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Abstract: In this work, we describe the design, synthesis, and structure-activity relationship of
6-(tetrazol-5-yl)-7-aminoazolo[1,5-a]pyrimidines as inhibitors of Casein kinase 2 (CK2). At first,
we optimized the reaction conditions for the azide-nitrile cycloaddition in the series of 6-cyano-7-
aminoazolopyridimines and sodium azide. The regioselectivity of this process has been shown,
as the cyano group of the pyrimidine cycle was converted to tetrazole while the nitrile of the
azole fragment did not react. The desired tetrazolyl-azolopyrimidines were obtained in a moderate
to excellent yields (42–95%) and converted further to water soluble sodium salts by the action of
sodium bicarbonate. The obtained 6-(tetrazol-5-yl)-7-aminopyrazolo[1,5-a]pyrimidines 2a–k and their
sodium salts 3a–c, 3g–k showed nano to low micromolar range of CK2 inhibition while corresponding
[1,2,4]triazolopyrimidines 10a–k were less active (IC50 > 10 µM). The leader compound 3-phenyl-6-
(tetrazol-5-yl)-7-aminopyrazolo[1,5-a]pyrimidine 2i as CK2 inhibitor showed IC50 45 nM.

Keywords: azolo[1,5-a]pyrimidines; tetrazoles; regioselectivity; casein kinase 2; inhibitors; structure-
activity relationship

1. Introduction

Casein Kinase 2 (CK2) is a highly conserved polyfunctional serine/threonine protein
kinase that plays an important role in the regulation of the processes of several cells, such as
proliferation, differentiation and survival [1]. It is considered that CK2 has been implicated
in the manifestation of some diseases, including multiple sclerosis [2], inflammation [3],
hypertension [4], and viral infections [5]. The role of CK2 has been extensively studied in
the development of malignant tumors and it was proved as a key regulator of multiple
oncogenic pathways, including the PI3K/Akt, JAK/STAT, IL-6 and NF-jB signaling cas-
cades [6]. In turn, CK2 is a key suppressor of cell apoptosis [7], which determines its role
in oncogenesis of several tumors with overexpression of CK2, including breast carcinoma,
adenocarcinoma of the lung, prostate carcinoma and lymphomas [8]. It can be noted that
Silmitasertib has been approved by the FDA for the treatment of cholangiocarcinoma as
CK2 inhibitor [9]. Thus, the development of novel CK2 inhibitors as chemotherapeutic
agents against cancer and other nosologies where this type of kinases is involved is a
relevant task.

Previously, a wide variety of different molecules have been described as CK2 in-
hibitors, including polyhalogenated benzimidazole and benzotriazole derivatives [10],
nitrogen-containing heterocycles [11–13] and their polycondensed analogues [14], as well
as condensed coumarin derivatives [15] (Figure 1). Azoloazines heterocycles with bridge ni-
trogen atom are of considerable interest, since many representatives of this class are known
to inhibit CK2 in the low nanomolar range. However, most of the currently available CK2
inhibitors lack the potency, physiochemical, and pharmacological properties required to be
successful in clinical trials.
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known to inhibit CK2 in the low nanomolar range. However, most of the currently avail-
able CK2 inhibitors lack the potency, physiochemical, and pharmacological properties re-
quired to be successful in clinical trials. 

Figure 1. Examples of pyrazoloazines and other molecules with high affinity for CK2 [11–15]. 

It should be noted that related azolopyrimidines are a privileged class of heterocycles 
in medicinal chemistry as they demonstrate a wide range of biological activities, in par-
ticular, anticoagulant [16], anti-inflammatory [17], antidiabetic [18], hypotensive [19], an-
tiseptic [20]. 

At the same time, a nitro group or carboxylic fragment should present within heter-
ocyclic scaffold for this useful activity to be formed (Figure 2). On the other hand, the 
tetrazole cycle is a metabolically stable bio-isostere of the carboxyl group and the cis-am-
ide fragment due to the similar electronic structure [21–25]. The corresponding similarity 
for the carboxylic anion and the nitro group can be noted and one can consider the te-
trazolyl fragment as an isostere for both of them (Figure 3a). However, only one example 
of azoloazines containing tetrazole cycle has been published to date—2-nitro-6-(1H-te-
trazol-5-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine was considered as nitrogen-rich ener-
getic material [26]. 

 

Figure 2. Examples of biologically active azolopyrimidines [16–18,20]. 

Figure 1. Examples of pyrazoloazines and other molecules with high affinity for CK2 [11–15].

It should be noted that related azolopyrimidines are a privileged class of heterocy-
cles in medicinal chemistry as they demonstrate a wide range of biological activities, in
particular, anticoagulant [16], anti-inflammatory [17], antidiabetic [18], hypotensive [19],
antiseptic [20].

At the same time, a nitro group or carboxylic fragment should present within hete-
rocyclic scaffold for this useful activity to be formed (Figure 2). On the other hand, the
tetrazole cycle is a metabolically stable bio-isostere of the carboxyl group and the cis-amide
fragment due to the similar electronic structure [21–25]. The corresponding similarity for
the carboxylic anion and the nitro group can be noted and one can consider the tetra-
zolyl fragment as an isostere for both of them (Figure 3a). However, only one example of
azoloazines containing tetrazole cycle has been published to date—2-nitro-6-(1H-tetrazol-
5-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine was considered as nitrogen-rich energetic
material [26].
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azolopyridimidines and tetrazolyl-containing analogues as perspective alternative 

In this work we propose the introduction of tetrazolyl fragment into azolopyrimidine 
scaffold as promising structural modification to search for novel CK2 inhibitors (Figure 
3b). 

2. Results 
2.1. Chemistry 

We have developed a versatile approach to the synthesis of 6-cyano-7-amino-
azolo[1,5-a]pyrimidines and obtained a library of corresponding heterocycles [27] which 
are good precursors for azide-nitrile cycloaddition. Herein, 3-Ethoxycarbonyl-6-cyano-7-
aminopyrazolo[1,5-a]pyrimidine 1g was used as model substrate to study this process and 
evaluate different reaction conditions while sodium azide served as the source of the azide 
fragment (Scheme 1). 
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The mechanism of this process has been studied extensively by DFT calculations and 
it was shown that energy barrier for the reaction of the azide anion with nitriles is consid-
erably lower than the barrier for the attack of the neutral hydrazoic acid [28]. At the same 
time, experimental data revealed that the reaction is strongly accelerated by Brønsted ac-
ids such as AcOH and ammonium salts [29,30]. Lewis acids [31], specific organocatalysts 
[32], and ionic liquids [33] could serve as catalyst in azide-nitrile cycloaddition as well. 

It was found that formation of tetrazole cycle by reaction of sodium azide with nitrile 
derivative 1g proceeded smoothly in polar aprotic solvents (DMF, MeCN) in the presence 
of ammonium salts (entry 1–6 and 8, Table 1), AcOH (entry 7, Table 1), ZnCl2 (entry 10, 
Table 1), or 1-butyl-3-methylimidazolium chloride (entry 9, Table 1). The highest yield 
(78%) of the desired product 2g was observed in the case AcOH while control experiment 
where 1g reacted with sodium azide in DMF without any additive resulted in 82% yield 
of tetrazole 2g (entry 11, Table 1). Optimal conditions required heating at 120 °C for 8 h of 
a 0.25 molar solution of 1g in DMF with 1.1 equiv. of NaN3 and further treatment of water 
suspension of 3g with conc. HCl to provide 90% yield of 2g (entry 13, Table 1). It is worth 
noting that the formation of the tetrazole cycle was not observed in protic polar solvents 
(H2O, MeOH) both with catalysis (entry 2 and 6, Table 1) and without (entry 18, Table 1) 
by TLC analysis of the reaction mixture as well as by NMR analysis of the isolated prod-
ucts. 

