nitroso impurity. A review of the literature revealed
that there is no specific method available for the analysis of 7-nitroso impurity in sitagliptin.
Therefore, we developed an analytical method that is precise and simple, which was also
validated for the determination of this impurity.

In order to develop the method, we trialed various analytical techniques such as
the HPLC and GC-MS/MS methods to identify and quantify the impurity at the ppm
level; however, these methods were found to be unacceptable as the results were poor
or there was no response. The analytical techniques used in the HPLC method included
photodiode-array detection (PDA), phenyl, C8, and C18 columns, which were used to
quantify the impurity. Furthermore, the development trials were performed with buffers
with different pH (acidic, basic, and neutral) and solvents. In this method, the impurity
concentration was observed to be more than 150 ppm, with the lowest response in the
sample concentration. Based on the results, we concluded that the HPLC method was not
suitable for the quantification of this impurity.

With regard to the GC-MS/MS method, mass tuning was performed by using an EI
ion source. Very poor fragmentation and ionization were observed. The development trials
were performed by using a scan method using USP phase G43, a mid-polar 6% cyanopropyl,
94% polydimethylsiloxane, with a column of 60 m × 0.32 mm × 1.8 µm (length, inner
diameter and film thickness). However, no peak response was observed. Based on the
results, we concluded that the GC-MS/MS method was not suitable for the quantification
of this impurity. The UHPLC-MS/MS method presented here is a new, advanced and
industrially feasible method for the identification and quantification of the impurity.

2. Results and Discussions
2.1. Optimization of Mass Spectrometric Parameters

Optimization of the mass parameters played a critical role in the method development.
The interpretation and selection of mass fragments played a key role in the identification
and analysis at the sub ppm (parts per million) and ppb (parts per billion) level of impurity
analysis. Mass tuning was performed for sitagliptin and 7-nitroso impurities to identify
the Q1 and Q3 values. It was performed by using different ion sources such as positive
atmospheric pressure chemical ionization (APCI), negative APCI, positive ESI, and negative
ESI. The Q1 value is 221.9 and Q3 value is 191.9 for 7-nitroso impurity for the MRM mode
with an ESI ion source and positive ion polarity. The other mass parameters are DP 40,
EP 10, CE 15, CAD medium, GS1 is the nebulizer gas 45 and the MS temperature is 400 ◦C.
The solubility of the analytes was checked by using mass compatible solvents such as water,
methanol, and acetonitrile. Sitagliptin and 7-nitroso impurities are soluble in water. The
mass fragmentation pattern (Figure 2) of the impurity was identified.

2.2. Optimization of Chromatographic Conditions

The chromatographic conditions were established by using different mass compatible
solvents and buffers. Different volatile acidic and basic buffers were used. For example, we
used ammonia and formic acid in combination with different solvents such as methanol and
acetonitrile as the mobile phase, different HPLC column chemistries (C8, C18, phenyl) and
different column lengths (250, 150, 100 and 50 mm) and different particle size (5, 3.5 µm).
Finally, the method was optimized by using 0.12% formic acid in water and methanol as
mobile phase-A and mobile phase-B, with a gradient program and flow rate of 0.6 mL/min
by using Kromasil-100, C18 with a particle size of 3.5 µm and an LC column with a length of
100 mm and diameter of 4.6 mm, the temperature was about 40 ◦C. The 7-nitroso impurity
response and ionizations were very good under the above chromatographic and mass
conditions, and the retention time was found to be about four minutes. To prevent mass
source contamination from the peak concentration of sitagliptin, a diversion program of
flow from the mass detector was applied after the elution of the 7-nitroso impurity peak
(Table 1).
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Table 1. Liquid chromatographic and mass spectrometric method conditions.

Parameter Condition

Liquid chromatography conditions

Mobile phase A 0.12% formic acid in water

Mobile phase B 0.12% formic acid in Methanol

Auto-sampler temperature 8 ◦C

Temperature of the column 40 ◦C

Flow rate 0.6 mL/min

Injection volume 50 µL

Gradient program (time(min)/mobile phase A) 0/75, 6/75, 6.1/5, 8/5, 8.1/75, 12/75

Diluent Water

Run time 12 min

Mass spectrometry conditions

Source and ionization mode ESI-Positive

Detection mode MRM

MRM (m/z) for quantification 221.9 > 191.9

Collision energy (CE) 15

De-clustering potential (DP) 40

Entrance potential (EP) 10

MS temperature 400 ◦C
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2.3. Method Validation Study

The final method was validated according to the ICH guidelines [26]. The validation
parameters were system suitability and specificity, LOD, LOQ, LOQ precision, linearity,
method precision, intermediate precision, accuracy, robustness and solution stability.

