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Abstract: Iron is a trace element necessary for cell growth, development, and cellular homeostasis, but
insufficient or excessive level of iron is toxic. Intracellularly, sufficient amounts of iron are required
for mitochondria (the center of iron utilization) to maintain their normal physiologic function. Iron
deficiency impairs mitochondrial metabolism and respiratory activity, while mitochondrial iron over-
load promotes ROS production during mitochondrial electron transport, thus promoting potential
disease development. This review provides an overview of iron homeostasis, mitochondrial iron
metabolism, and how mitochondrial iron imbalances-induced mitochondrial dysfunction contribute
to diseases.

Keywords: iron homeostasis; mitochondrial dysfunction; diseases

1. Introduction

Iron exerts an essential role in living organisms. On one hand, iron is a component of
heme (e.g., myoglobin, hemoglobin, myeloperoxidase, cytochrome proteins, nitric oxide
synthetases), iron-sulfur clusters (e.g., mitochondrial aconitase, coenzyme Q10, respiratory
complexes I–III), or other functional groups (e.g., hypoxia inducible factor prolyl hydroxy-
lases) incorporated into proteins as cofactors. These iron-containing proteins contribute to
various biological processes, such as oxygen transport and energy metabolism [1]. On the
other hand, iron is involved in oxidation-reduction reactions by readily shuttling between
the oxidized ferric (Fe3+) and the reduced ferrous (Fe2+) forms. The reactions are required
for a number of fundamental biologic processes. Notably, the cellular redox equilibrium
can be easily disrupted by catalytic amounts of iron, thus resulting in the generation of
toxic reactive oxygen species (ROS) and oxidative stress [2,3]. Under oxidative stress,
mitochondria (the cellular energy centers) are impaired, leading to impaired energy state
and potential disease development [4,5]. As such, iron has become a key target of interest
in the progression and treatment of diseases related to dysfunction in mitochondria and
energy metabolism. Preventing the dysfunctional role of iron in energy metabolism may
help prevent or delay related metabolic diseases [6]. Therefore, this review emphasizes
the importance of iron homeostasis in mitochondrial function and energy metabolism and
discusses the diseases that are related to imbalances in iron homeostasis, mitochondrial
dysfunction, and impaired energy metabolism.

2. Cellular Iron Absorption, Utilization, and Homeostasis

The molecular mechanism of cellular iron absorption and metabolism has been well
characterized and shown in lots of reviews (Figure 1) [7,8]. Therefore, we only discuss
it briefly in this review before discussing the role of iron in energy metabolism. The
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hemoglobin (at least 2.1 g in humans) of red blood cells and developing erythroid cells is
the main place where body iron exists. In addition, body iron also exists in macrophages
(up to 600 mg), the myoglobin of muscles (~300 mg), and the liver (~1 g). Notably, lower,
but not negligible, quantities of iron also exist in other tissues. On the other hand, the main
ways for iron excretion from the body are sloughing of mucosal and skin cells or during
bleeding, but the underlying regulated mechanism remains unclear. In the presence of
physiological pH and oxygen, dietary iron mainly exists in the form of highly insoluble
iron Fe (III), while the iron transport system absorbs ferrous Fe (II) ions, which are very
unstable and rapidly oxidized to trivalent iron [9,10]. On this basis, balance is maintained
by the tight control of dietary absorption in the duodenum [11,12]. Dietary iron is absorbed
in the following three forms: inorganic (mainly present in the oxidized form Fe3+), heme,
and ferritin. Prior to intestinal uptake, dietary inorganic iron (Fe3+ form) must be reduced
to the Fe2+ form by the cytochrome b on the duodenal enterocyte membrane [13,14]. Then,
with the help of divalent metal transporter 1 (DMT1) on the membrane, the Fe2+ is further
transported into intestinal epithelial cells [15]. Iron (Fe2+) taken up by enterocytes has the
following four fates: (1) stored in ferritin in its Fe3+ form; (2) used directly as a cofactor by
cytosolic proteins; (3) transported into mitochondria; and (4) transported out of the cell [7].
Unlike dietary inorganic iron, the mechanisms for uptake of dietary heme and ferritin are
less well understood. However, after it is liberated, iron obtained from dietary heme and
ferritin enters a common pathway similar to inorganic iron in the enterocyte [16].
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Figure 1. Cellular iron absorption, utilization, and homeostasis. Dietary iron is absorbed in the
duodenum in the following three forms: inorganic (mainly present in the oxidized form Fe3+), heme,
and ferritin. Then the iron is transported to the body. Body iron is mainly present in the hemoglobin of
red blood cells and developing erythroid cells (at least 2.1 g in humans). In addition, macrophages (up
to 600 mg) and the myoglobin of muscles (~300 mg) also contain significant amounts of iron, and the
liver stores the excess body iron (~1 g). Other tissues also contain lower, but not negligible, quantities
of iron. Finally, mammals lose iron from sloughing of mucosal and skin cells or during bleeding.