  

Figure 3. (a) Isosterism of tetrazole ring, carboxylic fragment and nitro group. (b) Potent nitro-
azolopyridimidines and tetrazolyl-containing analogues as perspective alternative.

In this work we propose the introduction of tetrazolyl fragment into azolopyrimidine
scaffold as promising structural modification to search for novel CK2 inhibitors (Figure 3b).

2. Results
2.1. Chemistry

We have developed a versatile approach to the synthesis of 6-cyano-7-aminoazolo[1,5-
a]pyrimidines and obtained a library of corresponding heterocycles [27] which are good pre-
cursors for azide-nitrile cycloaddition. Herein, 3-Ethoxycarbonyl-6-cyano-7-aminopyrazolo
pyrimidine 1g was used as model substrate to study this process and evaluate differ-
ent reaction conditions while sodium azide served as the source of the azide fragment
(Scheme 1).
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Scheme 1. Model reaction of cyanoderivative 1g with sodium azide for condition optimization.

The mechanism of this process has been studied extensively by DFT calculations and it
was shown that energy barrier for the reaction of the azide anion with nitriles is considerably
lower than the barrier for the attack of the neutral hydrazoic acid [28]. At the same time,
experimental data revealed that the reaction is strongly accelerated by Brønsted acids such
as AcOH and ammonium salts [29,30]. Lewis acids [31], specific organocatalysts [32], and
ionic liquids [33] could serve as catalyst in azide-nitrile cycloaddition as well.

It was found that formation of tetrazole cycle by reaction of sodium azide with nitrile
derivative 1g proceeded smoothly in polar aprotic solvents (DMF, MeCN) in the presence
of ammonium salts (entry 1–6 and 8, Table 1), AcOH (entry 7, Table 1), ZnCl2 (entry 10,
Table 1), or 1-butyl-3-methylimidazolium chloride (entry 9, Table 1). The highest yield
(78%) of the desired product 2g was observed in the case AcOH while control experiment
where 1g reacted with sodium azide in DMF without any additive resulted in 82% yield of
tetrazole 2g (entry 11, Table 1). Optimal conditions required heating at 120

◦
C for 8 h of a

0.25 molar solution of 1g in DMF with 1.1 equiv. of NaN3 and further treatment of water
suspension of 3g with conc. HCl to provide 90% yield of 2g (entry 13, Table 1). It is worth
noting that the formation of the tetrazole cycle was not observed in protic polar solvents
(H2O, MeOH) both with catalysis (entry 2 and 6, Table 1) and without (entry 18, Table 1) by
TLC analysis of the reaction mixture as well as by NMR analysis of the isolated products.
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Table 1. Optimization of reaction parameters in the synthesis of tetrazolyl-pyrazolopyrimidine 2g a.

№ NaN3, Equiv. Catalyst Catalyst, Equiv. Solvent T, ◦C Time, h Yield of 2g, %

1 1.1 Me3N·HCl [29] 1 DMF 100 8 60 b

2 1.1 Me3N·HCl 1 MeCN 81 8 15 b

3 1.1 Me3N·HCl 1 MeOH 64 8 0
4 1.1 Me3N·HCl 1.5 DMF 100 8 60 b

5 1.1 H3N·HCl [30] 1 DMF 100 8 44 b

6 1.1 H3N·HCl 1 H2O 100 8 0
7 1.1 AcOH [29] 1.2 DMF 100 8 78 b

8 1.2 Bu4NBr 0.1 DMF 100 8 70 b

9 1.1
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With the optimized reaction conditions in hand, a series of 6-(tetrazol-5-yl)
pyrazolopyrimidines 2a–k were synthesized in good to excellent yields (60–95%) (Scheme 2).
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sodium salts 3a–c, 3g–k.

The cycloaddition of sodium azide to the C6-nitrile fragment in this series 1a–k pro-
ceeded without competing processes. Thus, in the case of dinitriles 1f and 1k it was
observed that only one cyano group reacted with azide to form tetrazole cycle as there were
CN characteristic absorption peaks in the region of 2217–2231 cm−1 in IR spectra of the ob-
tained products 2f and 2k. The same results were obtained in the reaction of 1f and 1k with
3 equiv. of sodium azide by the analysis of reaction products with 1H and IR spectroscopy.
We have tried to obtain 3,6-di(tetrazol-5-yl)pyrazolopyrimidine 6 by independent synthesis
via two steps starting from 3-amino-4-cyanopyrazole 4 (Scheme 3). It was showed that the
heating of compound 4 with sodium azide in DMF both with ammonium chloride and in
the absence of it did not lead to tetrazolyl heterocycle 5. Subsequently, pyrazole 4 has been
converted to 3-cyano-7-aminopyrazolopyrimidine 7 [34], but the latter also did not react
with sodium azide under different conditions and starting material 7 was isolated after
workup of the reaction mixture (Scheme 3). These findings support regioselectivity of the
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azide-nitrile cycloaddition process in the series of 3,6-dicyanopyrazolopyrimidines as only
nitrile group in the pyrimidine ring converts into tetrazole fragment.
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probably, it can be attributed to C6 atom, while other aromatic carbons located in the re-
gion of δ ≈ 145–160 ppm), IR spectroscopy (absence of CN absorption peak in the region 
of 2100–2300 cm−1 in comparison with starting material), mass-spectrometry (a molecular 
ion peaks were detected) and elemental analysis (see Supporting Information). 

We converted obtained 6-(1H-tetrazol-5-yl)-7-aminoazolo[1,5-a]pyrimidines 2 and 10 
to the corresponding sodium salts by the reaction with sodium bicarbonate (Schemes 2 
and 4) based on the NH-acidity of the tetrazole ring [35]. These sodium salts 3a–c, 3g–k 
and 11a–e, 11g, 11h, 11j possess high water solubility which is an undoubted advantage 
for testing its biological activity in the CK2 assay and further experiments. 

Scheme 3. Regioselectivity of nitrile-azide cycloaddition.

The azide-nitrile cycloaddition proceeded smoothly in the case of [1,2,4]-triazolo[1,5-
a]pyrimidines 9a–k under optimized conditions and resulted in a series of 2-R-6-(tetrazol-
5-yl)-7-amino[1,2,4]triazolo[1,5-a]pyrimidines 10a–k with good yields (42–89%) (Scheme 4).
The unidentified oily products were isolated when thiopropargyl containing derivative
9l was introduced in the reaction, probably due to the side azide-alkyne cycloaddition to
form 1,2,3-triazole.
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The structure of the obtained heterocycles 2a–k and 10a–k was confirmed by 1H NMR
spectroscopy (the signal of C5H proton was shifted downfield (∆δ ≈ 0.5 ppm) in compari-
son with starting material), 13C NMR technic (characteristic signal around δ ≈ 85–91 ppm,
probably, it can be attributed to C6 atom, while other aromatic carbons located in the region
of δ ≈ 145–160 ppm), IR spectroscopy (absence of CN absorption peak in the region of
2100–2300 cm−1 in comparison with starting material), mass-spectrometry (a molecular ion
peaks were detected) and elemental analysis (see Supporting Information).