2.4. Specificity and System Suitability

As part of the validation process, the specificity and the system stability were assessed
by injecting blank, sample 50 mg/mL, spiked sample, standard and individual impurity
prepared at the specification level (0.03 ppm) into the diluent. The peak area percentage
relative standard deviation (% RSD) of the standard was within the limit, no interference
was observed at the retention time (RT) of 7-nitroso impurity in the blank. The retention
time of the impurity in the sample, spiked sample, standard and individual impurity was
about 4 min. Therefore, this method is specific (Table 2) (Figure 3).

Table 2. Summary of results of the method validation.

Validation Parameter Typical Acceptance Criteria Results

System suitability and
Specificity

RSD (%) for 7-nitroso impurity peak area response (n = 6) should be ≤ 15.0. 1.1%

RT of 7-nitroso impurity peak in all the solutions. 4.0 min

Interference from blank No interference

LOD Concentration of LOD in ppm
s/n value should be ≥3

0.002 ppm
11

LOQ Concentration of LOQ in ppm
s/n value should be ≥10

0.005 ppm
33

LOQ precision RSD (%) for six replicate injections of LOQ solution should be ≤ 15.0% 3.1%

Linearity Range (ppm)
Square of correlation coefficient (r2) ≥ 0.99

0.005 to 0.06 ppm
0.999
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2.5. LOD, LOQ and LOQ Precision

The LOD and LOQ were established by injecting 7-nitroso impurity diluted solutions
while taking the known concentration of the impurity, in triplicate. The final concentra-
tion of the LOD and LOQ with respect to the sample concentration was 0.002 ppm and
0.005 ppm, respectively, the signal-to-noise ratio (s/n) was equal to or greater than 3 for
the LOD solutions and was equal to or greater than 10 for the LOQ solutions. The LOQ
precision was assessed by injecting six replicate injections of LOQ solution. Based on the
results, the s/n ratio was greater than 3 for the LOD and 10 for the LOQ solutions. The area
%RSD for six replicate injections for LOQ precision was 3.1 (Table 2) (Figure 4).
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2.6. Linearity and Range

The linearity was established from LOQ to 200% of the concentration of 7-nitroso
impurity with respect to sample concentration. LOQ was injected at 25, 50, 100, 150, 200%
of six different known concentrations in duplicate. The linearity graph peak responses
were plotted against the peak concentration of 7-nitroso impurity and the square of the
correlation coefficient (r2) was evaluated. The obtained (r2) was 0.99. Hence, the method
was proven to be linear (Table 2) (Figure 5).

2.7. Method Precision

The method precision (MP) was established by using a sitagliptin sample. Six samples
were prepared at 50 mg/mL and six samples were prepared by spiking 7-nitroso impurity
at the specification level, and all the solutions were injected. For each preparation, one
injection was given. We determined the reproducibility of the results in regard to the
presence of impurities in the samples, the spiked samples’ impurity content and the %RSD
for the content of 7-nitroso impurity.

As such, the samples did not have impurity and the results for the spiked impurity
content are repeatable. The obtained content %RSD of spiked solution was 2.8 (Table 3).
Hence, this method was found to be precise and repeatable (Figure 6).
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Table 3. Summary of method validation results.

Validation Parameter Typical Acceptance Criteria Results

Method precision RSD (%) for six preparations (n = 6) of spiked sample at specification level
should be ≤10.0 2.8%

Intermediate precision

RSD (%) for six preparations (n = 6) of spiked sample at specification level
should be ≤10.0 3.2%

RSD (%) for preparations (n = 12) of MP and IP spiked sample at
specification level should be ≤20.0 Less than 20.0%

Accuracy

LOQ average recovery (n = 3) should be between 70 to 130%. 92.1%

50% average recovery (n = 3) should be between 80 to 120%. 89.6%

100% average recovery (n = 3) should be between 80 to 120%. 95.2%

150% average recovery (n = 3) should be between 80 to 120%. 97.3%

Robustness

Plus (+) flow 0.7 mL/min: spiked sample concentration % difference and
retention time