With the help of ferroportin1 (FPN1), a known iron transmembrane efflux protein in
vertebrate cells, intracellular iron is exported out of the cell [17–19]. Another important
way to remove intracellular iron is by extracellular vesicles (specifically, by exosomes),
hence protecting cells from ferroptotic cell death [20]. To guard dissociative iron against
oxidative damage to cells, excess cellular iron is stored in ferritin [21]. Exported iron is
scavenged by transferrin, which maintains Fe3+ in a redox-insert state and delivers it into
tissues by the ubiquitously expressed transferrin receptor 1 (TFR1) [22]. Under normal
conditions, iron exists in the bloodstream mainly in the form of transferrin-bound iron,
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which is not redox active and does not produce extrahepatic iron overload. Once plasma
iron exceeds the carrying capacity of transferrin, iron and transferrin are not tightly bound
to form non-transferrin-bound iron (NTBI), which is taken up by tissues (such as the heart,
pancreas, and liver) through endocytosis [23], thus giving rise to tissue damage [24].

The level of body iron needs close regulation since imbalances between the two
oxidation states of iron produce ROS [25]. The maintenance of iron homeostasis is largely
modulated by the iron regulatory protein (IRP)-iron response element (IRE) system, which
is a relatively simple and ubiquitous post-transcriptional regulatory loop. In response
to alterations in the levels of intracellular iron, this system can regulate the expression
of post-translational ferritin and transferrin receptors and alter the synthesis of pivotal
iron metabolic proteins [26,27]. That is, when cellular iron levels are low, IRP rescues
cellular iron deficiency by the following two mechanisms: (1) binding of IRP to the 5′UTR
of mRNA blocks mRNA translation of key proteins associated with iron storage and export;
(2) binding of IRP to the 3′UTR of mRNA elevates mRNA translation of key proteins related
to iron uptake. The opposite effect occurs when cellular iron levels are high [28]. Thus,
when iron supply exceeds cell demand, the IRE-IRP switch minimizes further iron uptake
via TfR1 and facilitates the storage of excess iron in newly synthesized ferritin to reach
cellular iron homeostasis.

3. Iron and Energy Metabolism

Mitochondrial function is traditionally associated with energy supply for all cell com-
partments [29]. However, fresh insights into the relationship between mitochondrial energy
metabolism and mitochondrial iron levels necessitates an expansion of the concept. The
mitochondrion requires sufficient amounts of iron to maintain its normal physiologic func-
tion, since iron is the most prevalent metal inside the mitochondrial matrix and serves to
facilitate the complex redox chemistry of the electron transport chain [7,30]. Once imported
into mitochondria, iron is stored in the mitochondrial ferritin, or used for the biosynthesis
of heme [31] and the biogenesis of iron-sulfur cluster (ISC or Fe-S) [32,33]. Both of them
facilitate oxidation-reduction reactions and are essential components of enzymes involved
in electron transport [34,35]. Specifically, mitochondrial iron-containing proteins that are
implicated in the electron-transport chain include heme-containing proteins (succinate de-
hydrogenase, cytochrome c, cytochrome c oxidase, and cytochrome bc1), the ISC-containing
proteins (nicotinamide adenine dinucleotide (NADH) ubiquinone oxidoreductase, Rieske
iron-sulfur protein, subunits of succinate dehydrogenase, biotin synthase, lipoic acid syn-
thase, and aconitase), and iron-ion cofactor-containing proteins (iron monooxy-genases and
dioxygenases) [36]. Notably, the unique redox properties of iron allow for efficient electron
transfer, accompanied by the generation of ROS. Accordingly, insufficient or excessive
levels of mitochondrial iron can impair the synthesis of Fe-S cluster and heme, induce mito-
chondrial dysfunction, and cause oxidative stress, consequently affecting mitochondrial
ATP production via the tricarboxylic acid (TCA) and/or glycolysis [37–39].