We converted obtained 6-(1H-tetrazol-5-yl)-7-aminoazolo[1,5-a]pyrimidines 2 and 10 to
the corresponding sodium salts by the reaction with sodium bicarbonate (Schemes 2 and 4)
based on the NH-acidity of the tetrazole ring [35]. These sodium salts 3a–c, 3g–k and 11a–e,
11g, 11h, 11j possess high water solubility which is an undoubted advantage for testing its
biological activity in the CK2 assay and further experiments.
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2.2. CK2 Inhibition

Once in hand target compounds were evaluated against human recombinant CK2
using luminescent ADP-GloTM platform. Initial screening performed at 50 µM compound
concentration revealed scaffold as a rich source of CK2 inhibitors. Confirmation experi-
ments were run in a concentration-dependent manner to obtain IC50 values (Table 2).

Table 2. CK2 inhibition of obtained tetrazolyl-azolopyrimidines 2,3 and their sodium salts 10,11.

Compound CK2 Inhibition at
50 µM (%) IC50 (µM) IC50 95% C.I. (µM)

2a 90.24 ± 2.83 9.27 4.09–21.03

3a 93.69 ± 0.48 21.75 2.94–176.0

2b 73.92 ± 1.05 42.10 22.32–78.75

3b 77.73 ± 3.62 16.38 4.80–64.19

2c 94.04 ± 0.47 4.48 1.11–16.49

3c 93.04 ± 0.58 22.6 7.71–72.73

2d 89.83 ± 1.65 2.42 0.16–20.35

2e 98.19 ± 0.38 3.89 1.22–11.48

2f 92.78 ± 4.16 0.18 0.11–0.28

3f 99.54 ± 2.53 0.067 0.026–0.176

2g 75.51 ± 10.19 9.45 1.35–99.91

3g 87.3 ± 1.29 29.91 0.53–5664

2h 98.23 ± 1.77 2.33 0.23–26.18

2i 100.86 ± 0.83 0.045 0.018–0.243

3i 99.26 ± 0.21 0.168 0.060–0.496

2j 88.28 ± 1.23 0.253 0.967–7.405

2k 89.32 ± 2.51 n.t. n.t.

10a 83.04 ± 1.52 23.78 6.33–102.6

10b 56.85 ± 3.69 n.t. n.t.

10c 75.89 ± 2.65 30.41 5.17–203.7

10d 43.95 ± 1.73 n.t. n.t.

10e 58.38 ± 4.88 n.t. n.t.

10f 85.18 ± 2.48 182.3 1.6–319.8

10g 77.76 ± 1.11 114.8 49.35–302.2

10h 85.02 ± 0.64 11.81 0.79–172.9

10i 74.83 ± 2.74 44.67 1.29–254.7

10j 58.85 ± 10.44 n.t. n.t.
n.t.—not tested.

Structure-activity relationship analysis (Figure 4) suggests that 6-(tetrazol-5-yl)-[1,2,4]
triazolo[1,5-a]pyrimidines 10a–j generally have lower activity than corresponding pyra-
zolopyrimidines 2a–k reflecting in IC50 values in higher micromolar range. Notably, in
the triazolopyrimidine series, compounds 10a and 10h are the most active (IC50 23.78 and
11.81 µM, correspondingly), while any other substituents in the triazole ring resulted in the
decrease of affinity towards CK2.
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In turn, derivatives of 6-(tetrazol-5-yl)pyrazolo[1,5-a]pyrimidine series 2a–k and 3a–c,
3f, 3g, 3i demonstrated rather improved potency. Compounds 2a and its sodium salt 3a
are micromolar inhibitors. Introduction of SMe (2c) or Ph (2d) group in the C2-position
of heterocyclic scaffold is beneficial, while the smaller Me-substituent at this position
led to less active compound 2b. Evaluation of substituents in position C3 of the pyra-
zolopyrimidine system indicates non-additive SAR. Thus, both electron-withdrawing and
electron-donating groups resulted in low micromolar inhibitors 2f–i with leader compound
2i demonstrated IC50 = 45 nM. At the same time, the combination of 2-methylsulfanyl group
with 3-ethoxycarbonyl or 3-nitrile substituents also revealed compounds 2j and 2k with
good affinity to CK2. It is worth noting that in most cases sodium salts 3 were surprisingly
less active than NH-form of tetrazolyl containing heterocycles 2 excluding potent sodium
5-(7-amino-3-cyanopyrazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide 3f with IC50 = 65 nM.

3. Materials and Methods
3.1. Chemistry

Commercial reagents were obtained from Sigma-Aldrich, Acros Organics, or Alfa
Aesar and used without any further purification. All workup and purification proce-
dures were carried out using analytical grade solvents. One-dimensional 1H, 19F, and 13C
NMR spectra were acquired on a Bruker DRX-400 instrument (400, 376, and 101 MHz,
respectively), utilizing DMSO-d6 as solvent and as an external reference. The following
abbreviations are used for multiplicity of NMR signals: s—singlet, d—doublet, t—triplet,
q—quartet, dd—doublet of doublets, dt–doublet of triplets, m—multiplet, br—broaded.
Mass spectroscopy studies were performed on a Shimadzu GCMS-QP2010 Ultra (EI, 70 eV).
IR spectra were recorded on a Bruker Alpha spectrometer equipped with a ZnSe ATR
accessory. Elemental analysis was performed on a PerkinElmer PE 2400 elemental analyzer.
Melting points were determined on a Stuart SMP3 and are uncorrected. The monitoring
of the reaction progress was performed by using TLC on Silufol UV254 plates (eluent is
AcOEt). All synthesized compounds are >95% pure by elemental analysis.

General procedure for the synthesis of 6-(tetrazol-5-yl)-7-aminoazolo[1,5-a]pyrimidines
(2a–k, 10a–k).

A suspension of 0.01 mol (1 equiv.) of the corresponding 6-cyano-7-aminoazolo[1,5-
a]pyrimidine (1a-k, 9a-k) and 0.011 mol (1.1 equiv.) of sodium azide in 40 mL of DMF
was stirred at 120 ◦C for 8 h under air atmosphere (TLC control, AcOEt as eluent, starting
material Rf ≈ 0.6–0.7, tetrazole products Rf ≈ 0.0). The reaction mixture was cooled to
25 ◦C, evaporated at reduced pressure, residue was dissolved in 30 mL of H2O and acidified
with conc. HCl to pH ≈ 1. The obtained precipitate was filtered off and washed with
100 mL of H2O to give the corresponding product.

6-(1H-tetrazolTetrazol-5-yl)-7-aminopyrazolo[1,5-a]pyrimidine (2a).
Brown solid. Yield 1.67 g, 83%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.

(J, Hz): 6.58 (H, d, C3H, J = 2.2), 8.24 (H, d, C2H, J = 2.2), 8.70 (2H, s, NH2), 8.76 (H, s, C5H).
13C NMR (100 MHz, DMSO-d6), δ, ppm.: 152.7, 148.4, 147.6, 146.0, 145.4, 96.4, 85.7. IR, ν,
cm−1: 3259 (NH2). MS (EI, 70 eV), m/z, (Irel), %: 52 (100), 77 (18), 105 (15), 145 (32), 159
(15), 174 (50), 202 (73), [M]+). Anal. Calcd. for C7H6N8: C 41.59, H 2.99, N 55.42; found: C
41.65, H 3.06, N 55.33.

