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Abstract: In this study, the methanolic and infusion extracts of two species, Thymbra capitata and
Thymus sipyleus subsp. rosulans, were tested for their chemical composition and biological abilities
(antioxidant, enzyme inhibitory and anti-inflammatory effects). The extracts yielded total phenolic
and flavonoid contents in the range of 83.43–127.52 mg GAE/g and 9.41–46.34 mg RE/g, respec-
tively. HPLC analysis revealed rosmarinic acid to be a major component of the studied extracts
(15.85–26.43%). The best ABTS radical scavenging ability was observed in the methanol extract of
T. capitata with 379.11 mg TE/g, followed by in the methanol extract of T. sipylus (360.93 mg TE/g). In
the CUPRAC assay, the highest reducing ability was also found in the methanol extract of T. capitata
with 802.22 mg TE/g. The phosphomolybdenum ability ranged from 2.39 to 3.61 mmol TE/g. In
terms of tyrosinase inhibitory effects, the tested methanol extracts (83.18–89.66 mg KAE/g) were
higher than the tested water extracts (18.74–19.11 mg KAE/g). Regarding the BChE inhibitory effects,
the methanol extracts were active on the enzyme while the water extracts showed no inhibitory effect
on it. Overall, the methanolic extracts showed better enzyme inhibition compared to the infusion
extracts. Molecular docking also showed the selected exhibited potential binding affinities with all
enzymes, with a preference for cholinesterases. Additionally, the extracts were effective in attenuat-
ing the LPS-induced increase in COX-2 and IL-6 gene expression in isolated colon, thus indicating
promising anti-inflammatory effects. The preliminary results of this study suggest that these species
are good natural sources of antioxidants and also provide some scope as enzyme inhibitors, most
likely due to their bioactive contents such as phenolic acids, and thus can be exploited for different
applications related to health promotion and disease prevention.
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1. Introduction

Species of the Lamiaceae family possess exceptional beneficial attributes and have
diverse applications as functional foods, including pharmaceutical and cosmetic ingredients.
It is well known that each species has distinct and complex combinations of bioactive
constituents, with each component contributing to its overall bioactivity. Their value is
due to their capacity to produce a range of secondary metabolites with strong antioxidant,
anti-inflammatory, antimicrobial, antiviral, and anticancer activities, among others. Since
ancient times, a variety of species of the Lamiaceae family have enjoyed a rich tradition
of use as food preservatives, flavors and for curative purposes, because of both their
therapeutic and preventive properties [1–3]. In this context, new studies on the members of
the Lamiaceae family could provide innovative applications.

One famous plant species from this family is thyme, which has been appraised for its
economic value [4]. The essential oils from various aromatic species of the thyme genus
have been studied for their phytochemical composition and possible pharmacological
applications [1–6].

Interestingly, Thymbra and Thymus species are common in the west Mediterranean
area, which is believed to be the center of origin of the genus Thymus, and further extend
westwards into the Iberian Peninsula and northwest Africa, to the Macaronesian area in the
Atlantic Ocean [4]. Indeed, several works have been documented on the representatives of
these genera, which include chemotaxonomy, antimicrobial and antioxidant activities of
their volatile-containing extracts as well as essential oils [1,4]. In the literature, different
yields for essential oils such as 1.78% for Thymus atlanticus [5], 0.06–2.8% for Thymus
algeriensis [6] and 2.4–4.8% for Thymbra capitata [7] were obtained. Regarding extracts, the
extraction yields varied depending on the solvent used. For example, in a recent study
by Yassin et al. [8], the yields ranged from 0.45% (in n-hexane) to methanol (11.54%) for
Thymus vulgaris. The extraction yields for hydroethanolic extracts of Thymus citriodorus and
Thymus vulgaris were 14.05% and 24.34%, respectively [9].

In various parts of the world, these species have also been widely employed in
traditional medicine since historical times. For instance, they have been used to treat
digestive and respiratory system ailments. In ancient Egypt, they were used to make
fragrant balms for embalming and other therapeutic purposes, while in Greece, thyme was
utilized against asthma and to decongest the throat [10]. Thyme is also collectively used
with other herbs to cure a range of illnesses, from sore throat and bronchitis to gastritis
and skin illnesses. Thyme tea, drunk regularly, is even known to relieve arthritis [11]. The
decoction and infusion of thyme’s aerial parts is used as a tonic, digestive, carminative,
antispasmodic, and expectorant and for treating colds [12]. Regarding its pharmacological
properties, scientific investigations have revealed that they possess an array of health
benefits, including antimicrobial, antioxidant, anti-inflammatory, antiviral, antinociceptive
and anti-cancer activities [10,13,14].

Similarly, T. capitate, which also extends over a wide range in the Mediterranean
region, has been used to treat all types of diseases. It is used as a herbal tea, condiment
and food additive and the plant oil is incorporated into soups, salads and pastries. In
folk medicine, it is known to be used for colic, ulcers and hypertension [15]. It also has
the characteristic of eliminating warts, being diuretic and actuating menstrual discharge.
Besides, its leaves have antiseptic and purgative abilities. Thymbra capitata (L) is largely
recognized for its antibacterial, antimycotic, antioxidant and spasmolytic potentials. It is
broadly used in the pharmaceutical, cosmetics and food industries owing to its phenol and
terpene contents [15–17].
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Hence, considering the medicinal benefits of thyme, the main purpose of this study
was to further investigate the chemical compositions and biological activities (antioxidant,
enzyme inhibitory and anti-inflammatory) of two extracts (methanol and water) from two
species, namely T. capitata and T. sipyleus subspecies rosulans.

2. Results and Discussion
2.1. Total Phenolic and Flavonoid Content

Phenolic compounds as well as flavonoids are well-known bioactive agents that have
been extensively reviewed and have attracted considerable attention owing to their versatile
benefits to human health and in curing and averting numerous illnesses [18].

Flavonoids and phenolic compounds are plant secondary metabolites that possess an
aromatic ring having at least one hydroxyl group. They have been reported to be effec-
tive antioxidants, antibacterial, anticancer, cardioprotective, anti-inflammation, immune
system promoting agents, skin protectors, and are therefore outstanding candidates for
pharmaceutical and medical purposes [19,20]. Given their importance to plants and human
health, it is considered useful to have an improved understanding of flavonoid contents
and biological properties, which could be indicative of their potentials as healing agents,
and also for predicting and establishing the quality of medicinal herbs [21]. Hence, the
preliminary investigation of the presence of phenolics and flavonoids for the tested plants
was determined by spectrophotometric assays.

Indeed, along with the extraction techniques used to recover antioxidant compounds
from plants, the type of the solvent used is also important in determining the extraction
yield of bioactive contents. In this regard, polar solvents are frequently used for recovering
polyphenols from plant matrices [22]. Thus, in this study, the polar solvents water and
methanol were used in extraction methods, notably infusion and maceration, respectively.

In this study, total phenolics and flavonoids contents were shown by all extracts
(TPC: 83.43–127.52 mg GAE/g; TFC: 9.41–46.34 mg RE/g). However, the extracts of T.
capitata were shown to be higher in TPC than T. sipyleus extracts. On the other hand, the T.
capitata infusion extract yielded the least TFC compared to the other extracts. As previously
reported, a variety of antioxidant compounds with different chemical characteristics and
polarities may or may not be soluble in a particular solvent [22], therefore suggesting
the lower TFC yield in T. capitata infusion extract compared to the other extracts. In
addition, all the extracts were found to possess potent radical scavenging capacity, as
revealed by the DPPH and ABTS assays (240.73–269.71 mg TE/g and 305.60–379.11 mg
TE/g, respectively) (Table 1).