4. Mitochondrial Iron and Diseases

All mammalian cells possess mitochondria, and mitochondrial function is required for
normal cell physiological processes. Consequently, these cells are vulnerable to diseases related
to failure of mitochondrial iron homeostasis and consequent mitochondrial dysfunction [37],
as shown in Table 1. These diseases are discussed in detail in the following sections.
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Table 1. Classification of diseases based on major consequences of changes in iron levels.

Disease Examples or Models Changes in Iron Level Major Consequences

Patients [40] and mice [41]
with heart failure Intracellular iron is deficient Severe heart failure

Cardiomyopathy of
Friedreich’s ataxia [42]

Mitochondrial iron levels
increased

Cardiomyocyte death and
fibrosis, impaired systolic and

diastolic function.
β-thalassemia and hereditary

hemochromatosis [43] Iron overload Liver fibrosis, cirrhosis, and
even hepatoma

Aged rats muscle atrophy [44] Mitochondrial iron
accumulation Muscle mass decreased

Patients with obesity and
diabetes [45] Iron accumulation

Mitochondrial dysfunction in
adipocytes causes toxic effects
on β cells leading to defects in
insulin synthesis and secretion

Patients with chronic kidney
disease [46]

Tubular cell lysosomal iron
accumulation Renal cell damage

AD [47]

Diffuse accumulation of iron
in the cerebral cortex and

hippocampus, and the content
of iron in senile plaques

increases slightly

Apoptosis and/or necrosis,
thus leading to cell death

PD [48] Focal accumulation of iron in
the substantia nigra

The formation of α-synuclein
leaded to synaptic

dysfunction and disruption of
ax-onal transport

Breast cancer [49] Iron overload1 Promoting cancer cell
proliferation

1 The concentration of transferrin was obtained by immunological method. The transferrin saturation was
calculated as the ratio of serum iron to transferrin concentration (TF) multiplied by a factor of 70.9. When the
saturation of transferrin exceeds 80%, non-transferrin-bound iron (NTBI) is produced, which is highly reactive
and harmful to cells (iron overload).

4.1. Cardiovascular Disease

Heart failure is a pressing public health problem with no curative treatment currently
available. According to the report, heart failure is caused by the changes in mitochondrial
iron homeostasis and mitochondrial function [50–52]. Mitochondrial iron is involved in the
energy metabolism of the heart and is a fundamental element of cardiomyocyte viability
and contractility [40,53]. On the one hand, systemic iron deficiency decreases mitochondrial
function, leading to iron deficiency in cardiomyocytes even without anemia [54–56]. Recent
work in mice [57] and patients with heart failure [40] has been clarified that mitochondrial
function is reduced when intracellular iron is deficient, which leads to severe heart failure
and is associated with cardiomyocyte injury [41]. The myocardium cannot provide suf-
ficient blood flow. On the other hand, increased heme iron intake and body iron stores
have been reported to be strongly associated with cardiovascular risk [58–60]. Excess iron
can lead to impaired vascular function, aggravating atherosclerosis, arrhythmia, and heart
failure [61]. ROS production is also catalyzed by excess iron, which causes lipid peroxida-
tion and organelle damage [62]. This leads to cardiomyocyte death and fibrosis, ultimately
leading to impaired systolic and diastolic function. Support for this theory derives from
observations of increased mitochondrial iron levels in patients with heart failure [42]. The
best documented example has been clearly shown in a human genetic disease, namely,
cardiomyopathy of Friedreich’s ataxia (FRDA) [42]. Recent work in patients [63] and in
mouse models [64,65] provides evidence that this disease is characterized by significant
accumulation of iron inside the mitochondria, extensive mitochondrial dysfunction, and
oxidative damage [42,66]. Luckily reducing mitochondrial iron is able to protect the heart
by inhibiting oxidative stress [67]. Interestingly, the cardiac phenotype observed in FRDA
is partially ameliorated in response to combined therapy with the mitochondria-permeable
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iron chelator deferiprone and an antioxidant [68,69], supporting the role of mitochondrial
iron in the pathophysiology of cardiac dysfunction. Further confirmation for a relationship
between mitochondrial iron accumulation and heart failure comes from the findings that
deletion of mitochondrial ATP binding cassette transporter B8 in the heart inhibits iron
export from this organelle and results in mitochondrial iron overload and subsequently
increased oxidative stress [70].

