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Abstract: Meridianins are a family of indole alkaloids derived from Antarctic tunicates with exten-
sive pharmacological activities. A series of meridianin derivatives had been synthesized by drug
researchers. This article reviews the extraction and purification methods, biological activities and
pharmacological applications, pharmacokinetic characters and chemical synthesis of meridianins
and their derivatives. And prospects on discovering new bioactivities of meridianins and optimizing
their structure for the improvement of the ADMET properties are provided.
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1. Introduction

Natural products have always been an abundant source of varying chemicals that
show multitudinous biological activities and have performed crucial functions in new drug
research and development in multiple disease areas [1]. Marine creatures are among the
most attractive resources of bioactive compounds [2]. One such example is the meridianins,
which are a family of marine-derived alkaloids. Since meridianin A–E were first isolated
from the Antarctic tunicate Aplidium meridianum in 1998 [3], a total of eight secondary
metabolites (meridianin A–H) have been reported to be isolated and characterized so far [4].
Additionally, the Aplidium meridianum, meridianins have also been isolated from Antarctic
tunicates Aplidium falklandicum and Synoicum sp. [5,6]. The basic structure of the meridian-
ins is characterized by a brominated and/or hydroxylated indole framework linked to a
2-aminopyrimidine moiety at C-3 position (Figure 1). It is reported that natural products
with an indole heterocycle usually possesses extensive bioactivity [7]. As indole alkaloids,
the meridianins have displayed a myriad of pharmacological activities, such as inhibition
of various protein kinases [8], anticancer activities [9], antimalarial activities [10], antitu-
berculosis activities [11], anti-neurodegenerative activities [12], antibacterial activities [13],
and have aroused a great deal of interest to researchers.
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1. Introduction 
Natural products have always been an abundant source of varying chemicals that 

show multitudinous biological activities and have performed crucial functions in new 
drug research and development in multiple disease areas [1]. Marine creatures are among 
the most attractive resources of bioactive compounds [2]. One such example is the merid-
ianins, which are a family of marine-derived alkaloids. Since meridianin A–E were first 
isolated from the Antarctic tunicate Aplidium meridianum in 1998 [3], a total of eight sec-
ondary metabolites (meridianin A–H) have been reported to be isolated and characterized 
so far [4]. Additionally, the Aplidium meridianum, meridianins have also been isolated from 
Antarctic tunicates Aplidium falklandicum and Synoicum sp. [5,6]. The basic structure of the 
meridianins is characterized by a brominated and/or hydroxylated indole framework 
linked to a 2-aminopyrimidine moiety at C-3 position (Figure 1). It is reported that natural 
products with an indole heterocycle usually possesses extensive bioactivity [7]. As indole 
alkaloids, the meridianins have displayed a myriad of pharmacological activities, such as 
inhibition of various protein kinases [8], anticancer activities [9], antimalarial activities 
[10], antituberculosis activities [11], anti-neurodegenerative activities [12], antibacterial 
activities [13], and have aroused a great deal of interest to researchers. 
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Meridianin A   R1=OH, R2=R3=R4=H 
Meridianin B R1=OH, R2=R4=H, R3=Br
Meridianin C   R1=R3=R4=H, R2=Br
Meridianin D   R1=R2=R4=H, R3=Br
Meridianin E R1=OH, R2=R3=H, R4=Br
Meridianin F  R1=R4=H, R2=R3=Br
Meridianin G  R1=R2=R3=R4=H
Meridianin H R1=OH, R2=R4=Br, R3=H  

Figure 1. Structures of meridianin A–H. 
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2. Extraction and Purification Methods

Three extraction approaches of meridianins are currently known (Table 1). One method
was to extract the triturated tunicate with acetone thrice and sequentially partition against
diethyl ether thrice and butanol once, which was the main reported method for extracting
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meridianins [5,14,15]. Using ethanol as a solvent to extract the triturated tunicate three
times was another approach [8,16]. A third way was to extract the lyophilized tunicate with
1:1 dichloromethane/methanol thrice, subsequently partition between hexane and 95%
aqueous methanol, and the condensed aqueous layer was sequentially partitioned between
ethyl acetate and water to desalt and collect the ethyl acetate layer [4]. After evaporating
the solvents under reduced pressure, the obtained dry residues were later used for target
compound purification and chemical analysis.