Table 1. Total bioactive compounds and radical scavenging ability of the tested extracts.

Extracts Total Phenolic
Content (mg GAE/g)

Total Flavonoid
Content (mg RE/g) DPPH (mg TE/g) ABTS (mg TE/g)

T. capitata-Methanol 127.52 ± 4.32 a 44.08 ± 0.54 b 269.71 ± 0.63 a 379.11 ± 6.07 a

T. capitata-Infusion 94.57 ± 0.83 b 9.41 ± 1.58 d 259.63 ± 0.62 b 305.60 ± 7.56 d

T. sipylus-Methanol 83.43 ± 0.57 d 46.34 ± 0.27 a 240.73 ± 3.49 c 360.93 ± 1.61 b

T. sipylus-Infusion 88.88 ± 0.65 c 34.11 ± 2.50 c 256.66 ± 5.12 b 345.10 ± 4.33 c

Values are reported as mean ± S.D of three parallel measurements. GAE: gallic acid equivalent; RE: rutin
equivalent; TE: trolox equivalent. Different letters indicate significant differences in the tested extracts (p < 0.05).

2.2. Chemical Characterization
2.2.1. Phenolic Acids

Phenolic acids, a subclass of plant phenolics, possess a phenolic moiety and a resonance-
stabilized structure, which makes the H-atom donation responsible for their antioxidant
properties through the radical scavenging mechanism. Other modes, such as radical
quenching by electron donation and singlet oxygen quenching, are also recognized for
the antioxidant activity of phenolic acids. Additionally, phenolic acids are ubiquitous and
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known for their protective health effects, such as anticancer, anti-inflammatory, antimi-
crobial and anti-mutagenic properties [23]. Furthermore, many of the Lamiaceae species,
including thymus species, are reported to be rich in bioactive compounds, particularly
phenolic acids [24], making their characterization important in the present study. Following
is a description of the identification of phenolic acids in the analyzed extracts (Table 2).
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Table 2. Characterization of the compounds found in the analyzed extracts of Thymus sipylus and
Thymbra capitata.

T. sipylus T. capitata

S. No. tR
(min)

[M-H]−
m/z m/z (% Base Peak) Assigned Identification MeOH Inf MeOH Inf

1 1.8 377
MS2 [377]: 341 (100)

MS3 [377→341]: 179 (66), 161 (100),
143 (23)

Disaccharide (HCl adduct) X X

2 1.8 533
MS2 [533]: 191 (100)

MS3 [533→191]: 191 (100), 173 (28),
127 (14), 109 (12)

Quinic acid derivative X X

3 2.1 191 MS2 [191]: 173 (34), 127 (8),
111 (100)

Isocitric acid * X X X X

4 2.6 191 MS2 [191]: 173 (31), 111 (100) Citric acid * X X X X

5 3.7 315 MS2 [315]: 153 (100), 135 (11)
MS3 [315→153]: 123 (13), 109 (100)

Dihydroxybenzoic
acid-O-hexoside X X X X

6 3.9 395

MS2 [395]: 197 (100), 179 (13),
135 (7)

MS3 [395→197]: 179 (100), 153 (9),
135 (7)

MS4 [395→197→179]: 135 (100)

Danshensu (dimer) X X X X

7 4.4 353 MS2 [353]: 191 (18), 179 (43), 173
(100), 135 (10)

Caffeolylquinic acid X

8 9.0 353 MS2 [353]: 191 (18), 179 (37), 173
(100), 135 (8)

4-O-caffeoylquinic acid * X X

9 9.3 367
MS2 [367]: 193 (100), 173 (27), 149

(5), 134 (12)
MS3 [367→193]: 149 (55), 134 (100)

3-Feruloylquinic acid X X X

10 9.7 305 MS2 [305]: 225 (100)
MS3 [305→225]: 147 (95), 135 (100)

Unknown X X

11 10.6 387
MS2 [387]: 207 (100), 163 (33), 119

(8), 113 (15)
MS3 [387→207]: 163 (100), 145 (3)

Medioresinol X X X X

12 11.3 489

MS2 [489]: 295 (33), 235 (61), 193
(100), 175 (20)

MS3 [489→193]: 178 (63), 149 (100),
134 (57)

Ferulic acid derivative X X

13 11.3 179 MS2 [179]: 135 (100) Caffeic acid * X X X X

14 12.4 609 MS2 [609]: 447 (100)
MS3 [609→447]: 285 (100)

Flavonoid-O-dihexoside X X

15 12.9 593
MS2 [593]: 503 (28), 473 (100), 383

(16), 353 (41)
MS3 [593→473]: 383 (17), 353 (100)

Vicenin-2
(apigenin-6,8-di-C-glucoside) * X X X X

16 13.8 367 MS2 [367]: 173 (100), 193 (6)
MS3 [367→173]: 111 (100)

4-Feruloylquinic acid X X

17 14.1 473
MS2 [473]: 295 (20), 235 (13), 193

(100), 175 (61)
MS3 [473→193]: 149 (13), 134 (100)

Ferulic acid derivative X X
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Table 2. Cont.

T. sipylus T. capitata

S. No. tR
(min)

[M-H]−
m/z m/z (% Base Peak) Assigned Identification MeOH Inf MeOH Inf

18 14.8 449
MS2 [449]: 287 (100)

MS3 [449→287]: 151 (100), 135 (11),
125 (3), 107 (5)

Eriodictyol-O-hexoside X

19 15.0 367 MS2 [367]: 191 (100), 173 (13) 5-Feruloylquinic acid X

20 15.1 563 MS2 [563]: 545 (45), 503 (75), 473
(100), 443 (25), 383 (45), 353 (54)

Apigenin-6-C-
pentoside-8-C-

hexoside
X X

21 15.3 593
MS2 [593]: 503 (20), 473 (40), 431

(100), 353 (36), 311 (40)
MS3 [593→431]: 341 (9), 311 (100)

Vitexin-hexoside (apigenin
di-hexoside) X X X X

22 16.0 739 MS2 [739]: 431 (100), 311 (28)
MS3 [739→431]: 341 (19), 311 (100)

Vitexin-rutinoside
(apigenin-hexoside-rutinoside) X

23 17.7 477 MS2 [477]: 301 (100) Unknown X X X X

24 17.9 563 MS2 [563]: 545 (15), 503 (8), 473 (47),
443 (100), 383 (22), 353 (30)

Apigenin-6-C-
hexoside-8-C-pentoside X X X

25 18.0 595
MS2 [595]: 287 (100)

MS3 [595→287]: 151 (100), 135 (25),
125 (8), 107 (12)

Eriodictyol-O-rutinoside X X X X

26 18.2 377

MS2 [377]: 331 (100), 179 (16)
MS3 [377→331]: 179 (100), 161 (18),
143 (33), 131 (22), 119 (9), 113 (21),

101 (12)

Hexoside derivative X X X X

27 18.6 447
MS2 [447]: 285 (100)

MS3 [447→285]: 243 (45), 241 (27),
217 (100), 151 (19)

Luteolin-O-hexoside X X

28 19.2 431 MS2 [431]: 341 (6), 311 (100), 283 (6) Vitexin (8-C-glucosyl apigenin) X X

29 19.8 303 MS2 [303]: 285 (100), 177 (12),
125 (12)