Concerning the mechanisms (Figure 2), the elevation in mitochondrial iron levels that
results in heart failure is likely mediated by potential disruption of Fe-S cluster biogenesis
and by an ROS-dependent mechanism [71]. Iron is specially involved in the formation of
atherosclerosis by catalyzing the generation of free radicals, promoting the peroxidation of
the lipid and protein parts of lipoproteins, and forming oxidized low-density lipoprotein
(LDL). ROS causes mitochondrial damage by attacking mitochondrial DNA and mito-
chondrial proteins and impairing mitochondrial aerobic metabolism, and mitochondrial
dysfunction will also increase the production of ROS, thereby forming a vicious circle, which
ultimately manifests as cardiovascular disease and its complications [72,73]. Meanwhile,
oxidized-LDL can induce macrophages to form foam cells and promote the development of
atherosclerosis [74–76]. Then, to make matters worse, mitochondrial antioxidant enzymes
are significantly reduced in patients with heart failure compared with normal subjects [77].
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Figure 2. The molecular mechanism of cardiovascular disease. Concerning the mechanisms, the
elevation in mitochondrial iron levels that results in heart failure is likely mediated by potential
disruption of Fe-S cluster biogenesis and by an ROS-dependent mechanism. Iron is specially involved
in the formation of atherosclerosis by catalyzing the generation of ROS, promoting the peroxidation
of the lipid and protein parts of lipoproteins, and forming oxidized low-density lipoprotein (LDL).
ROS causes mitochondrial damage by attacking mitochondrial DNA and mitochondrial proteins,
impairing mitochondrial aerobic metabolism, and mitochondrial dysfunction will also increase the
production of ROS, thereby forming a vicious circle, which ultimately manifests as cardiovascular
disease and its complications. Meanwhile, oxidized-LDL can induce macrophages to form foam cells
and promote the development of atherosclerosis.
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Similar to iron overload, iron deficiency can also be detrimental to the heart, an
organ with high energy demands. There is validation that iron deficiency is present in
approximately 30%~50% of patients with chronic heart failure [78]. Heart failure symptoms
in the patient population can be improved by intravenous iron supplementation, which has
been a recommended treatment for patients with heart failure with iron deficiency [79,80].

4.2. Liver Disease

The liver, the main site for iron storage, is the main target organ of iron overload-
induced injury. When the iron storage and antioxidant capacity of the liver is exceeded, iron
overload can lead to liver fibrosis, cirrhosis, and even hepatoma, as seen in β-thalassemia
and hereditary hemochromatosis [43,81]. In addition, other chronic liver diseases such as
viral hepatitis, nonalcoholic fatty liver disease, and alcoholic liver disease, are also related to
liver iron overload [43]. Liver iron overload-induced oxidative stress may be a contributing
mechanism for the progression of these diseases [43,82]. The liver is susceptible to oxidative
damage by its intermediate metabolites during the process of metabolic detoxification.
Excessive pro-oxidative forms of iron in the parenchymal cells of the liver promote oxidative
damage, triggering lipid peroxidation [83]. Iron-driven injury of hepatocytes can lead
to paracrine induction of hepatic stellate cells and portal myofibroblasts through lipid
peroxidation byproducts, leading to increased collagen deposition, fibrosis and long-term
micronodular cirrhosis and hepatocellular carcinoma [84]. In explanation of the reason for
iron accumulation in the liver, recent studies have suggested that pathogenic factors related
to the underlying liver disease may contribute the iron overload by directly affecting the
expression of hepcidin (for autocrine downregulation of FPN expression to reduce iron
export) [85].