2.3%
3.7 min

Minus (−) flow 0.5 mL/min: spiked sample concentration % difference
and retention time

2.5%
4.1 min

Plus (+) oven 42 ◦C: spiked sample concentration % difference and
retention time

2.1%
3.8 min

Minus (−) oven 38 ◦C: spiked sample concentration % difference and
retention time

2.7%
4.0 min

Solution Stability
Standard and 100% spiked solution stored at
ambient laboratory conditions (25 ± 5 ◦C) and refrigerated conditions
(2–8 ◦C) were studied for 48 h

Solutions are Stable for
48 h
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2.8. Intermediate Precision

The intermediate precision (IP) was established by repeating the MP conditions with
a different analyst, different day, different columns and preparations. The content and
%RSD of the impurity was determined in sample and spike solutions. The spiked sample
solutions (n = 6) %RSD was 3.2. The RSD (%) for preparations (n = 12) of MP and IP spiked
sample at specification level was less than 20.0. The results indicated that the method was
rugged (Table 3).

2.9. Accuracy

The accuracy was established by spiking the impurity into a sitagliptin sample in
the range of the LOQ up to a concentration level of 150%. The solutions were prepared
by spiking 7-nitroso impurity into the sample at LOQ, 50, 100 and 150%. Each level
was prepared in triplicate and each level was given a single injection. Determined the
%recovery of impurity content from spiked sample solutions. The %recovery was observed
between 80% and 120% for all the recovery levels (Table 3). Hence, the method was accurate
(Figure 7).

2.10. Robustness

The robustness parameter was used to confirm the ability of the method when slight
changes were applied to the final method. The column flow rate was changed to a plus (+)
flow of 0.7 mL/min, a minus (−) flow of 0.5 mL/min and the column oven temperature
changed to a plus (+) column oven temperature at 42 ◦C and minus (−) column oven
temperature at 38 ◦C. The results were compared with a standard and spike solution at
specification levels of MP for RT and a concentration of 7-nitroso impurity. The % difference
between the impurity content obtained in the method precision and robustness study was
less than 10% and the variation in the retention time of the analyte was ≤0.5 min (Table 3).
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2.11. Solution Stability

Stability studies were performed using a secondary intermediate stock solution of
7-nitroso impurity and spiked samples with 7-nitroso impurity at 100% concentration levels
up to 48 h at ambient laboratory temperatures (25 ± 5 ◦C) and refrigerated conditions
(2–8 ◦C). The percentage recovery for primary standard solutions of 7-nitroso impurity and
spiked samples subjected to stability studies were calculated by comparing them against
the freshly prepared primary standard solutions of 7-nitroso impurity (Table 3).

Liquid chromatography with tandem mass spectrometry is a powerful analytical
technique for the highly specific and quantitative measurement of very low levels of
analytes and impurities in the pharmaceutical industry. An optimized LC–MS/MS method
was developed to determine the 7-nitroso impurity content in sitagliptin drug substances.
Since the molecular mass is specific for each compound and impurity, no interference was
observed at the retention time of the impurity due to other drug substances or blanks.
An advantage of this method is its ability to detect 7-nitroso impurity at ppm to ppb
levels whereas the reported methods [5–16] such as the SFC-MS/MS method, RP-HPLC
method, HPTLC, HPLC method, HPLC-CD, LC-UV, LC-MS and FT-IR methods, and the UV
spectrophotometric and UPLC-MS/MS methods are unable to determine the content of the
7-nitroso impurity. The developed method is simple and direct and no other derivatization
process is required. This method has the following advantages over the other reported
methods. While detection using LC–MS/MS would be a more sensitive and reproducible
approach, the proposed method shows high accuracy and precision, as indicated by the
results of the validation study. The sensitivity was evaluated by the limit of quantification.
The LOQ was determined to be 0.005 ppm. This method is as good or superior to those
reported in other papers.

Additional validation chromatograms and standard qualification data are available in
the Supplementary Materials (Figures S1–S21).

3. Materials and Methods
3.1. Materials and Reagents

In this study, 7-nitroso impurity and sitagliptin phosphate monohydrate were procured
from Jisai Pharma Pvt Ltd. Plot No.12, Phase-4, IDA Cherlapally, Hyderabad—500051,
(India). Formic acid and methanol were procured from Fischer Chemicals and Carlo Erba
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Chemicals, (India). Water of HPLC grade was procured from Rankem® and used for the
preparation of all buffers and standard solutions.