Table 1. Three extraction approaches of meridianins.

Extraction Solvents Extraction Times Partition

Acetone 3 Partition against diethyl ether thrice and butanol once.
Ethanol 3 No need to partition.

1:1 dichloromethane/methanol 3

Partition between hexane and 95% aqueous methanol,
and the condensed aqueous layer was sequentially

partitioned between ethyl acetate and water to obtain
ethyl acetate layer.

To determine the presence of meridianins, thin layer chromatography on Merck Kiesel-
gel plates using chloroform/methanol (8:2) as eluents, was used to screen the residues [17].
After reacting with CeSO4, a conspicuous yellowish UV-visible band at Rf 0.63 appeared in
the residues composed of meridianins. The residues containing meridianins were further
separated by molecular exclusion chromatography on Sephadex LH-20 columns by using
chloroform/methanol 1:1 as solvent [15]. Alongside molecular exclusion chromatography,
residues were fractionated by column-chromatography on silica gel using a petroleum
ether/diethyl ether gradient or methanol/water 1:1 [3,18]. The obtained fractions were
analyzed by 1H-NMR spectroscopic to determine whether each fraction was a pure com-
pound or a mixture. Eluted fractions made up of a mixture were further chromatographed
on reverse-phase semipreparative columns using HPLC techniques.

3. Biological Activities
3.1. Protein Kinase Inhibitory Potencies

Protein phosphorylation catalyzed by protein kinases, is implicated in all of the physio-
logical processes for its function of driving signal transduction [19,20]. The pathogenesis of the
majority of human diseases involves dysregulation of kinase activity [19]. Therefore, kinases
have been extensively researched as drug targets in the twenty-first century [21]. Meridianins
have been found to be a family of potent kinase inhibitors against 6 kinases (Table 2) [8]
and inhibitory activities of meridianin E over the other 25 purified kinases have been further
tested for it is the most active inhibitor against multiple kinases. Meridianin C also showed
inhibitory activity towards Pim-1 kinase with an IC50 value of 1.0 µM and a family of its
derivatives substituted at the 3-position and 5-position of the indole were synthesized with
potent kinase inhibitory properties against Pim-1 and Pim-3 [22–24]. In addition, meridianin
C derivatives were prepared as a GSK-3β inhibitor using a structure-based design and the
appropriate insertion of compound into the ATP-binding pocket of GSK-3βmight lead to a
stronger kinase inhibitory activity based on molecular docking analysis [25]. At the same time,
meridianin G derivatives modified at 5′-position were synthesized, and for multiple kinases
(CK1δ/ε, GSK-3α/β, Dyrk1A, Erk2), their best inhibitory activities were sub-micromolar [26].
Giraud et al., also prepared a series of meridianin analogues, which were especially promis-
ing in the development of novel CLK1 and Dyrk1A kinases inhibitors [27]. Based on the
above studies, meridianins could be taken as lead compounds for the synthesis of multiple
kinase inhibitors.
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Table 2. Inhibitory effects of meridianin A–G on the activity of a panel of six protein kinases (IC50 in µM).

Protein Kinase
Meridianin

A B C D E F G

CDK1/cyclin B 2.50 1.50 3.00 13.00 0.18 20.00 150.00
CDK5/p25 3.00 1.00 6.00 5.50 0.15 20.00 140.00

PKA 11.00 0.21 0.70 1.00 0.09 3.20 120.00
PKG 200.00 1.00 0.40 0.80 0.60 0.60 400.00

GSK-3β 1.30 0.50 2.00 2.50 2.50 2.00 350.00
CK1 nt a 1.00 30.00 100.00 0.40 nt nt

a nt: not tested.

3.2. Antiprotozoal and Antimicrobial Activities

According to literature reports, indole alkaloids have exhibited potential antimalarial
activity [28–30]. As indole alkaloids, meridianin A was first reported to have potent
antiplasmodial activity against P. falciparum (IC50 = 12 µM) in 2011 [10]. Subsequently,
meridianin C and G were also found to possess significant antiplasmodial activity, and
meridianin C displayed moderate antileishmanial activity against Leishmania donovani
promastigotes with an IC50 of 64.9 µM [13]. Furthermore, a family of their derivatives were
synthesized and evaluated for antimalarial activity, and the lowest IC50 value of them was
2.56 µM [11].