4.3. Muscle Atrophy

Muscle atrophy, also called sarcopenia, is characterized by loss of skeletal muscle
mass [86] and can be induced by aging [87] and various chronic diseases [88,89]. Recent
evidence points to a strong relationship between mitochondrial iron accumulation and
muscle atrophy [90], possibly manifested as a decrease in type II muscle fiber content [91,92].
Previous work on aged rats shows that, due to alterations in iron metabolism, increased
iron accumulation and decreased muscle mass occur in parallel [44,93–95]. The adaptive
downregulation in IRP2 results in a decreased expression of TFR1 (an iron transporter) and
an increased expression of ferritin (an iron storage protein), which constitutes a proposed
mechanism that may explain the accelerated iron accumulation in skeletal muscle of aged
rats [44]. In line with these findings, recent studies showed that ablation of TFR1 in satellite
cells impedes skeletal muscle regeneration through activation of ferroptosis [96]. Further
support for this mechanism drives from observations of higher ferritin levels in women
with sarcopenia or sarcopenic obese people [97–99]. Another potential mechanism for the
iron accumulation is related to the lower expression of FPN and the upregulation of genes
related to iron uptake (such as DMT1 and Zip14) [100]. In addition, an animal model of
disuse atrophy was used to further our understanding of the underlying mechanisms for the
iron accumulation. The researchers found that iron accumulation induced by acute muscle
atrophy was related to extensive oxidative stress after reloading in skeletal muscles of aged
rats [100]. Oxidative stress induced by excessive iron causes muscle damage [101,102].
In support, sarcopenia and oxidative stress in skeletal muscles of mice were induced in
response to iron administration [103]. Despite these interesting findings, our understanding
of the precise molecular mechanism of iron-induced muscle atrophy is incomplete. Upon
further investigation, the E3 ubiquitin ligase mediated by the reduction of Akt-forkhead
box O3a signaling by oxidative stress is a contributing mechanism for the iron-induced
skeletal muscle atrophy [86]. It is manifested in the promotion of protein degradation and
inhibition of protein synthesis [86,103,104]. In 2019, it was revealed for the first time that
the iron metabolism regulatory molecule Hemojuvelin (HJV or HFE2) is a protective gene
that inhibits the occurrence of Duchenne muscular dystrophy and senile muscle atrophy.
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The molecular regulation mechanism of HJV dependent on TGFb/SMAD2/3 pathway was
elucidated, and the important physiological role of HJV in protecting muscle and resisting
muscle fiber aging was further explored [105]. This achievement provides a new target for
the prevention and treatment of muscle atrophy diseases.

4.4. Obesity and Diabetes

Obesity and diabetes are becoming one of the most pressing health issues facing
society. Several studies provide strong evidence for the correlation between dysregulated
iron homeostasis and obesity as well as diabetes [29,106,107]. The liver and adipose tissues
of obese participants had higher iron concentrations [108–111]. Iron accumulation and
the related oxidative stress contribute to the pathophysiology of obesity and its related
metabolic disturbances, such as type 2 diabetes mellitus [108]. Iron accumulation increases
ROS through Fenton reaction, leading to mitochondrial dysfunction in adipocytes. This
toxic effect on β cells leads to defects in insulin synthesis and secretion [45,112,113]. Hyper-
glycemia exacerbates iron accumulation, promotes oxidative stress and the development of
type 2 diabetes [114]. In support, adipogenesis and mitochondrial biosynthesis are greatly
inhibited when transferrin is knocked down or iron is chelated by using deferoxamine
(DFO) [115,116], thereby inhibiting the development of obesity in diabetic states [107].
Consistently, adiposity can be ameliorated in response to DFO (100 mg/kg body weight),
accompanied by increased insulin sensitivity in ob/ob mice [107]. On the contrary, lipolysis
is promoted when adipocytes are treated with either iron or transferrin [117]. The status
and development of obesity and diabetes can be ameliorated when body iron content is
reduced to an appropriate level [106]. However, contradictory results are reported by other
studies, which indicate that iron deficiency increases the risk of developing diabetes in
obese individuals [118]. Therefore, the relationship between body iron content and obesity
is still a topic of debate and warrants further investigation.

4.5. Kidney Disease

Iron and iron-triggered oxidative stress and mitochondrial dysfunction are thought
to be involved in the progression of multiple models of acute kidney injury [119–121].
Patients with chronic kidney disease (CKD) experience significant changes in iron balance
and tissue distribution due to elevated iron losses, decreased iron absorption, and impaired
mobilization of iron from stores [122]. If the iron metabolism is unbalanced, the accumula-
tion of iron in the kidney and the increase of urinary iron concentration or iron deficiency
will cause kidney damage and related complications [6,123,124]. Tubular cell lysosomal
iron accumulation has been shown in patients with CKD [46], which is most likely due
to excessive iron content, which catalyzes the formation of oxygen free radicals, disrupts
mitochondrial oxidative metabolism, and leads to renal cell damage. According to the
Fenton reaction, abnormal accumulation of iron creates oxidative stress. On the other hand,
renal tubular epithelial cells have high energy demands and, therefore, have a large number
of mitochondria, making them susceptible to oxidative stress [119]. In rat kidneys, iron in
the form of myoglobin has been reported to generate oxidative stress, leading to mitochon-
drial dysfunction through lipid peroxidation of mitochondrial membranes, which leads to
pro-inflammatory cells in a rat model of acute cerebral ischemia Factor production [123].