Taxifolin X X X

30 20.4 593 MS2 [593]: 285 (100) Flavonoid-rutinoside X X X

31 21.2 463
MS2 [463]: 301 (100)

MS3 [463→301]: 255 (16), 229 (12),
179 (64), 151 (100)

Quercetin-O-hexoside X X

32 21.7 461
MS2 [461]: 285 (100)

MS3 [461→285]: 285 (100), 243 (6),
241 (14)

Luteolin-O-glucuronide X X X X

33 22.1 521
MS2 [521]: 359 (100)

MS3 [521→359]: 223 (4), 197 (100),
179 (22), 161 (20), 135 (32)

Rosmarinic acid-O-hexoside X X X

34 22.2 579 MS2 [579]: 271 (100)
MS3 [579→271]: 151 (100), 125 (12)

Naringenin-O-hexoside X X

35 22.5 431
MS2 [431]: 269 (100)

MS3 [431→269]: 225 (100), 183 (88),
151 (57)

Apigenin-O-hexoside X X

36 22.7 579
MS2 [579]: 417 (100)

MS3 [579→417]: 402 (17), 387 (4),
181 (100), 166 (34), 151 (12)

Syringaresinol-O-hexoside X X
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Table 2. Cont.

T. sipylus T. capitata

S. No. tR
(min)

[M-H]−
m/z m/z (% Base Peak) Assigned Identification MeOH Inf MeOH Inf

37 23.0 623

MS2 [623]: 447 (100)
MS3 [623→447]: 315 (92), 271 (33),

163 (44), 151 (100)
MS4 [623→447→271]: 151 (100)

Naringenin-di-O-glucuronide X X

38 23.5 461 MS2 [461]: 299 (100)
MS3 [461→299]: 284 (100)

Methylated
flavonoid-O-hexoside X X

39 24.0 577 MS2 [577]: 269 (100) Unknown X X

40 24.3 609 MS2 [609]: 301 (100)
MS3 [609→301]: 286 (100), 242 (21)

Hesperidin (hesperetin
7-O-rutinoside) * X X X X

41 25.6 607 MS2 [607]: 299 (100), 284 (42)
Methylated

flavonoid-O-rutinoside X X

42 26.1 359 MS2 [359]: 223 (13), 197 (27), 179
(41), 161 (100), 133 (15)

Rosmarinic acid X X X X

43 26.7 555

MS2 [555]: 493 (100), 359 (54)
MS3 [555→493]: 359 (100)

MS4 [555→493→359]: 197 (21), 179
(14), 161 (100)

Salvianolic acid K X X

44 29.2 717

MS2 [717]: 555 (18), 519 (100),
357 (62)

MS3 [→]:
MS4 [→→]:

Salvianolic acid B/E isomer X X X

45 29.6 537
MS2 [537]: 493 (100), 359 (24)

MS3 [537→493]: 359 (100), 179 (12),
161 (10)

Salvianolic acid I (lithospermic
acid A) X

46 30.7 717 MS2 [717]: 519 (100)
MS3 [717→519]: 339 (24), 321 (100)

Salvianolic acid B/E isomer X X

47 31.1 505 MS2 [505]: 193 (100)
MS3 [505→193]: 149 (18), 134 (100)

Ferulic acid derivative X X

48 32.4 287 MS2 [287]: 151 (100) Eriodictyol X X X X

49 33.5 637 MS2 [637]: 591 (100)
MS3 [637→591]: 283 (100), 268 (12)

Methylated
flavonoid-O-rutinoside X X

50 35.5 301 MS2 [301]: 179 (100), 151 (84) Quercetin * X

51 36.1 285 MS2 [285]: 285 (100), 243 (7), 241
(46), 151 (11)

Luteolin X X

52 36.3 717 MS2 [717]: 519 (100)
MS3 [717→519]: 339 (100)

Salvianolic acid B/E isomer X X X

53 36.9 493

MS2 [493]: 359 (100), 313 (10),
161 (23)

MS3 [493→359]: 223 (12), 197 (23),
179 (26), 161 (100)

Salvianolic acid A X X X

54 38.1 329 MS2 [329]: 314 (100)
MS3 [329→314]: 299 (100)

Dimethylated flavonoid X X

55 38.2 551
MS2 [551]: 519 (79), 359 (100)

MS3 [551→359]: 223 (27), 197 (35),
179 (13), 161 (100)

Monomethyl lithospermate X
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Table 2. Cont.

T. sipylus T. capitata

S. No. tR
(min)

[M-H]−
m/z m/z (% Base Peak) Assigned Identification MeOH Inf MeOH Inf

56 39.1 327 MS2 [327]: 309 (27), 291 (43), 229
(100), 211 (66)

Oxo-dihydroxy-octadecenoic
acid X X X X

57 39.2 271 MS2 [271]: 151 (100) Naringenin X X

58 40.0 269 MS2 [269]: 269 (100), 225 (36), 197
(28), 151 (79):

Apigenin * X X

59 40.6 329 MS2 [329]: 311 (20), 229 (100), 211
(69), 209 (10), 171 (27)

Trihydroxy-octadecenoic acid X X X X

* Compared with standard compound.

Compound 5 suffered the neutral loss of 162 Da (hexoside) to yield the MS2 base peak
at m/z 153. The fragmentation of the ion at m/z 153 was consistent with dihydroxybenzoic
acid (an analytical standard of protocatechuic acid, dihydroxybenzoic acid, was used to
compare the fragmentation pattern). Hence, it was characterized as dihydroxybenzoic
acid-O-hexoside.

Compounds 7 and 8 presented the fragmentation pattern typical of caffeoylquinic
acids. Specifically, compound 8 was identified as 4-O-caffeoylquinic acid by comparison
with an analytical standard. The presence of caffeoylquinic acids in Thymus species has been
previously reported [25], although chlorogenic acid was mentioned as the found isomer.

Compounds 9, 16 and 19 were identified as feruloylquinic acids. The corresponding
isomers were assigned according to the hierarchical scheme proposed in [26]. The presence
of feruloylquinic acid has been reported in T. zygis [27]. Compounds 12, 17 and 47 were
tentatively characterized as ferulic acid derivatives due to the presence of ferulic acid at
m/z 193 (fragment ions at m/z 149 and 134).

2.2.2. Flavonoids

Several apigenin C-glycosides were observed in the analyzed extracts. Compound
15 was identified as vicenin-2 (apigenin-6,8-di-C-glucoside) by comparison with an an-
alytical standard. Compounds 20 and 24 were 6,8-di-C-asymmetricglycosyl apigenins.
The differentiation of the isomers was performed by the different abundance of the frag-
ment ion at m/z 545 (more abundant in 6-C-pentoside-8-C-hexoside) and the retention
time [28]. Compound 21 presented fragment ions at m/z 431, 341 and 311, typical of vitexin
(8-C-glucosyl apigenin); with an additional 162 Da, it was tentatively characterized as
vitexin-hexoside. Similarly, compound 22 was characterized as vitexin-rutinoside. Com-
pound 28 was vitexin (8-C-glucosyl apigenin) [21]. Compound 35 suffered the neutral loss
of 162 Da to yield apigenin at m/z 269 (main fragment at m/z 225), so it was identified as
apigenin-O-hexoside. The aglycone apigenin was compound 58.

Compounds 18 and 25 suffered neutral losses of 162 (hexoside) and 308 Da (rutinoside)
to yield the aglycone eriodictyol at m/z 287 (main fragment at m/z 151). The aglycone
eriodictyol was compound 48.