2-methylMethyl-6-(1H-tetrazol-5-yl)-7-aminopyrazolo[1,5-a]pyrimidine (2b).
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Beige solid. Yield 1.84 g, 85%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.
(J, Hz): 2.44 (3H, s, CH3), 6.39 (H, s, C3H), 8.61 (2H, s, NH2), 8.69 (H, s, C5H). 13C NMR
(100 MHz, DMSO-d6), δ, ppm.: 155.0, 152.6, 148.8, 147.3, 145.5, 96.0, 85.2, 14.4. IR, ν, cm−1:
3173 (NH2). MS (EI, 70 eV), m/z, (Irel), %: 52 (100), 81 (19), 159 (28), 108 (50), 173 (18), 188
(53), 216 (85), [M]+). Anal. Calcd. for C8H8N8: C 44.44, H 3.73, N 51.83; found: C 44.39, H
3.76, N 51.83.

2-(methylthioMethylthio)-6-(1H-tetrazol-5-yl)-7-aminopyrazolo[1,5-a]pyrimidine (2c).
Brown solid. Yield 1.95 g, 79%. Mp = 273–275 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,

ppm. (J, Hz): 2.64 (3H, s, CH3), 6.41 (H, s, C3H), 8.56 (2H, s, NH2), 8.69 (H, s, C5H). 13C
NMR (100 MHz, DMSO-d6), δ, ppm.: 156.0, 152.4, 149.1, 147.8, 144.9, 94.5, 85.5, 13.9. IR, ν,
cm−1: 3238 (NH2). MS (EI, 70 eV), m/z, (Irel), %: 52 (70), 131 (20), 159 (16), 173 (87), 220
(42), 248 (100), [M]+). Anal. Calcd. for C8H8N8S: C 38.70, H 3.25, N 45.14; found: C 38.79,
H 3.11, N 45.23.

2-phenylPhenyl-6-(1H-tetrazol-5-yl)-7-aminopyrazolo[1,5-a]pyrimidine (2d).
Yellow solid. Yield 2.64 g, 95%. Mp = 291–293 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,

ppm. (J, Hz): 6.95 (H, s, C2H), 7.41 (H, t, C4’H, J = 7.6), 7.48 (2H, t, C3’H, C5’H, J = 7.6),
8.07 (2H, d, C2’H, C6’H, J = 7.6), 8.64 (2H, s, NH2), 8.76 (H, s, C5H). 13C NMR (100 MHz,
DMSO-d6), δ, ppm.: 155.6, 152.4, 149.1, 147.6, 145.9, 132.2, 129.3, 128.8, 126.4, 93.4, 85.9. IR,
ν, cm−1: 3280 (NH2). MS (EI, 70 eV), m/z, (Irel), %: 52 (38), 77 (100), 116 (32), 170 (10), 208
(8), 221 (23), 250 (65), 278 (92), [M]+). Anal. Calcd. for C13H10N8: C 56.11, H 3.62, N 40.27;
found: C 56.03, H 3.62, N 40.23.

2-(thiophenThiophen-2-yl)-6-(1H-tetrazol-5-yl)-7-aminopyrazolo[1,5-a]pyrimidine (2e).
Brown solid. Yield 2.56 g, 90%. Mp = 297–298 ◦C. 1H NMR (400 MHz, DMSO-d6),

δ, ppm. (J, Hz): 6.83 (H, s, C3H), 7.15 (H, dd, C4’H, J1 = 5.0, J2 = 3.5), 7.54 (H, d, C3’H,
J = 3.5), 7.68 (H, d, C5’H, J = 3.5), 8.56 (2H, s, NH2), 8.74 (H, s, C5H). 13C NMR (100 MHz,
DMSO-d6), δ, ppm.: 152.4, 151.3, 149.3, 148.0, 145.6, 135.2, 128.1, 127.5, 127.2, 93.3, 86.0. IR,
ν, cm−1: 3348 (NH2). MS (EI, 70 eV), m/z, (Irel), %: 52(55), 93 (25), 148 (29), 227 (23), 241
(17), 256(70), 284 (100), [M]+). Anal. Calcd. for C11H8N8S: C 46.47, H 2.84, N 39.41; found:
C 46.47, H 2.90, N 39.41.

3-carbonitrileCarbonitrile-6-(1H-tetrazol-5-yl)-7-aminopyrazolo[1,5-a]pyrimidine (2f).
Brown solid. Yield 1.93 g, 82%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,

ppm. (J, Hz): 8.64 (H, s, C2H), 8.83 (H, s, NH), 8.97 (H, s, C5H), 9.35 (H, s, NH). 13C NMR
(100 MHz, DMSO-d6), δ, ppm.: 152.2, 150.7, 150.6, 147.6, 146.6, 113.5, 89.4, 80.8. IR, ν, cm−1:
2231 (CN); 3321 (NH2). MS (EI, 70 eV), m/z, (Irel), %: 52 (100), 144 (92), 170 (18), 184 (15),
199 (52), 227 (63), [M]+). Anal. Calcd. for C8H5N9x1/2H2O: C 40.67, H 2.54, N 53.39;
found: C 40.75, H 2.52, N 53.38.

3-ethoxycarbonylEthoxycarbonyl-6-(1H-tetrazol-5-yl)-7-aminopyrazolo[1,5-a]pyrimidine
(2g).

Beige solid. Yield 2.54 g, 90%. Mp = 288–290 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,
ppm. (J, Hz): 1.36 (3H, t, CH3, J = 7.2), 4.30 (2H, q, CH2, J = 7.2), 8.44 (H, s, C2H), 8.70
(H, s, NH), 9.06 (H, s, C5H), 9.12 (H, s, NH). 13C NMR (100 MHz, DMSO-d6), δ, ppm.:
161.9, 153.8, 150.1, 147.5, 147.0, 146.0, 101.2, 91.1, 59.4, 14.5. IR, ν, cm−1: 1683 (COOEt); 3315
(NH2). MS (EI, 70 eV), m/z, (Irel), %: 52 (100), 94 (70), 159 (100), 202 (46), 230 (27), 246 (11),
274 (50), [M]+). Anal. Calcd. for C10H10N8O2xH2O: C 41.10, H 4.11, N 38.36; found: C
41.00, H 4.15, N 38.37.

3-nitroNitro-6-(1H-tetrazol-5-yl)-7-aminopyrazolo[1,5-a]pyrimidine (2h).
Yellow solid. Yield 1.48 g, 60%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,

ppm. (J, Hz): 8.93 (H, s, C2H), 8.93 (H, s, NH), 9.08 (H, s, C5H), 9.52 (H, s, NH). 13C NMR
(100 MHz, DMSO-d6), δ, ppm.: 152.4, 152.1, 146.6, 143.3, 142.9, 122.4, 91.6. IR, ν, cm−1:
1557 (NO2); 1267 (NO2); 3325 (NH2). MS (EI, 70 eV), m/z, (Irel), %: 52 (100), 92 (18), 144
(14), 204 (5), 219 (63), 247 (50), [M]+). Anal. Calcd. for C7H5N9O2: C 34.01, H 2.04, N 51.00;
found: C 33.98, H 1.89, N 51.13.