3.2. Equipment

A UHPLC system connected to a triple quadrupole QTRAP MS/MS equipped with
an electrospray ionization (ESI) probe (ABsciex QTRAP 4500) was used for the method
development and validation. Data analyzing software was used to collect and analyze the
data. A Mettler Toledo analytical balance was used for standards and weighing samples.

3.3. Chromatographic Conditions

The chromatographic conditions were finalized by considering both analytes, based
on the method development data. The quantification of the compound was achieved with
a C18 column (100 × 4.6 mm, 3.5 µm particle size) at an oven temperature of 40 ◦C. The
mobile phase was composed of 0.12% formic acid in water, with methanol as a mobile
phase A and B, and the flow rate was set at 0.6 mL/min and the “gradient elution program”
was deployed, which gave the best response within an acceptable analysis time and column
back pressure. The injection volume was 50 µL.

3.4. Mass Spectrometer Conditions

The MS/MS detector is highly sensitive and reproducible. The MS detector was
operated with electrospray ionization (ESI), which utilized a positive ion source and
multiple reaction monitoring (MRM) at m/z Q1 as 221.9 and Q3 as 191.9. De-clustering
potential (DP 40), entrance potential (EP 10), collision energy (CE 15) and an MS temperature
of 400 ◦C were used as the MS/MS detector conditions.

3.5. Preparation of Impurity Standard and Test Sample Solutions

Standard and sample concentrations were finalized by using the required dilutions,
based on the response of impurities during the study by using water as diluent. We
prepared a 0.03 ppm concentration of 7-nitroso impurity standard in water using the
required dilutions. A sitagliptin sample of 50 mg/mL was prepared in water and sonicated
for five minutes. Then, it was vortexed again for five minutes and mixed well. The sample
solution was filtered by using a 0.45 µm nylon filter and water was injected as a blank.

4. Conclusions

The sensitive, selective, and rapid USPLC LC-MS/MS method developed for the
identification and quantification of 7-nitroso impurity in sitagliptin phosphate monohydrate
is able to detect impurity at trace level concentrations. Thus, this new method, which uses
advanced technology, is capable of identifying and detecting 7-nitroso impurity at ppm
and ppb levels. Considering the industrial requirements and guidelines, the method was
validated in line with the ICH and USP. The method is specific, linear, precise, accurate and
robust. The results obtained by using this method demonstrated that reliable data can be
obtained in further experiments, for example, in relation to sitagliptin drug substances and
drug products.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238581/s1, Figure S1: MS/MS chromatogram of
Blank solution; Figure S2: MS/MS chromatogram of 7-nitroso impurity spiked sample; Figure S3:
MS/MS chromatogram of System suitability standard solution; Figure S4: MS/MS chromatogram of
Sitagliptin sample solution; Figure S5: MS/MS chromatogram of LOD solution; Figure S6: MS/MS
chromatogram of LOQ solution; Figure S7: MS/MS chromatograms of LOQ Precision; Figure S8:
MS/MS chromatograms of Linearity solution; Figure S9: MS/MS chromatograms of Method precision;
Figure S10: MS/MS chromatograms of Intermediate precision; Figure S11: MS/MS chromatograms
of LOQ Accuracy; Figure S12: MS/MS chromatograms of LOQ Accuracy; Figure S13: MS/MS
chromatograms of Standard solution stability; Figure S14: MS/MS chromatograms of Spiked sample
solution stability; Figure S15: 7-nitroso impurity Certificate of analysis; Figure S16: 7-nitroso impurity

https://www.mdpi.com/article/10.3390/molecules27238581/s1
https://www.mdpi.com/article/10.3390/molecules27238581/s1
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purity by HPLC chromatogram; Figure S17: 7-nitroso impurity Mass spectrum; Figure S18: 7-nitroso
impurity 1H NMR spectrum—1; Figure S19: 7-nitroso impurity 1H NMR spectrum—2; Figure S20:
7-nitroso impurity TGA graph; Figure S21: Probable Fragmentation pattern of 7-nitroso impurity in
the mass ionization chamber due to parsing pyrolysis.
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