Compounds 27 and 32 displayed neutral losses of 162 and 176 Da to yield the aglycone
luteolin at m/z 285 (fragment ions at m/z 241 and 243), so they were identified as luteolin-
O-hexoside and luteolin-+6-glucuronide, respectively. Compound 51 was luteolin.

Compound 29 was tentatively characterized as taxifolin based on bibliographic infor-
mation [29].

Compound 31 suffered the neutral loss of 162 Da to yield quercetin at m/z 301 (frag-
ment ions at m/z 179 and 151), so it was identified as quercetin-O-hexoside. Compound
50 was quercetin (identified by comparison with an analytical standard).

Compound 34 was identified as naringenin-O-hexoside (loss of 162 Da), whereas
57 was the aglycone naringenin: deprotonated naringenin at m/z 271 and base peak at m/z
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151. Compound 37, which displayed two consecutive losses of 176 Da (glucuronide) was
characterized as naringenin-di-O-glucuronide.

Compound 40 was identified as hesperidin by comparison with an analytical standard.
Its presence has been previously reported in T. vulgaris [25].

2.2.3. Rosmarinic and Derivatives (Salvianolic Acids)

Compound 42 was characterized as rosmarinic acid, whereas 33 was rosmarinic
acid-O-hexoside. Both compounds have been previously reported in different Thymus
species [25,30,31]. Several salvianolic acids and derivatives were detected, observing the
fragment ion at m/z 359 (rosmarinic acid) in all of them.

Compound 43, with a deprotonated molecular ion at m/z 555, displayed fragment ions
at m/z 493, 359, 197, 179 and 161, characteristic of salvianolic acid K, previously reported
in T. algeriensis [31] and T. mastichina [32]. Here, it was only found in T. sipylus, but not
in T. capitata.

Compounds 44, 46 and 52, with a similar fragmentation pattern, were characterized
as salvianolic acid B/E isomers. Their presence has been reported in T. capitatus [30],
T. algeriensis [31] and T. mastichina [32]

Compound 45 was identified as salvianolic acid I (lithospermic acid A), previously
described in T. mastichina [32] and T. algeriensis [31].

Compound 53 was tentatively characterized as salvianolic acid A due to the fragmen-
tation pattern [33]. It has been reported in T. mastichina [32], although not with the same
fragment ions.

Compound 55 was tentatively characterized as monomethyl lithospermate, reported
in T. alsarensis [34] and also displayed the presence of rosmarinic acid at m/z 359.

2.2.4. Other Compounds

Compound 1 was characterized as a disaccharide (HCl adduct) due to the neutral
loss of 162 Da (341→179) and the characteristic fragments of hexoside moieties from the
fragment ion at m/z 179 [35].

Compound 2 was tentatively characterized as a quinic acid derivative (191/173 frag-
mentation), whereas compounds 3 and 4 were identified as isocitric and citric acid by
comparison with a citric acid analytical standard.

Compound 6 was tentatively characterized as danshensu (dimer) [36]. This compound
has been previously reported in T. zygis subsp. gracilis [27].

Compound 11 presented the same fragmentation pattern as medioresinol [37].
Compound 36 suffered the neutral loss of 162 Da to yield syringaresinol at m/z 579 [38].
Compounds 56 and 59 were characterized as the oxylipins oxo-dihydroxy-octadecenoic

acid and trihydroxy-octadecenoic acid based on bibliographic information [39].

2.3. Relative Peak Areas and Heat Map

To verify which compounds were the most abundant in the analyzed extracts, the
peak areas of each compound were obtained in MS mode using the precursor ion [M-H]−

(extracted ion chromatograms). The relative percentage of each compound was calculated
by area normalization and is shown in Table 3, in which the heat map highlights the most
abundant compounds.
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Table 3. Relative peak areas (%) and heat map for Thymus sipylus and Thymbra capitata, obtained by
HPLC-ESI-MS analysis. Hex = hexoside; Pen = pentoside; Rut = rutinoside.

T. sipylus T. capitata
Peak Compound MeOH Infusion Peak Compound

1 Disaccharide 3.43 0.00 0.66 0.00
2 Quinic acid derivative 2.00 8.72 0.00 0.00
3 Isocitric acid 0.09 0.05 0.05 0.05
4 Citric acid 0.01 0.02 0.01 0.14
5 Dihydroxybenzoic acid-O-Hex 0.25 1.04 0.05 0.23
6 Danshensu 0.42 1.47 0.51 1.26
7 Caffeolylquinic acid 0.02 0.00 0.00 0.00
8 4-O-caffeoylquinic acid 0.87 1.21 0.00 0.00
9 3-Feruloylquinic acid 0.30 2.67 0.01 0.00
10 Unknown 0.00 0.00 12.13 32.12
11 Medioresinol 5.09 6.91 0.56 1.61
12 Ferulic acid derivative 0.12 0.50 0.00 0.00
13 Caffeic acid 0.12 0.50 0.11 0.05
14 Flavonoid-O-di-Hex 0.33 1.10 0.00 0.00
15 Vicenin-2 3.38 11.55 10.85 13.63
16 4-Feruloylquinic acid 3.89 4.11 0.00 0.00
17 Ferulic acid derivative 0.14 0.30 0.00 0.00
18 Eriodictyol-O-Hex 0.14 0.00 0.00 0.00
19 5-Feruloylquinic acid 0.00 1.78 0.00 0.00
20 Apigenin-6-C-Pen-8-C-Hex 0.10 0.38 0.00 0.00
21 Vitexin Hex 0.16 0.47 0.30 0.59
22 Vitexin-Rut 0.00 0.00 0.08 0.00
23 Unknown 0.74 2.23 0.10 0.32
24 Apigenin-6-C-Hex-8-C-Pen 0.09 0.00 0.17 0.28
25 Eriodictyol-O-Rut 0.58 0.63 2.53 1.55
26 Hexoside derivative 2.33 2.48 0.01 0.39
27 Luteolin-O-Hex 3.34 2.54 0.00 0.00
28 Vitexin 0.00 0.00 0.73 0.56
29 Taxifolin 0.31 0.00 3.67 0.93
30 Flavonoid-Rut 1.04 0.57 4.27 0.00
31 Quercetin-O-Hex 0.38 0.40 0.00 0.00
32 Luteolin-O-Gluc 6.57 11.15 2.43 5.01
33 Rosmarinic acid-O-Hex 0.22 0.51 0.00 0.58
34 Naringenin-O-Hex 0.24 0.30 0.00 0.00
35 Apigenin-O-Hex 1.08 0.89 0.00 0.00
36 Syringaresinol-O-Hex 0.00 0.00 1.04 1.36
37 Naringenin-di-O-Gluc 1.36 3.13 0.00 0.00
38 Methylated flavonoid-O-Hex 0.85 0.47 0.00 0.00
39 Unknown 1.01 0.00 0.00 0.28
40 Hesperidin 0.18 0.09 10.19 1.87
41 Methylated flavonoid-O-Rut 0.00 0.00 5.85 0.78
42 Rosmarinic acid 25.56 14.96 20.95 22.80
43 Salvianolic acid K 4.44 9.31 0.00 0.00
44 Salvianolic acid B/E isomer 0.00 0.78 2.84 5.79
45 Salvianolic acid I 12.24 0.00 0.00 0.00
46 Salvianolic acid B/E isomer 0.00 0.00 1.84 3.38
47 Ferulic acid derivative 0.36 0.00 0.09 0.00
48 Eriodictyol 2.40 0.25 2.79 0.58
49 Methylated flavonoid-O-Rut 0.00 0.00 6.07 0.57
50 Quercetin 0.00 0.00 0.30 0.00
51 Luteolin 1.08 0.00 2.01 0.00
52 Salvianolic acid B/E isomer 1.54 1.97 0.00 0.15
53 Salvianolic acid A 0.64 1.55 0.00 0.50
54 Dimethylated flavonoid 0.00 0.00 2.64 0.42
55 Monomethyl lithospermate 6.21 0.00 0.00 0.00
56 Oxo-dihydroxy-octadecenoic acid 1.47 2.06 1.08 1.36
57 Naringenin 1.43 0.00 0.25 0.00
58 Apigenin 0.61 0.00 2.11 0.00
59 Trihydroxy-octadecenoic acid 0.86 0.94 0.69 0.85
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In T. sipyleus, the most abundant compound was rosmarinic acid (compound 42),
which accounted for approximately 16% (infusion) and 26% (methanolic) of all compounds.
It was followed by salvianolic acid K (4.6–10%) and salvianolic acid I (13%, but only
found in the MeOH extract). Many other compounds had a similar contribution to the
extract, such as luteolin-O-glucuronide (6–11%), medioresinol (5–7%), vicenin-2 (4–12%)
and 4-feruloylquinic acid (4%). Thus, the main bioactivity of the extracts would be due to
rosmarinic acid and salvianolic acids, but several phenolic acids and flavonoids would also
contribute to the overall bioactivity.