3-phenylPhenyl-6-(1H-tetrazol-5-yl)pyrazolo[1,5-a]pyrimidin-7-amine (2i).
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Yellow solid. Yield 1.92 g, 69%. Mp = 277–279 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,
ppm. (J, Hz): 7.20 (H, t, C4’H, J = 7.8), 7.39 (2H, t, C3’H, C5’H, J = 7.8), 8.11 (2H, dd, C2’H,
C6’H, J1 = 7.8, J2 = 1.2), 8.63 (H, s, C2H), 8.74 (2H, s, NH2), 8.85 (H, s, C5H). 13C NMR
(100 MHz, DMSO-d6), δ, ppm.: 152.40, 147.88, 146.17, 144.43, 143.39, 131.98, 128.59, 125.88,
125.60, 109.31, 86.07. IR, ν, cm−1: 3292 (NH2). MS (EI, 70 eV), m/z, (Irel), %: 52 (50), 142
(25), 235 (11), 250 (42), 278 (100), [M]+). Anal. Calcd. for C13H10N8: C 56.11, H 3.62, N
40.27; found: C 56.02, H 3.66, N 40.26.

2-(methylthioMethylthio)-3-ethoxycarbonlyl-6-(1H-tetrazol-5-yl)-7-aminopyrazolo[1,5-
a]pyrimidine (2j).

Yellow solid. Yield 2.91 g, 86%. Mp = 281–284 ◦C. 1H NMR (400 MHz, DMSO-d6),
δ, ppm. (J, Hz): 1.30 (3H, t, CH3, J = 7.2), 2.64 (3H, s, SCH3), 4.27 (2H, q, CH2, J = 7.2),
8.72 (2H, s, NH2), 8.84 (H, s, C5H). 13C NMR (100 MHz, DMSO-d6), δ, ppm.: 162.0, 158.7,
152.2, 149.9, 148.9, 144.9, 98.8, 88.8, 59.5, 14.5, 12.8. IR, ν, cm−1: 1639 (COOEt); 3309 (NH2).
MS (EI, 70 eV), m/z, (Irel), %: 52 (100), 144 (23), 292 (30), 320 (83), [M]+). Anal. Calcd. for
C11H12N8O2SxH2O: C 39.05, H 4.14, N 33.14; found: C 38.99, H 4.15, N 33.10.

2-(methylthioMethylthio)-3-carbonitrile-6-(1H-tetrazol-5-yl)-7-aminopyrazolo[1,5-a]
pyrimidine (2k).

Orange solid. Yield 2.02 g, 74%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,
ppm. (J, Hz): 2.75 (3H, s, CH3), 8.85 (H, s, NH), 8.90 (H, s, C5H), 9.01 (H, s, NH). 13C NMR
(100 MHz, DMSO-d6), δ, ppm.: 157.4, 153.2, 151.4, 150.3, 145.3, 113.1, 91.6, 78.9, 13.2. IR, ν,
cm−1: 2217 (CN); 3364 (NH2). MS (EI, 70 eV), m/z, (Irel), %: 52 (100), 77 (37), 92 (49), 230
(31), 245 (43), 273 (52), [M]+). Anal. Calcd. for C9H7N9S: C 39.56, H 2.58, N 46.13; found: C
39.56, H 2.60, N 46.23.

6-(1H-tetrazolTetrazol-5-yl)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidine (10a).
Pale yellow solid. Yield 1.50 g, 74%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6),

δ, ppm. (J, Hz): 8.47 (H, s, C2H), 8.82 (s, NH), 9.02 (H, s, C5H), 9.05 (s, NH). 13C NMR
(150 MHz, DMSO-d6), δ, ppm.: 155.5, 155.4, 152.4, 146.8, 89.4. IR, ν, cm−1: 3322 (NH2). MS
(EI, 70 eV), m/z, (Irel), %: 52 (98), 146 (32), 160 (10), 175 (100), 203 (60), [M]+). Anal. Calcd.
for C6H5N9: C 35.47, H 2.48, N 62.05; found: C 35.55, H 2.38, N 62.01.

2-methylMethyl-6-(1H-tetrazol-5-yl)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidine (10b).
Beige solid. Yield 1.45 g, 64%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm. (J,

Hz): 3.08 (3H, s, CH3), 9.47 (2H, s, NH2), 9.54 (H, s, C5H). 13C NMR (100 MHz, DMSO-d6),
δ, ppm.: 164.5, 155.6, 153.7, 151.6, 145.9, 91.1, 14.8. IR, ν, cm−1: 3399 (NH2). MS (EI,
70 eV), m/z, (Irel), %: 52 (55), 83 (15), 174 (6), 189 (50), 217 (33), [M]+). Anal. Calcd. for
C6H5N9x1/2H2O: C 37.17, H 3.54, N 55.75; found: C 37.17, H 3.55, N 55.71.

2-(methylthioMethylthio)-6-(1H-tetrazol-5-yl)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidine
(10c).

Beige solid. Yield 1.94 g, 78%. Mp = 275–280 ◦C. 1H NMR (600 MHz, DMSO-d6), δ,
ppm. (J, Hz): 2.7 (3H, s, CH3), 8.7 (H, s, NH), 8.91 (H, s, C5H), 8.96 (H, s, NH). 13C NMR
(100 MHz, DMSO-d6), δ, ppm.: 166.9, 155.7, 152.0, 152.0, 145.6, 89.2, 13.2. IR, ν, cm−1: 3404
(NH2). MS (EI, 70 eV), m/z, (Irel), %: 52 (95), 176 (20), 192 (8), 221 (66), 249 (100), [M]+).
Anal. Calcd. for C7H7N9S: C 33.73, H 2.83, N 50.58; found: C 33.77, H 2.81, N 50.53.

2-(benzylthioBenzylthio)-6-(1H-tetrazol-5-yl)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidine
(10d).

Yellow solid. Yield 2.76 g, 85%. Mp = 263–266 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,
ppm. (J, Hz): 4.55 (2H, s, CH2), 7.25 (H, t, C4’H, J = 6.4), 7.32 (2H, t, C3’H, C5H, J = 6.4),
7.51 (2H, d, C2’H, C6’H, J = 7.2), 8.86 (2H, s, NH2), 8.90 (H, s, C5H). 13C NMR (100 MHz,
DMSO-d6), δ, ppm.: 165.9, 155.8, 152.4, 152.1, 145.7, 137.7, 129.0, 128.5, 127.3, 89.9, 34.6. IR,
ν, cm−1: 3323 (NH2). MS (EI, 70 eV), m/z, (Irel), %: 52 (10), 91 (100), 282 (3), 325 (20), [M]+).
Anal. Calcd. for C13H11N9S: C 47.99, H 3.41, N 38.75; found: C 47.98, H 3.40, N 38.83.

6-(1H-tetrazolTetrazol-5-yl)-2-(trifluoromethyl)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidine
(10e).

Orange solid. Yield 1.14 g, 42%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.
(J, Hz): 8.89 (H, s, NH), 9.12 (H, s, C5H), 9.67 (H, s, NH). 19F NMR (376 MHz, DMSO-d6),
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δ, ppm.: −64.96. 13C NMR (100 MHz, DMSO-d6), δ, ppm. (J, Hz): 155.9, 155.0, 154.0 (q,
J = 38.6), 152.2, 147.5, 119.3 (q, J = 269.6), 91.1. IR, ν, cm−1: 3383 (NH2). MS (EI, 70 eV), m/z,
(Irel), %: 52 (100), 69 (50), 214 (12), 243 (80), 271 (30), [M]+). Anal. Calcd. for C7H4F3N9S: C
31.01, H 1.49, N 21.02; found: C 30.90, H 1.33, N 21.19.