Besides antiprotozoal activities, meridianins also possess antimicrobial activities. Ya-
dav et al., first demonstrated the antitubercular activity of meridianins [11]. The results
of a microdilution assay revealed that the MIC values of meridianin C and G against a
sensitive M. tuberculosis strain H37Rv were 111.1 and 304.8 µM, respectively. A crystal violet
reporter assay indicated that meridianin D exhibited moderate biofilm inhibition activity
against M. smegmatis and methicillin-resistant S. aureus with IC50 values of 21.5 and 87.4 µM,
respectively [31,32]. Further experiments showed that meridianin D analogues increase
colistin potency in polymyxin-resistant Gram-negative bacteria for their biofilm inhibition
activities [33]. Hence, development of meridianin D analogues as adjuvants might be a
promising strategy to combat the problem of antibiotic resistance. Moreover, meridianin C
and a few derivatives displayed antifungal activity against C. neoformans [13]. Meanwhile,
meridianin C also showed excellent anti-tobacco mosaic virus activity and broad-spectrum
fungicidal activities [34]. As a consequence, it could serve as a lead compound to develop a
fungicide for crop protection.

3.3. Chemical Defense Function

Deterrent secondary metabolites are one of the important components of defensive chem-
istry, which seems to be the first line of defense of most ascidians against predation [35–37].
Based on the Fisher’s exact test, Núñez-Pons and co-workers first indicated that the ether extracts
of ascidian A. falklandicum led to remarkable deterrence against the predator sea star O. Validus
and meridianins contained in the extracts turned out to be responsible for the protective effect [5].
According to further experiments carried out with isolated metabolites, the meridianins mixture
displayed significant feeding repellence against sympatric predation at the natural concentra-
tions and potent inhibition activity against an undisclosed sympatric marine bacterium [15].
Additionally, among multiple metabolites (including meridianin A–G, 5α(H)-cholestan-3-one,
wax esters, rossinone B and glassponsine) obtained from Antarctic invertebrates, repellency
levels of meridianin alkaloids were the highest [17].

3.4. Other Biological Activities

In addition to the abovementioned biological activities, meridianin A also reported
to possess binding affinity towards central nervous system (CNS) receptors and trans-
porters [10]. Secondary screening indicated that meridianin A exhibited measurable bind-
ing inhibition of radioligand to 5-HT2B with a Ki value of 150 nM and weakly inhibited
binding of radioligand to 5-HT1A. At the same time, meridianin A also displayed binding
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inhibition of the radioligand to the dopamine active transporter. Furthermore, meridi-
anin C was reported to reduce adipogenesis in 3T3-L1 adipocytes in a dose-dependent
manner [38].

4. Pharmacological Applications
4.1. Anticancer Effect

Meridianins and meridianins derivatives showed anticancer activities against various
cancer cell lines [27,39,40]. The anticancer activities of meridianins are listed in Table 3.
Franco et al., indicated that meridianin B–E could suppress the growth of murine mammar-
ian adenocarcinoma cell line LMM3 [3]. According to the evaluation of cell proliferation,
meridianin A displayed cytotoxic activity against lung cancer cell line A549 [10]. Merid-
ianin D exhibited weak antiproliferative activities toward several tumor cell lines based
on the sulforhodamine B (SRB) assay [41]. An experiment showed that cyano meridianin
D possessed strong cytotoxicity to breast carcinoma cell line MCF7 and cervix carcinoma
cell line HeLa [9]. Additionally, high in vitro cytotoxicities toward breast carcinoma cell
line MCF7 and human ovarian teratocarcinoma cell line PA1 were revealed for meridianin
G derivatives [42]. Furthermore, meridianin analogues with the 2-aminopyrimidinyl ring
replaced by pyrazolo [1, 5-α]pyrimidine ring displayed potent cytotoxic activities against
human colorectal carcinoma cell line HCT-116 [43].

Table 3. The anticancer activities of meridianins (IC50 in µM).