Regarding T. capitata, rosmarinic acid was still abundant (21–23%). However, con-
cerning salvianolic acids, B and E isomers were relatively abundant (compounds 44 and
46; 5–10%), whereas salvianolic acids K and I were not detected. Vicenin-2 had a similar
proportion to that in T. sipyleus (11–14%). However, the main difference was observed in
compound 10, which presented a high percentage and was not detected in T. sipyelus. The
presence of a compound with deprotonated molecular ion at m/z 305 (compound 10) has
been previously reported in T. fontanesii [40] as gallocatechin. However, the fragmentation
pattern observed here differs from that previously described as gallocatechin, so we could
not identify it with confidence.

High-performance liquid chromatography (HPLC) analysis revealed that rosmarinic
acid was the major component of the studied extracts (15.85–26.43%) (Table 3). Rosmarinic
acid, a caffeic acid ester, is a naturally occurring phenolic compound found in a variety of
plants that belong to the Lamiaceae family [24]. It is known to exhibit a range of pharma-
cological attributes, e.g., antioxidant, anti-inflammation, antiviral, antidiabetic, antitumor,
including neuroprotection and hepatoprotection effects, as demonstrated in several in vivo
and in vitro studies [41].

Vicenin-2 was also among the major components of the T. capitata extracts (10.98 and
13.98%) and infusion extract of T. sipyleus (12.23%), whereas salvianolic acid I was present
among the major component in the methanolic extract of T. sipyleus (12.66%) (Table 3).
Remarkably, a growing body of evidence suggests that these Thymus species are rich
sources of bioactive compounds, including phenolic compounds such as rosmarinic and
salvianolic acids and luteolin glycosides, making them attractive candidates for a variety of
industrial applications [42].

In a recent review by Elbouny et al. [43], a Thymus species was found to be rich in
phenolic compounds, both in its volatile oils as well as in its non-volatile extracts, including
phenolic acids such as rosmarinic, salvianolic, caffeic and ferulic acids, and flavonoids
luteolin, gallocatechin, isorhamnetin and quercetin, among others.

2.4. Chromatographic Quantification of the Main Phytochemicals

The quantification of the main compounds was performed by HPLC-DAD, using
320 nm for phenolic acids and 350 nm for flavonoids. Repeatability (n = 9) and interme-
diate precision (n = 9, 3 consecutive days) were lower than 4 and 9%, respectively. The
quantification was performed using analytical standards of the corresponding family in
each case and the results are given in Table 4. It can be observed that the TIPC was in the
following order: T. sipylus (MeOH) > T. sipylus (Inf) > T. capitata (MeOH) > T. capitata (Inf).
These results agree with Table 1 (the sum of TPC and TFC follows the same order). In
addition, the main quantified compounds were rosmarinic acid, salvianolic acids, vicenin-2
and luteolin-O-glucuronide, in line with the findings in the semiquantification (Table 3).
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Table 4. Quantification of the main phytochemicals in the analyzed extract of Thymus sipylus and
Thymbra capitata (mg g−1 DE; n = 3).

No. Assigned Identification T. sipylus T. capitata

MeOH Inf MeOH Inf

Phenolic acids
8 + 9 CQA + FQA 2.4 ± 0.2 b 5.5 ± 0.4 a — —

12 + 13 Ferulic + caffeic acids 1.04 ± 0.07 a 0.61 ± 0.04 b — —
16 FQA 1.8 ± 0.1 a 1.00 ± 0.07 b — —
19 FQA — 0.49 ± 0.03 — —
42 Rosmarinic acid 19 ± 1 a 12.3 ± 0.8 b 9.3 ± 0.6 c 6.1 ± 0.4 d

43 Salvianolic acid K 1.07 ± 0.06 b 1.8 ± 0.1 a — —
44 Salvianolic acid B/E — 0.29 ± 0.02 b 0.31 ± 0.02 b 0.46 ± 0.03 a

45 Salvianolic acid I 5.4 ± 0.4 — — —
46 Salvianolic acid B/E — — 0.25 ± 0.02 b 0.43 ± 0.03 a

53 Salvianolic acid A 0.34 ± 0.02 a 0.42 ± 0.03 a — 0.35 ± 0.02 a

55 Monomethyl Lith 1.34 ± 0.08 — — —
Total 32 ± 1 a 22.4 ± 0.9 b 9.9 ± 0.6 c 7.3 ± 0.4 d

Flavonoids
15 Vicenin-2 2.5 ± 0.1 c 6.8 ± 0.4 b 7.0 ± 0.4 b 9.0 ± 0.5 a

20 + 21 Apigenin glycosides — 0.29 ± 0.02 b 0.27 ± 0.02 b 0.58 ± 0.04 a

25 Eriodictyol-O-rutinoside — — 0.43 ± 0.03 a 0.46 ± 0.03 a

27 Luteolin-O-hexoside 5.5 ± 0.4 a 2.2 ± 0.1 b — —
28 Vitexin — — 0.33 ± 0.02 a 0.36 ± 0.02 a

29 Taxifolin 0.50 ± 0.04 b — 1.18 ± 0.07 a —
31 Quercetin-O-hexoside — 0.24 ± 0.02 — —
32 Luteolin-O-glucuronide 13.1 ± 0.8 a 7.4 ± 0.5 b 1.6 ± 0.1 d 2.1 ± 0.1 c

37 Naringenin-di-O-Gluc 1.14 ± 0.08 a 0.19 ± 0.01 b — —
40 Hesperidin — — 0.51 ± 0.03 —
48 Eriodictyol 0.41 ± 0.03 a — 0.20 ± 0.01 b 0.44 ± 0.03 a

57 Naringenin 0.35 ± 0.02 — — —
58 Apigenin 0.38 ± 0.03 b — 2.2 ± 0.1 a —

Total 24 ± 1 a 17.1 ± 0.7 b 13.7 ± 0.4 c 12.9 ± 0.5 c

TIPC 56 ± 2 a 40 ± 1 b 23.6 ± 0.7 c 20.2 ± 0.6 d

CQA = caffeoylquinic acid; FQA = feruloylquinic acid; Lith = lithospermate; Gluc = glucuronide. Different letters
indicate significant differences in the tested extracts (p < 0.05). TIPC = total individual phenolic compounds (sum
of all the compounds quantified by HPLC).