2-ethoxycarbonylEthoxycarbonyl-6-(1H-tetrazol-5-yl)-7-amino-[1,2,4]triazolo[1,5-a]
pyrimidine (10f).

Yellow solid. Yield 1.70 g, 58%. Mp = 226–228 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,
ppm. (J, Hz): 1.44 (3H, t, CH3, J = 7.2), 4.46 (2H, q, CH2, J = 7.2), 8.86 (H, s, NH), 9.08 (H, s,
C5H), 9.59 (H, s, NH). 13C NMR (100 MHz, DMSO-d6), δ, ppm.: 159.7, 156.2, 155.6, 153.5,
152.3, 147.2, 90.3, 61.8, 14.1. IR, ν, cm−1: 1650 (COOEt); 3255 (NH2). MS (EI, 70 eV), m/z,
(Irel), %: 160 (45), 232 (12), 247 (8), 275 (32), [M]+). Anal. Calcd. for C9H9N9O2xH2O: C
36.86, H 3.75, N 43.00; found: C 36.99, H 3.73, N 43.20.

2-phenylPhenyl-6-(1H-tetrazol-5-yl)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidine (10g).
Yellow solid. Yield 1.73 g, 62%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.

(J, Hz): 7.5 (2H, d, J = 6.8, C3’ H, C5’H), 7.52 (H, s, C4’H), 8.26 (2H, dd, J1 = 7.6, J2 = 2.8,
C2’H, C6’H), 8.88 (2H, s, NH2), 8.99 (H, s, C5H). 13C NMR (100 MHz, DMSO-d6), δ, ppm.:
164.1, 156.1, 152.4, 152.2, 146.6, 130.6, 130.3, 128.9, 126.9, 89.2. IR, ν, cm−1: 3361 (NH2).
MS (EI, 70 eV), m/z, (Irel), %: 52 (39), 77 (65), 251 (55), 279 (32), [M]+). Anal. Calcd. for
C12H9N9: C 51.61, H 3.25, N 45.14; found: C 51.61, H 3.23, N 45.28.

2-(furanFuran-2-yl)-6-(1H-tetrazol-5-yl)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidine (10h).
Beige solid. Yield 1.67 g, 60%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.

(J, Hz): 6.65 (H, dd, C4’H, J = 2.4), 7.18 (H, d, C3’H, J = 3.2), 7.82 (H, s, C5’H), 8.99 (2H, s,
NH2), 9.04 (H, s, C5H). 13C NMR (100 MHz, DMSO-d6), δ, ppm.: 157.1, 155.8, 152.6, 152.2,
146.6, 145.6, 145.3, 112.56, 112.2, 89.5. IR, ν, cm−1: 3255 (NH2). MS (EI, 70 eV), m/z, (Irel),
%: 52 (41), 94 (100), 160 (23), 212 (20), 226 (18), 241(65), 269 (65), [M]+). Anal. Calcd. for
C10H7N9O2x1/2H2O: C 43.16, H 2.88, N 45.32; found: C 43.15, H 2.92, N 45.31.

2-(thiophenThiophen-2-yl)-6-(1H-tetrazol-5-yl)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidine
(10i).

Beige solid. Yield 2.39 g, 83%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.
(J, Hz): 7.24 (H, t, C4’H, J = 4.4), 7.78 (H, d, C3’H, J = 4.8), 7.86 (H, d, C5’H, J = 3.6), 8.89 (2H,
s, NH2), 8.92 (H, s, C5H). 13C NMR (100 MHz, DMSO-d6), δ, ppm 160.4, 155.9, 152.5, 152.2,
146.4, 133.0, 129.5, 128.4, 128.3, 89.5. IR, ν, cm−1: 3250 (NH2). MS (EI, 70 eV), m/z, (Irel), %:
52 (53), 110 (100), 228 (15), 242 (33), 257 (48), 285 (52), [M]+). Anal. Calcd. for C10H7N9S: C
42.10, H 2.47, N 44.19; found: C 42.01, H 2.55, N 44.20.

2-(pyridinPyridin-3-yl)-6-(1H-tetrazol-5-yl)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidine
(10j).

Beige solid. Yield 2.49 g, 83%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.
(J, Hz): 7.56 (H, t, C5’H, J = 6.4), 8.55 (H, d, C6’H, J = 7.6), 8.69 (H, s, C4’H), 8.96 (2H, s,
NH2), 9.03 (H, s, C5H), 9.41 (H, s, C2’H). 13C NMR (100 MHz, DMSO-d6), δ, ppm.: 161.9,
156.0, 152.6, 152.3, 150.9, 147.5, 146.5, 134.3, 126.2, 123.9, 89.6. IR, υ, cm−1: 3240 (NH2). MS
(EI, 70 eV), m/z, (Irel), %: 52 (63), 105 (100), 223 (12), 237 (74), 252 (53), 280 (35), [M]+). Anal.
Calcd. for C11H8N10: C 47.14, H 2.88, N 49.98; found: C 47.16, H 2.87, N 50.00.

6-(1H-tetrazolTetrazol-5-yl)-2,7-diamino-[1,2,4]triazolo[1,5-a]pyrimidine (10k).
Yellow solid. Yield 1.44 g, 66%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.

(J, Hz): 6.10 (2H, s, C2-NH2), 8.34 (2H, s, C7-NH2), 8.72 (H, s, C5H). 13C NMR (100 MHz,
DMSO-d6), δ, ppm.: 166.5, 155.3, 152.3, 150.3, 144.7, 88.6. IR, ν, cm−1: 3331 (NH2); 3425
(NH2). MS (EI, 70 eV), m/z, (Irel), %: 52 (35), 120 (40), 161 (7), 175 (13), 190 (21), 218 (18),
[M]+). Anal. Calcd. for C6H6N10: C 33.03, H 2.77, N 64.20; found: C 32.90, H 2.77, N 64.38.

General procedure for the synthesis of sodium 5-(7-aminoazolo[1,5-a]pyrimidin-6-
yl)tetrazol-1-ides (3,11).

A suspension of 0.005 mol (1 equiv.) of the corresponding 6-(tetrazol-5-yl)azolo[1,5-
a]pyrimidin-7-amines and 0.005 mol (0.42 g, 1 equiv.) of sodium bicarbonate in 30 mL
of deionized H2O was refluxed for 5 min under air atmosphere. The resulting solution
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was cooled to 25 ◦C, evaporated at reduced pressure to dryness to give the corresponding
product.

Sodium 5-(7-aminopyrazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide (3a).
Beige solid. Yield 1.19 g, 99%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.

(J, Hz): 6.34 (H, d, J = 2.0, C3H), 7.76 (H, s, NH), 7.98 (H, d, J = 2.0, C2H), 8.91 (H, s, C5H),
9.20 (H, s, NH). 13C NMR (100 MHz, DMSO-d6), δ, ppm.: 157.2, 148.3, 147.8, 144.9, 144.1,
94.7, 92.5. IR, ν, cm–1: 3333 (NH2). Anal. Calcd. for C7H5N8NaxH2O: C 34.72, H 2.91, N
46.27, found: C 34.72, H 3.00, N 46.39.