Cell Line
Meridianin

A B C D E F G

PTP nd a 37.2 23.9 42 22 nd nd
Hep2 na b 1.7 9.7 7.3 1.1 1.8 nd
HT29 na nd 5.5 36.6 nd nd nd

RD nd nd 6.6 21.7 nd nd nd
U937 nd 11.6 2.7 16.9 9.8 0.2 nd

LMM3 na 17.7 9.3 33.9 11.1 1.4 nd
Hela 25.4 nd 24.1 13.2 nd nd 22.5

MDA-MB-231 na nd 14 na nd nd na
A549 15 nd 23.5 26.7 nd nd na

DU145 na nd na na nd nd na
a nd: not determined; b na: not active.

Previous studies showed that anticancer effects of meridianins and their derivatives
might be regulated by multiple mechanisms. An article indicated that meridianin C
could significantly suppress the growth of human tongue cancer cell line YD-10B and
the antiproliferative function was mediated by micropinocytosis via down-regulation of
DKK-3 [44]. Several studies found that meridianin C and its derivatives could inhibit
the proliferation of three human leukemia cell lines (MV4-11, K562, and Jurkat) and the
mechanism of action might involve pro-apoptosis via regulation of caspase-9, caspase-3,
PARP, Mcl-1, Bcl-2, XIAP, eIF-2α and S6 molecules [22,23,45]. In addition, meridianin A, C,
D and G showed weak antitumor activity against four human cancer cell lines: A549, DU14,
HeLa and MDA-MB-231, in which JAK/STAT3 signaling is hyperactivated [46]. Whereas,
the majority of their analogues displayed promising cytotoxicities toward the detected cell
lines. According to western blotting assays, the most active analogue could down-regulate
the phosphorylation levels of JAK1, JAK2, STAT3 and the protein expression levels of the
downstream genes of STAT3 (c-Myc, Cyclin D1 and Bcl-XL), which demonstrated that the
pro-apoptotic effects of the analogue might be mediated by regulation of the JAK/STAT3
signaling. All of the reported antitumor mechanisms of meridianins and their derivatives
are presented in Figure 2.
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4.2. Prevention of Alzheimer’s Disease (AD)

AD is the most common type of dementia whose pathologies are related to the exis-
tence of neurofibrillary tangles (NFT), mainly composed by aberrant phosphorylated tau
protein [47–49]. GSK-3β, CK1δ, Dyrk1A and CLK1 have been recognized as the main pro-
tein kinases participated in tau phosphorylation [50,51]. Several articles demonstrated, in
silico, that meridianins could bind to and inhibit the mentioned protein kinases, suggesting
potential therapeutic application of meridianins in AD [12,52–54]. In fact, meridianin G,
meridianin C and multiple derivatives displayed distinct Dyrk1A inhibition activity based
on in vitro kinase inhibition assays and a meridianin C derivative also showed an appar-
ent neuroprotective effect against neurotoxicity induced by glutamate [55]. Shaw et al.,
also demonstrated that meridianin derivatives with a 6-azaindole scaffold possessed high
Dyrk1A binding activities [56]. Furthermore, in vitro assays indicated that meridianins also
could inhibit the activity of GSK-3β and induce structural neuronal plasticity in primary
cortical neurons [18]. In addition to inhibiting neural GSK-3β in vitro and in vivo, meridian-
ins were able to ameliorate cognitive deficits and neuroinflammatory processes and induce
structural synaptic plasticity in the 5xFAD mouse model of AD [57]. In conclusion, meridi-
anins could serve as a potential agent for the treatment of neurodegenerative disorders.

4.3. Antimalarial Effect

Malaria, a devastating disease in developing countries, is caused by Plasmodium infection,
mainly by P. falciparum [58,59]. Agarwal et al., first reported that meridianin analogs, with
piperidinyl and aryl substituted at 2′-position and 6′-position, possessed potent in vitro
inhibitory activity towards the malaria parasite P. falciparum [29]. Additionally, meridianins A,
C, G and several derivatives of them were also shown to have moderate to strong antimalarial
activity against P. falciparum [10,11,13], which indicated that meridianins represented attractive
lead compounds to develop novel antimalarial agents.