2.5. Antioxidant Properties

Maintaining the balance between free radicals and antioxidants is indeed an important
condition for remaining healthy. Therefore, controlling oxidative stress processes is crucial
for curing many diseases, such as atherosclerosis, diabetes, cancer, inflammation, liver
and cardiovascular diseases, cataracts, nephrotoxicity and age-related neurodegenerative
developments [44].

Here, in addition to radical scavenging abilities, all extracts also demonstrated antioxidant
potentials as reducing agents (CUPRAC: 622.65–802.22 mg TE/g; FRAP: 249.33–285.42 mg TE/g)
and metal chelators (14.97–36.72 mg EDTAE/g) (Table 5). In particular, the T. capitata
methanolic extract showed very high reducing activity in CUPRAC assay. Interestingly,
the infusion extracts were found to be better metal chelators compared to the methanolic
extracts. In addition, the total antioxidant capacity of the extracts was determined by the
phosphomolybdenum assay, ranging from 2.39–3.61 mmol TE/g (Table 5).

Findings from various studies have highlighted that Thymus species are powerful nat-
ural antioxidants. For instance, in [45], six Thymus species were tested using six assays. All
were reported to possess DPPH and nitric oxide scavenging activities (IC50: 3–6µg/mL and
70–177µg/mL, respectively), strong reducing properties, ferrous ion chelating activity and
lipid peroxidation inhibition capacity (IC50: 11–15µg/mL, 126–389µg/mL, 34–80µg/mL,
respectively), including high total antioxidant capacities (238–294 mg AAE/g).
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Table 5. Antioxidant properties of the tested extracts.

Extracts CUPRAC
(mg TE/g)

FRAP
(mg TE/g)

Metal Chelating
(mg EDTAE/g)

Phosphomolybdenum
(mmol TE/g)

T. capitata-Methanol 802.22 ± 34.70 a 270.16 ± 6.75 b 16.61 ± 0.96 c 3.61 ± 0.27 a

T. capitata-Infusion 622.65 ± 15.73 c 285.42 ± 5.70 a 28.04 ± 2.80 b 2.57 ± 0.08 b

T. sipylus-Methanol 657.70 ± 3.05 b 249.33 ± 8.21 c 14.97 ± 3.00 d 2.52 ± 0.23 b

T. sipylus-Infusion 625.20 ± 16.29 c 278.37 ± 5.64 a 36.72 ± 0.73 a 2.39 ± 0.11 c

Values are reported as mean± S.D of three parallel measurements. TE: trolox equivalent; EDTAE: EDTA equivalent.
Different letters indicate significant differences in the tested extracts (p < 0.05).

Furthermore, it has been reported that the antioxidant activity of Thymus species is
closely linked with their phenolic abundance and/or specific phenolic contents [43,46].
In fact, the antioxidant properties of phenolic-rich extracts from a wide range of Thymus
species have been documented in a recent review [42]. In addition, the decoction and
infusion extracts of T. sipyleus Boiss. subsp. rosulans have been reported to contain the
highest amount of phenolic content and showed the most potent activity against DPPH
radical [47]. This is in agreement with the present findings given that relatively high TPC
was produced in all extracts, which also showed potent antioxidant activities in the different
assays conducted.

2.6. Enzyme Inhibition Properties

The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) en-
zymes, which degrade acetylcholine, is considered a promising strategy for treating
Alzheimer’s disease. A potent source of AChE and BChE inhibitors can be derived from
an abundance of plants. In fact, natural products continue to provide valuable drugs and
templates for the development of other compounds [48].

In the current study, all extracts were found to inhibit AChE (0.35–3.86 mg GALAE/g),
although the methanolic extracts were more potent AChE inhibitors compared to the
infusion extracts, whereas only the methanolic extracts inhibited BChE (T. capitata: 4.36 mg
GALAE/g; T. sipylus: 3.79 mg GALAE/g) (Table 6).

Table 6. Enzyme inhibitory properties of tested extracts.

Extracts AChE
(mg GALAE/g)

BChE
(mg GALAE/g)

Tyrosinase
(mg KAE/g)

Amylase
(mmol ACAE/g)

Glucosidase
(mmol ACAE/g)

T. capitata-Methanol 3.86 ± 0.35 a 4.36 ± 0.37 a 89.66 ± 0.66 a 0.84 ± 0.03 a 1.78 ± 0.03 a

T. capitata-Infusion 0.73 ± 0.02 c na 19.11 ± 3.69 b 0.11 ± 0.01 c 1.67 ± 0.03 b

T. sipylus-Methanol 3.49 ± 0.14 b 3.79 ± 0.12 b 83.18 ± 2.57 a 0.61 ± 0.07 b 1.73 ± 0.04 a

T. sipylus-Infusion 0.35 ± 0.05 d na 18.74 ± 2.24 b 0.11 ± 0.01 c 1.45 ± 0.03 c

Values are reported as mean ± S.D of three parallel measurements. GALAE: galantamine equivalent; KAE: kojic
acid equivalent; ACAE: acarbose equivalent. na: not active. Different letters indicate significant differences in the
tested extracts (p < 0.05).

The anti-AChE activity of the ethanolic extracts of six Thymus species was also ex-
amined by other authors [45], where all tested extracts showed AChE inhibitory activity
in a dose-dependent way with extract concentrations of 0.25, 0.5 and 1 mg/mL showing
inhibition values of 10–28%, 23–39% and 64–86%, respectively.

Even though melanin has principally a photoprotective role in human skin, the ac-
cumulation of an abnormal quantity of melanin in several parts of the skin can lead to
the formation of more pigmented spots, causing an esthetic problem. On the other hand,
enzymatic browning of fruits and fungi is normally undesirable. Post-harvest browning
is a common phenomenon in crops and mushrooms, which decreases their market value.
Hyperpigmentation of human skin and enzymatic browning of fruits are undesirable.
These phenomena have prompted researchers to seek new potent tyrosinase inhibitors to
combat food browning and skin depigmentation. Even though both natural and synthetic
tyrosinase inhibitors have been found [48], there is still a high demand for more effective
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tyrosinase inhibitors, especially those made from natural sources. In the present study,
all extracts were found to cause tyrosinase inhibition (18.74–89.66 mg KAE/g) (Table 6).
However, methanolic extracts showed more potent tyrosinase inhibition compared to the
infusion extracts.

The strategy of reducing carbohydrate digestibility by regulating the activity of two
hydrolyzing enzymes, α-amylase and α-glucosidase, to control postprandial hyperglycemia
is considered a viable prophylactic treatment for type 2 diabetes mellitus. Thus, the
consumption of foods rich in hydrolyzing enzyme inhibitors is recommended for dietary
therapy of diabetes [49]. Plants are indeed rich sources of these enzyme inhibitors, as
shown in various reports [50–52], and can be implemented in dietary therapy as well as
used for the development of phytomedicines for diabetes management.

In the present study, dual inhibition was demonstrated by all extracts against the
carbohydrate digesting enzymes. All extracts inhibited amylase (0.11–0.84 mmol ACAE/g)
and glucosidase (1.45–1.78 mmol ACE/g) (Table 6). The methanolic extracts showed
relatively higher amylase and glucosidase inhibition compared to the infusion extracts.