Sodium 5-(2-methyl-7-aminopyrazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide (3b).
Brown solid. Yield 1.21 g, 95%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.

(J, Hz): 2.44 (3H, s, CH3), 6.11 (H, s, C3H), 7.52 (H, s, NH), 8.85 (H, s, C5H), 9.13 (H, s, NH).
13C NMR (100 MHz, DMSO-d6), δ, ppm.: 157.3, 153.3, 148.9, 147.4, 144.4, 94.1, 92.3, 14.4. IR,
ν, cm–1: 3397 (NH2). Anal. Calcd. for C8H7N8NaxH2O: C 37.50, H 3.54, N 43.74, found: C
37.55, H 3.59, N 43.66.

Sodium 5-(2-(methylthio)-7-aminopyrazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide (3c).
Brown solid. Yield 1.38 g, 96%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.

(J, Hz): 2.62 (3H, s, CH3), 6.24 (H, s, C3H), 7.68 (H, s, NH), 8.84 (H, s, C5H), 9.20 (H, s, NH).
13C NMR (100 MHz, DMSO-d6), δ, ppm.: 157.1, 154.0, 149.1, 147.7, 144.0, 92.8, 92.7, 14.1. IR,
ν, cm–1: 3397 (NH2). Anal. Calcd. for C8H7N8NaSxH2O: C 33.33, H 3.15, N 38.87, found: C
33.21, H 3.10, N 38.86.

Sodium 5-(3-cyano-7-aminopyrazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide (3f).
Brown solid. Yield 1.32 g, 99%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,

ppm. (J, Hz): 8.44 (H, s, C3H), 8.44 (H, s, NH), 9.08 (H, s, C5H), 9.64 (H, s, NH). 13C NMR
(100 MHz, DMSO-d6), δ, ppm.: 156.25, 149.81, 149.78, 147.02, 145.81, 114.33, 96.28, 78.88. IR,
ν, cm–1: 2241 (CN). Anal. Calcd. for C8H4N9NaxH2O: C 35.96, H 2.26, N 47.18, found: C
36.02, H 2.26, N 47.11.

Sodium 5-(3-(ethoxycarbonyl)-7-aminopyrazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide
(3g).

Beige solid. Yield 1.55 g, 99%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.
(J, Hz): 1.32 (3H, t, J = 7.2, CH3), 4.28 (2H, q, J = 7.2, CH2), 8.52 (H, s, C2H), 8.53 (H, s, NH),
9.10 (H, s, C5H), 9.47 (H, s, NH). 13C NMR (100 MHz, DMSO-d6), δ, ppm.: 162.26, 156.43,
149.68, 147.20, 146.58, 145.42, 100.14, 95.67, 59.19, 14.53. IR, ν, cm−1: 1608 (COOEt), 3326
(NH2). Anal. Calcd. for C10H9N8NaO2xH2O: C 38.22, H 3.53, N 35.66, found: C 38.20, H
3.57, N 35.66.

Sodium 5-(3-nitro-7-aminopyrazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide (3h).
Yellow solid. Yield 1.51 g, 99%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,

ppm. (J, Hz): 8.95 (H, s, C2H), 9.01 (H, s, NH), 9.18 (H, s, C5H), 9.76 (H, s, NH). 13C NMR
(100 MHz, DMSO-d6), δ, ppm.: 156.0, 150.9, 145.9, 142.6, 142.5, 121.5, 98.5. IR, ν, cm−1: 1373
(NO2), 1645 (NO2), 3316 (NH2). Anal. Calcd. for C7H4N9NaO2x2H2O: C 27.55, H 2.64, N
41.31, found: C 27.69, H 2.75, N 41.49.

Sodium 5-(3-phenyl-7-aminopyrazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide (3i).
Yellow solid. Yield 1.42 g, 95%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.

(J, Hz): 7.15 (H, t, C4’H, J = 7.6), 7.37 (2H, t, C3’H, C5’H, J = 7.6), 7.90 (H, s, NH), 8.14 (2H, d,
C2’H, C6’H, J = 7.6), 8.47 (H, s, C2H), 9.02 (H, s, C5H), 9.32 (H, s, NH). 13C NMR (100 MHz,
DMSO-d6), δ, ppm.: 156.94, 147.89, 145.03, 144.95, 144.47, 141.92, 132.89, 128.52, 125.23,
125.20, 107.53, 93.34, 93.30. IR, ν, cm−1: 3366 (NH2). Anal. Calcd. for C13H9N8Na: C 52.00,
H 3.02, N 37.32, found: C 52.03, H 2.99, N 37.20.

Sodium 5-(2-(methylthio)-3-(ethoxycarbonyl)-7-aminopyrazolo[1,5-a]pyrimidin-6-yl)
tetrazol-1-ide (3j).

Beige solid. Yield 1.78 g, 99%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm. (J,
Hz): 1.40 (3H, t, CH3, J = 7.2), 2.63 (3H, s, CH3), 4.31 (2H, q, CH2, J = 7.2), 7.99 (H, s, NH2),
9.07 (H, s, C5H), 9.50 (H, s, NH2). 13C NMR (100 MHz, DMSO-d6), δ, ppm.: 162.5, 157.7,
156.4, 149.2, 148.4, 144.3, 97.1, 95.9, 59.2, 14.6, 12.7. IR, ν, cm−1: 1670 (COOEt). Anal. Calcd.
for C11H11N8NaO2SxH2O: C 36.67, H 3.64, N 31.10, found: C 36.67, H 3.69, N 30.95.
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Sodium 5-(2-(methyilthio)-3-cyano-7-aminopyrazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-
ide (3k).

Orange solid. Yield 1.55 g, 99%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,
ppm. (J, Hz): 2.75 (3H, s, CH3), 8.62 (H, s, NH), 8.98 (H, s, CH), 9.58 (H, s, NH). 13C NMR
(100 MHz, DMSO-d6), δ, ppm.: 156.8, 156.2, 150.9, 149.5, 145.0, 113.7, 96.6, 77.7, 13.3. IR, ν,
cm−1: 2224 (CN), 3382 (NH2). Anal. Calcd. for C9H6N9NaSxH2O: C 34.51, H 2.57, N 40.24,
found: C 34.39, H 2.60, N 40.07.

Sodium 5-(7-amino-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide (11a).
Yellow solid. Yield 1.16 g, 95%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,

ppm. (J, Hz): 8.49 (H, s, C2H), 8.60 (H, s, NH), 9.13 (H, s, C5H), 9.44 (H, s, NH). 13C NMR
(100 MHz, DMSO-d6), δ, ppm.: 156.4, 154.8, 151.3, 145.9, 95.7. IR, ν, cm−1: 3342 (NH2).
Anal. Calcd. for C6H4N9NaxH2O: C 29.64, H 2.49, N 51.84, found: C 29.66, H 2.51, N 51.96.

Sodium 5-(2-methyl-7-amino-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide (11b).
Beige solid. Yield 1.22 g, 95%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm. (J,

Hz): 2.48 (3H, s, CH3), 8.35 (H, s, NH), 9.01 (H, s, C5H), 9.36 (H, s, NH). 13C NMR (100 MHz,
DMSO-d6), δ, ppm.: 163.9, 156.5, 155.3, 150.8, 145.4, 95.5, 14.8. IR, ν, cm−1: 3364 (NH2).
Anal. Calcd. for C7H6N9NaxH2O: C 32.69, H 3.14, N 49.01, found: C 32.70, H 3.01, N 49.15.