4.4. Antitubercular Effect

Tuberculosis, caused by M. tuberculosis, remains the major cause of mortality in the
world [60]. An experiment using a modified REMA method demonstrated that meridianin
C and G displayed inhibitory activity against M. tuberculosis [11]. Several studies showed
that meridianin D and its analogues exhibited antibiofilm activity against M. smegmatis, a
vicarious bacterium for M. tuberculosis, via dispersing pre-formed biofilms and suppres-
sion of biofilm formation [31,33]. According to these results, there is potential for using
meridianins as leads to the development of adjuvants against antibiotic tolerance.
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4.5. Other Pharmacological Effects

As GSK-3β is a promising target for diabetes therapy, glucose uptake effects of meridi-
anin C and its analogues were evaluated for their potent kinase inhibitory activity toward
GSK-3β [25,61]. The experimental results indicated that multiple analogues of meridianin C
displayed high glucose uptake, which suggested that these analogues might be new leads,
with the potential to treat diabetes. Additionally, meridianin A and its derivatives possessed
potential to treat CNS diseases due to their ability to bind to several CNS receptors [10].

5. Pharmacokinetic Study

As is well known, pharmacokinetic characters, composed of absorption, distribution,
metabolism, excretion and toxicity (ADMET) are extremely important during drug discov-
ery [62,63]. Hence, several studies analyzed the pharmacokinetic properties of meridianins
and their derivatives in silico or in vivo [12,18,25].

Llorach-Pares et al. predicted 21 ADMET properties of meridianins and three deriva-
tives by proprietary models of machine-learning and pkCSM [12]. The results of absorption
properties indicated a possibly good oral and intestinal absorbance and poor skin per-
meability of the measured compounds (Table 4). Distribution predictors showed that
blood-brain barrier (BBB) permeability of all compounds was poor. Depending on the
results of cytochrome P450 interaction, all of the compounds could be metabolized and
act as inhibitors for some isoforms of cytochrome P450. For excretion properties, there
might be non-scavenging problems because none of them were zymolyte of organic cation
transporter 2. Additionally, the analyzed compounds would be likely to have apparent
toxicity, apart from meridianin A and E. Consistent with these results, the results of another
two in silico pharmacokinetic studies also showed that all of the meridianins seemed to
have good intestinal absorption and poor BBB permeability [18,53].

Table 4. Partial ADMET properties of meridianin A–G and the three derived compounds (1–3).

Compound
Absorption Distribution Metabolism Excretion Toxicity

Caco2
Permeability

Intestinal
Absorption

Skin
Permeability LogP BBB PPB CYP450 OCT2

Substrate
hERG I/II
Inhibition

AMES
Toxicity

A H 93.38% −2.76 1.53 No >90% Yes No No No
B H 92.22% −2.76 2.39 No >90% Yes No No No
C H 91.77% −2.92 3.10 No >90% Yes No No Yes
D H 92.72% −2.91 3.10 No >90% Yes No No Yes
E H 90.98% −2.74 2.40 No >90% Yes No No No
F H 91.49% −2.92 3.58 No >90% Yes No No Yes
G H 93.44% −2.90 2.44 No <50% Yes No No Yes
1 OAD 91.41% −2.90 3.40 No >90% Yes No No Yes
2 OAD 89.89% −2.88 3.40 No >90% Yes No No Yes
3 H 91.04% −2.90 3.10 No >90% Yes No No Yes

Furthermore, an in vivo metabolic study of meridianin C indicated that it was mainly
presented as a prototype in plasma and its major metabolic route was phase I hydration
and then suffering phase II conjunction metabolic pathways [64]. And an in vivo pharma-
cokinetic assay showed that a derivative of meridianin C possessed high oral bioavailability
(47.4%), which was obviously improved compared with its lead compound [25].

Together, based on the acquired results, it is necessary to optimize the structure of
meridianins in order to improve the ADMET properties and obtain compounds that can be
used in clinic.