Other Thymus species also showed antidiabetic potential through inhibition of amylase
and glucosidase. These were T. quinquecostatus Celak, T. schimperi R., T. vulgaris L. and
T. persicus [50–52].

2.7. Molecular Docking

The docking (binding energy) score of each ligand against each target enzyme is shown
in Figure 1. All compounds studied showed potential binding affinities for all five enzymes,
with a preference, in particular, for AChE and BChE. Thus, the detailed protein–ligand
interactions were visualized for some selected protein–ligand complexes. Salvianolic acid
K is strongly bound to AChE via multiple H-bonds and van der Waals interactions all
over the active site (Figure 2A). Salvianolic acid K is also bound to the rest of the enzymes
with different levels of strength. Lithospermic acid A, a structurally related molecule to
salvianolic acid K, bound BChE in an opposite orientation via a couple of π-π stacked, and
a hydrophobic interaction, in addition to multiple H-bonds and van der Waals interactions
that reinforced the binding (Figure 2B).
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Figure 1. Binding energy (docking) scores of the phytochemicals from Thymbra capitata and Thymus
sipyleus subsp. rosulans extracts.
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Figure 2. Protein–ligand interaction: (A) AChE and salvianolic acid K, (B) BChE and lithospermic
acid A, (C) tyrosinase and rosmarinic acid, (D) amylase and vicenin-2, and (E) glucosidase and
salvianolic acid B. The bioactive compounds were extracted from Thymbra capitata and Thymus
sipyleus subsp. rosulans.

Rosmarinic acid occupied the tyrosinase catalytic channel with an interesting binding
mode. Rosmarinic acid formed a metal acceptor interaction with the active site copper
metal ion, a π-anion, a π-π stacked deep inside the tunnel and several van der Waals inter-
actions throughout the active site of the enzyme (Figure 2C). On the other hand, the major
interactions between amylase and vicenin-2 were H-bonds, formed deep in the pocket,
with a couple of van der Waals interactions strengthening the binding (Figure 2D). Finally,
salvianolic acid B was completely buried in the glucosidase catalytic cavity, and the key
interactions formed comprised multiple H-bonds, a few π-π stacked and hydrophobic
interactions and multiple van der Waals interactions along the entire length of the tunnel
(Figure 2E). Together, these interactions are likely to allow these selected bioactive com-
pounds extracted from Thymbra capitata and Thymus sipyleus subsp. rosulans to inhibit the
biological activity of the target enzymes.

2.8. Ex Vivo Studies

The extracts were also tested in an experimental model of inflammation consisting
of isolated colon specimens exposed to LPS [53]. In this model, scalar concentrations of
the extracts (100–300 µg/mL) were effective in attenuating the LPS-induced upregulation
of both COX-2 and IL-6 gene expression (Figures 3 and 4). These findings are consistent
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with the aforementioned intrinsic properties of the extracts, capable of functioning as both
scavenging/reducing and enzyme inhibition agents. This is partly in agreement with the
content of phenolic compounds [54,55]. The high content of rosmarinic acid, which has been
shown to be an anti-inflammatory agent, is particularly evident; indeed, rosmarinic acid
showed protective effects in in vivo models of ulcerative colitis induced by DSS, where the
phytocompound was able to reduce the gene expression of COX-2 and IL-6 [56], possibly
through the inhibition of NFkB activity.

Molecules 2022, 27, x FOR PEER REVIEW 16 of 22 
 

 

Collectively, these data indicate protective effects induced by T. capitata and T. 

sipyleus against colonic inflammation and partly corroborate the traditional use of these 

two Lamiaceae species as remedies for treating digestive disorders. 

 

Figure 3. Inhibitory effects of Thymus sipyleus and Thymbra capitata extracts (100–300 µg/mL) on LPS-

induced COX-2 gene expression, in isolated colon (ANOVA, p < 0.0001; *** p < 0.001 vs. LPS). 

 

Figure 4. Inhibitory effects of Thymus sipyleus and Thymbra capitata extracts (100–300 µg/mL) on LPS-

induced IL-6 gene expression, in isolated colon (ANOVA, p < 0.0001; *** p < 0.001 vs. LPS). 

Figure 3. Inhibitory effects of Thymus sipyleus and Thymbra capitata extracts (100–300 µg/mL) on
LPS-induced COX-2 gene expression, in isolated colon (ANOVA, p < 0.0001; *** p < 0.001 vs. LPS).

Molecules 2022, 27, x FOR PEER REVIEW 16 of 22 
 

 

Collectively, these data indicate protective effects induced by T. capitata and T. 

sipyleus against colonic inflammation and partly corroborate the traditional use of these 

two Lamiaceae species as remedies for treating digestive disorders. 

 

Figure 3. Inhibitory effects of Thymus sipyleus and Thymbra capitata extracts (100–300 µg/mL) on LPS-

induced COX-2 gene expression, in isolated colon (ANOVA, p < 0.0001; *** p < 0.001 vs. LPS). 

 

Figure 4. Inhibitory effects of Thymus sipyleus and Thymbra capitata extracts (100–300 µg/mL) on LPS-

induced IL-6 gene expression, in isolated colon (ANOVA, p < 0.0001; *** p < 0.001 vs. LPS). 

Figure 4. Inhibitory effects of Thymus sipyleus and Thymbra capitata extracts (100–300 µg/mL) on
LPS-induced IL-6 gene expression, in isolated colon (ANOVA, p < 0.0001; *** p < 0.001 vs. LPS).



Molecules 2022, 27, 9029 17 of 23

Furthermore, it is rational to consider that other phenolic compounds present in the
extracts, including vicenin-2, might play a key role in mediating the anti-inflammatory
observed effects in mouse colon [57].

Collectively, these data indicate protective effects induced by T. capitata and T. sipyleus
against colonic inflammation and partly corroborate the traditional use of these two Lami-
aceae species as remedies for treating digestive disorders.

3. Materials and Methods
3.1. Plant Materials and Extraction

The aerial parts of the plants were collected from different regions of Turkey (T. capitata:
Bozcaada, Canakkale, Turkey and T. sipyleus subsp. rosulans: Karagobek village, Erzurum,
Turkey) during the summer season (at the flowering stage) of 2020. The plant was identified
by one botanist co-author (Dr. Gizem Emre, Marmara University). Voucher specimens
were deposited at the herbarium in the Marmara and Selcuk Universities.

In the preparation of plant extracts, we used two solvents (methanol and water) to
extract compounds of different polarities. The maceration technique was selected for
methanol extracts and for this purpose, plant materials (10 g) were stirred with the 200 mL
of methanol for 24 h at room temperature. After that, the mixtures were filtered through
Whatman filter paper and the solvents were removed using a rotary evaporator. Regarding
water extracts, the extracts were prepared as a traditional infusion and the plant materials
(10 g) were kept in boiled water (200 mL) for 15 min. Then, the mixture was filtered and
lyophilized for 48 h. All extracts were stored at 4 ◦C until analysis.

3.2. Profile of Bioactive Compounds

The Folin–Ciocalteu and AlCl3 assays, respectively, were utilized to determine the
total phenolic and flavonoid contents [58]. For the Folin–Ciocalteu assay, the sample
solution (0.25 mL) was mixed with diluted Folin–Ciocalteu reagent (1 mL, ratio of 1:9) and
shaken vigorously. After 3 min, Na2CO3 solution (1%, 0.75 mL) was added and the sample
absorbance was read at 760 nm after 2 h incubation at room temperature. To determine
the total flavonoid content, the sample solution (1 mL) was briefly mixed with the same
volume of aluminum trichloride (2%) in methanol. Similarly, a blank was prepared by
adding sample solution (1 mL) to methanol (1 mL) without AlCl3. The sample and blank
absorbances were read at 415 nm after a 10 min incubation at room temperature. The
absorbance of the blank was subtracted from that of the sample. For the respective assays,
results were expressed as gallic acid equivalents (mg GAEs/g extract) and rutin equivalents
(mg REs/g extract).