Sodium 5-(2-(methylthio)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide
(11c).

Orange solid. Yield 1.43 g, 99%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,
ppm. (J, Hz): 2.68 (3H, s, CH3), 8.36 (H, s, NH), 9.00 (H, s, C5H), 9.40 (H, s, NH). 13C NMR
(100 MHz, DMSO-d6), δ, ppm.: 165.9, 156.3, 155.3, 150.6, 144.9, 96.0, 13.4. IR, ν, cm−1: 3376
(NH2). Anal. Calcd. for C7H6N9NaSxH2O: C 29.07, H 2.79, N 43.58, found: C 29.09, H 2.66,
N 43.63.

Sodium 5-(2-(benzylthio)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide
(11d).

Pale yellow solid. Yield 1.65 g, 95%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,
ppm. (J, Hz): 4.52 (2H, s, CH2), 7.22 (H, t, C4’H, J = 7.2), 7.29 (2H, t, C3’H, C5’H, J = 7.2),
7.48 (2H, d, C2’H, C6’H, J = 7.2), 8.23 (H, s, NH), 9.04 (H, s, C5H), 9.43 (H, s, NH). 13C NMR
(100 MHz, DMSO-d6), δ, ppm.: 164.8, 156.3, 155.1, 150.6, 144.9, 137.9, 129.0, 128.5, 127.3,
96.2, 34.5. IR, ν, cm−1: 3363 (NH2). Anal. Calcd. for C13H10N9NaS: C 44.95, H 2.90, N 36.29,
found: C 45.01, H 3.05, N 36.27.

Sodium 5-(2-(trifluoromethyl)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)tetrazol-
1-ide (11e).

Orange solid. Yield 1.45 g, 93%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.
(J, Hz): 8.88 (H, s, NH), 9.22 (H, s, C5H), 9.71 (H, s, NH). 13C NMR (100 MHz, DMSO-d6),
δ, ppm, (J, Hz): 156.1, 155.0, 154.5 (q, J = 38.6), 152.5, 146.4, 119.6 (q, J = 269.6), 97.6. IR, ν,
cm−1: 3242 (NH2). Anal. Calcd. for C7H3F3N9NaxH2O: C 27.02, H 1.62, N 40.51, found: C
26.91, H 1.68, N 40.34.

Sodium 5-(2-phenyl-7-amino-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide (11g).
Yellow solid. Yield 1.43 g, 95%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.

(J, Hz): 7.50 (H, m, C4’H), 7.52 (2H, m, C3’H, C5’H), 8.21 (H, s, NH), 8.26 (2H, d, C2’H,
C6’H, J = 6.8), 9.10 (H, s, C5H), 9.49 (H, s, NH). 13C NMR (100 MHz, DMSO-d6), δ, ppm.:
163.5, 156.5, 155.6, 151.4, 145.7, 130.9, 130.3, 128.9, 126.9, 96.1. IR, ν, cm−1: 3258 (NH2). Anal.
Calcd. for C12H8N9Na: C 47.84, H 2.68, N 41.85, found: C 47.84, H 2.66, N 41.90.

Sodium 5-(2-(furan-2-yl)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide
(11h).

Orange solid. Yield 1.48 g, 96%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ, ppm.
(J, Hz): 6.65 (H, dd, C4’H, J1 = 2.0, J2 = 1.6), 7.15 (H, d, C3’H, J = 2.8), 7.80 (H, s, C5’H), 8.47
(H, s, NH), 9.10 (H, s, C5H), 9.50 (H, s, NH). 13C NMR (100 MHz, DMSO-d6), δ, ppm.: 156.7,
156.4, 155.2, 151.4, 146.2, 145.7, 144.9, 112.1, 111.8, 96.2. IR, ν, cm−1: 3228 (NH2). Anal.
Calcd. for C10H6N9NaxH2O: C 38.84, H 2.61, N 40.77, found: C 38.90, H 2.66, N 40.59.

Sodium 5-(2-(pyridin-3-yl)-7-amino-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)tetrazol-1-ide
(11j).
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Pale yellow solid. Yield 1.49 g, 93%. Mp > 300 ◦C. 1H NMR (400 MHz, DMSO-d6), δ,
ppm. (J, Hz): 7.53 (H, dd, C5’H, J1 = 8.0, J2 = 3.2), 8.37 (H, s, NH), 8.54 (H, dt, C4’H, J1 = 8.0,
J2 = 1.6), 8.66 (H, dd, C6’H, J1 = 3.2, J2 = 1.6), 9.13 (H, s, C5H), 9.40 (H, d, C2’H, J = 2.4), 9.54
(H, s, NH). 13C NMR (100 MHz, DMSO-d6), δ, ppm.: 161.8, 156.8, 156.0, 151.9, 151.5, 148.3,
146.2, 134.6, 127.3, 124.5, 96.8. IR, ν, cm−1: 3348 (NH2). Anal. Calcd. for C11H7N10NaxH2O:
C 41.26, H 2.83, N 43.74, found: C 41.21, H 2.71, N 43.88.

3.2. CK2 Assay

Kinase activity was determined using the CK2a1 enzyme system (Promega V4482,
Madison, WI, USA) and the ADP-GloTM kit (Promega V9101, Madison, USA) in white
384-well plates (ThermoFisher). The assay was carried out using 10 ng/well of N-GST
labeled human recombinant CK2a1 expressed in Sf9 cells, 0.1 µg/µL casein, 10 µM ATP in
a 40 mM Tris buffer (pH 7.50) containing 20 mM MgCl2, 0.1 mg/mL BSA and 50 µM DTT.
Compounds were introduced in 1.25% DMSO and preincubated with kinase at 450 rpm.
within 10 min. The reaction was carried out during 60 min. at 25 ◦C in PST-60HL shaker
(Biosan, Latvia). ATP-dependent luminescence was measured at an integration time of
1000 ms using Infinite M200 PRO microplate reader (Tecan GmbH, Grödig, Austria). The
experiments were run in two replicates. The activity of CK2 in sample wells was normalized
against control and enzyme-blank wells, and IC50 values were calculated using 3-parameter
log-logistic nonlinear regression with Prism 8.0 (GraphPad Software, San Diego, CA, USA).

4. Conclusions

We have explored the chemical space around azolo[1,5-a]pyrimidines as a valuable
scaffold for the design of potent CK2 inhibitors. Tetrazolyl-containing azolopyrimidines
have been proposed as perspective structural analogues of nitroazoloazines with a wide
range of useful biological activity. A method for the synthesis of 6-(tetrazol-5-yl)-7-
aminoazolo[1,5-a]pyrimidines based on azide-nitrile cycloaddition was developed. Opti-
mized conditions allowed us to obtain a library of tetrazolyl-containing azolopyrimidines
and screened it for CK2 inhibitory activity. Some SAR have been revealed as azolo[1,5-
a]pyrimidines of this series, which showed a higher affinity to CK2 then corresponding
[1,2,4]triazolo[1,5-a]pyrimidines. We have found several low micromolar and nanomolar
CK2 inhibitors and leader compound 2i demonstrated IC50 = 45 nM. These findings are
going to be used for further optimization of azoloazines as promising bioactive compounds.
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