6. Chemical Synthesis

To date, several synthetic methods of meridianin analogues have been reported.
Among them, there are mainly five widely used synthetic strategies: application of
the Bredereck protocol [65,66], cross-coupling [67–69], conversion of 3-cyanoacetyl in-
dole [9,70], alkenylation and condensation reaction of indoles [71] and indolization of
nitro-soarenes [72].
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The Bredereck protocol is more convenient to obtain meridianin C, D, G and their
derivatives and suits for large-scale preparation. This protocol was achieved starting
from appropriate indoles then preparation of the N-protected indoles and 3-acylindoles
in the presence of aluminum chloride and acetyl chloride (Scheme 1). The correspond-
ing enaminones were obtained in the presence of dimethylformamide dimethylacetal in
DMF. Finally, enaminones converted to meridianin alkaloids through the formation of
an aminopyrimidine ring reaction and N-tosyl deprotection. This protocol is the most
widely used synthesis scheme and most research groups currently use this method to
synthesize meridianin derivatives. On the basis of Bredereck’s work, Sperry et al. used
5,6-dibromoindole-3-carbaldehyde as the starting material to obtain the key intermediate in
excellent yield over three steps, then used the well-established Bredereck route to achieve
meridianin F (Scheme 1).
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Jiang et al. [67] and Müller et al. [69] separately reported a palladium catalyzed
cross-coupling reaction of 3-indolylboronic and pyrimidine moieties to prepare meridianin
analogues. Jiang’s protocol was a traditional Suzuki coupling reaction between indoly-
boronic acid and chloroaminopyrimidine. Müller provided a concise one-pot reaction by
the Masuda borylation-Suzuki coupling (MBSC) sequence, which was applied to the for-
mation of meridianin C, D, F, and G successfully. Additionally, Karpov et al. [68] described
a concise synthesis of meridianins and derivatives based upon a consecutive carbonylative
coupling-cyclocondensation sequence by carbonylative alkynylation (Scheme 2).
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Radwan et al. [9] reported a facile synthesis of indolylpyrimidines, which was achieved
by a cyanoacetyl side chain at the indole 3-position using a guanidine moiety for the
construction of the aminopyrimidine ring (Scheme 3). Rodrigues et al. [70] also provided a
reaction of indole derivatives with cyanoacetic acid followed by treatment with DMF-DMA
to obtain meridianin alkaloid derivatives. Compared with the above two schemes, this
method requires higher requirements for reaction conditions; high temperature and strong
acid may limit the further application of the reactions.
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Yu et al. [71] reported a metal-free direct alkenylation reaction of indoles by using
ac-id-mediated substitution reactions of aoxo ketene dithioacetals with indoles. A general
procedure for condensation of these indolyl/ketene monothioacetals and guanidine nitrate
led to meridianin derivatives successfully. An N-deprotection reaction with tBuOK/DMSO
under an atmosphere of oxygen afforded meridianin derivatives in yields ranging 76–83%
(Scheme 4).
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Penoni et al. [72] afforded a novel and atom-economical indolization process to
obtain meridianin derivatives in moderate to good yields by thermal annulation of ni-
trosoarenes with 2-amino-4-ethynylpyrimidine and 2-chloro-4-ethynylpyrimidine, respec-
tively (Scheme 5).
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7. Conclusions and Future Prospects

Meridianin A–F are a class of indole alkaloids derived from Antarctic tunicates Ap-
lidium meridianum, Aplidium falklandicum and Synoicum sp. In this article, extraction and
purification methods, biological activities and pharmacological applications, pharmacoki-
netic characters and the chemical synthesis of meridianins and their derivatives have
been reviewed. Meridianins and derivatives possess varieties of biological properties,
including protein kinases inhibition, [8] anticancer activities, [9] antimalarial activities, [10]
anti-neurodegenerative activities [12] and so on. Among the biological properties, pro-
tein kinase inhibitory potencies are one of the most important activities of them, which
are closely related to multiple other activities. Meridianins and derivatives are able to
inhibit the activity of various protein kinases, such as GSK-3β, CK1, PKA and PKG [8]. A
recent study shows that overexpression of GSK-3β stimulates podocyte senescence [73].
Additionally, several studies report that GSK-3β involves in activation of NLRP3 inflam-
masome [74–76]. As inhibitors of GSK-3β, meridianins might possess anti-aging functions
and anti-inflammatory activities. Therefore, more attention should be paid to discover
new bioactivities of meridianins. Furthermore, in consideration of the problems with
meridianin’s pharmacokinetic characters, great efforts should be made to optimize their
structure to improve the ADMET properties.
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