3.3. Instrumentation

Chromatographic analyses were performed using an Agilent Series 1100 HPLC system
equipped with a G1315B diode array detector (Agilent Technologies) and an ion trap mass
spectrometer (Esquire 6000, Bruker Daltonics) with an electrospray interface. Separation
was performed in a Luna Omega Polar C18 analytical column (150 × 3.0 mm; 5 µm par-
ticle size) with a Polar C18 Security Guard cartridge (4 × 3.0 mm), both purchased from
Phenomenex. Detailed chromatographic conditions are available in [59].

3.4. HPLC-ESI-MSn Analysis

The characterization of the phytochemicals was carried out by HPLC-ESI-MSn using
the negative ion mode. Identification was performed using analytical standards as well as
bibliographic information. Compounds were numbered according to their elution order,
keeping the same numbering in all extracts. A brief explanation of the characterization of
the compounds not identified by analytical standards follows.
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3.5. Determination of Antioxidant and Enzyme Inhibitory Effects

The antioxidant and enzyme inhibitory activity of comfrey root extracts was de-
termined according to previously described methods [60,61]. DPPH and ABTS radical
scavenging activity, cupric ion reducing antioxidant capacity (CUPRAC) and ferric ion
reducing antioxidant power (FRAP) were expressed as mg Trolox equivalents (TE)/g ex-
tract. The metal chelating ability (MCA) was reported as mg EDTA equivalents (EDTAE)/g
extract, whereas the total antioxidant activity (phosphomolybdenum assay, PBD) was
expressed as mmol TE/g extract. AChE and BChE inhibitory activities were given in mg
galanthamine equivalents (GALAE)/g extract; tyrosinase inhibitory activity was expressed
in mg kojic acid equivalents (KAE)/g extract; amylase and glucosidase inhibitory activities
were presented in mmol acarbose equivalents (ACAE)/g extract.

3.6. Molecular Modeling

The crystal structures of target enzymes were downloaded from the protein data
bank (PDB) (https://www.rcsb.org/ accessed on 1 June 2022): human AChE (6O52) [62],
BChE (6EQP) [63] and human pancreatic alpha-amylase (1B2Y) [64]. Since the crystal
structures of human tyrosinase and glucosidase have not yet been elucidated, those of Pries-
tia megaterium tyrosinase (6QXD) [65] and Mus musculus alpha-glucosidase (7KBJ) [66]
were used as templates to build their human models using UniProt sequences P14679 and
P0DUB6, respectively.

The details of the model construction has been described elsewhere [67]. The prepared
protein structures were taken from previous work [68]. The 3D structures of selected lig-
ands were downloaded from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/
accessed on 1 June 2022) and their geometry was optimized using Frog2 [69]. The respec-
tive cocrystal ligand of each complex was used to define the docking grid box dimension
and binding coordinates using AutoDockTools 1.5.6, and docking was performed using
AutoDock 4.2.6 (https://autodock.scripts.edu, accessed on 1 June 2022) [70]. The details
of the docking, including the Lamarckian genetic algorithm employed and the number
of runs, have been described previously [71–74]. The docking score of each ligand was
calculated, and the protein–ligand interactions were visualized using Biovia Discovery
Studio Visualizer (Dassault Systèmes Biovia Software Inc, 2012).

3.7. Ex Vivo Studies

Adult C57/BL6 male mice (3-month-old, weight 20–25 g) were housed in Plexiglas
cages (2–4 animals per cage; 55 cm × 33 cm × 19 cm) and maintained under standard
laboratory conditions (21 ± 2 ◦C; 55 ± 5% humidity) on a 14/10 h light/dark cycle, with
ad libitum access to water and food.

Isolated colon specimens were collected from euthanized mice (Project no. F4738.N.5QP)
and maintained in a humidified incubator with 5% CO2 at 37 ◦C for 4 h (incubation period),
in RPMI buffer with added bacterial LPS (10 µg/mL), as previously described [53]. During
the incubation period, the tissues were subjected to scalar concentrations of the extracts
(100–300 µg/mL).

3.8. RNA Extraction, Reverse Transcription and Real-Time Reverse Transcription Polymerase
Chain Reaction (RT-PCR)

Total RNA was extracted from colon specimens using TRI reagent (Sigma-Aldrich, St.
Louis, MO, USA), according to the manufacturer’s protocol, and reverse transcribed using
a High-Capacity cDNA Reverse Transcription Kit (ThermoFischer Scientific, Waltman,
MA, USA). Gene expression was determined by real-time quantitative PCR using TaqMan
probe-based chemistry. PCR primers and TaqMan probes were purchased from Thermo
Fisher Scientific Inc. The Assays-on-Demand Gene Expression Products used for gene
expression evaluations in the mouse colon specimens were: Mm00478374_m1 for COX-2
gene, Mm00607939_s1 for β-actin gene. β-actin was used as the housekeeping gene. The
elaboration of data was conducted with the Sequence Detection System (SDS) software

https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://autodock.scripts.edu
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version 2.3 (ThermoFischer Scientific). Relative quantification of gene expression was
performed by the comparative 2−∆∆Ct method [75].

3.9. Statistical Analysis

In the antioxidant and enzyme inhibitory assays, the values are expressed as mean ± SD
of three parallel experiments. To determine the differences between tested extracts in terms
of antioxidant and enzyme inhibitory capacities, one-way ANOVA with Tukey test was
performed. The statistical analysis was performed using XlStat 16.0 software.

In ex vivo studies, the software GraphPad Prism version 6.0 (Graphpad Software Inc.,
San Diego, CA, USA) was used to perform data analysis. Means ± SEM were determined
for each experimental group and analyzed by one-way analysis of variance (ANOVA),
followed by Newman–Keuls multiple comparison post hoc test. The limit of statistically
significant differences between mean values was set at p value < 0.05. The number of
animals randomized for each experimental group was calculated on the basis of the resource
equation N = (E + T)/T (10 ≤ E ≤ 20) [76].

4. Conclusions

In this study, the methanolic and infusion extracts of Thymbra capitata and Thymus
sipyleus subsp. rosulans were examined for their chemical composition and biological
properties using in vitro, ex vivo and in silico studies. Spectrophotometric assays showed
the extracts had higher total phenolic and flavonoid contents and high-performance liquid
chromatography analysis revealed that rosmarinic acid was a predominant compound,
which is in fact the characteristic of various Thyme species.

This compound could be the main one responsible for the anti-inflammatory effects
of the tested extracts against LPS-induced toxicity in the mouse colon. While all extracts
showed potent antioxidant capacity, most probably related to their relatively high TPC,
their enzyme inhibition potency varied. For instance, the methanolic extracts were found to
be better enzyme inhibitors compared to infusion extracts. This could be due to the absence
of active components in the infusion extracts that are favorable for enzyme inhibition. The
findings suggest that both species are good natural sources of antioxidants and can be
used as enzymes inhibitors. Moreover, the herein presented chemical characterization and
biological profile of these plants could help stimulate advanced research on their utility.
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