Ferroptosis, a new form of regulated cell death identified in recent years, is involved in
the initiation and progression of diverse kidney diseases, such as renal ischemia-reperfusion
injury, renal cell carcinoma, and acute kidney injury [125,126]. Unlike other types of known
regulated cell death (e.g., pyroptosis, necrosis, autophagy, and apoptosis), ferroptosis is
characterized by the iron-dependent overwhelming accumulation of lipid hydroperoxides
and augmented mitochondrial membrane density [127]. The latest research demonstrated
that mitochondrial iron overload can accelerate the process of ferroptosis [128]. Concerning
the mechanism for iron overload-induced ferroptosis, recent studies using a model of
aristolactam I-induced ferroptosis reported that Fe2+ overload-mediated mitochondrial
ROS over-release would activate lipid peroxidation and inhibit the antioxidant system
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by inhibiting nuclear factor erythroid 2-related factor 2-heme oxygenase 1/glutathione
peroxidase 4 pathway, which enhanced ferroptosis [129].

4.6. Neurodegenerative Disease (NDDs)

The brain is a metabolically active place compared to other organs [130]. Neuronal
mitochondrial respiration accounts for about 20% of total oxygen consumption [131].
Cortical neurons in the human brain utilize approximately 4.7 billion ATP molecules
produced by mitochondria per second to perform biological functions such as synaptic
assembly, generation of action potentials, and synaptic transmission [132]. It has been
reported that mitochondrial iron accumulation plays an important role in the initiation and
progression of NDDs, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) [133].
In detail, iron overload promotes mitochondrial dysfunction and catalyzes the production
of ROS that triggers oxidative stress in the brain, resulting in neurological damage [134].
It has been reported that mitochondrial dysfunction is a common pathogenic feature of
NDDs such as AD and PD [135,136]. Ferritin is a precursor of iron accumulation [137]. The
two subunits of ferritin, L- ferritin (FTL) and H- ferritin (FTH), are essential for iron storage
in vertebrate cells [138]. Compared with the liver, which mainly contains FTL, the brain
and heart have more high iron oxidation activity, so it mainly contains FTH ferritin with
significant antioxidant activity [139–141]. Differed from physiological ferritin, studies have
shown that ferritin structures in NDDs are in the form of magnetite crystals [142]. This rare
magnetic structure could help visualize brain tissue for the diagnosis of NDDs [143].

It is estimated that 10% of the world’s population may currently be affected by
AD [144]. Patients with AD have diffuse accumulation of iron in the cerebral cortex
and hippocampus, and the content of iron in senile plaques increases slightly [47]. Specif-
ically, in AD (Figure 3), iron accumulation induces oxidative stress, lipid peroxidation,
and inflammatory responses by disrupting mitochondrial function, depleting ATP, and
inducing ROS production [135]. The combined effects of oxidative stress, lipid peroxidation
and neuroinflammation lead to the production of amyloid-beta (Aβ) [132]. Through these
mechanisms, iron accumulation induces apoptosis and/or necrosis, thus leading to cell
death [135]. In addition, Aβ can induce lipid peroxidation in the presence of iron ions [145],
as manifested by the increased expression of lipoxygenase in the brain of AD patients [146].
Knockout of lipoxygenase reduces iron-induced lipid peroxidation, which in turn reduces
Aβ deposition in AD mouse brain and improves behavioral performance [147].

Among other NDDs, PD is the second most common in people over 60 [148]. Focal
accumulation of iron in the substantia nigra has been reported in patients with PD [48]. Iron
is involved in the formation of α-synuclein aggregates in intracellular inclusions, called
Lewy bodies, leading to synaptic dysfunction and disruption of axonal transport [149],
which is a hallmark of PD. In murine models of PD, α-synuclein expression can be reg-
ulated to ameliorate PD injury by increasing mitochondrial ferritin [150,151]. Moreover,
decreased mitochondrial complex I activity is observed in mitochondria isolated from
human brain tissues and peripheral cells of sporadic PD patients, indicating an impairment
of mitochondrial function [152]. Subsequently, such mitochondrial dysfunction may result
in IRP1 activation, upregulated expression of DMT1 and TFR1, elevated uptake of iron, and
elevated production of ROS [153]. The mitochondrial iron-specific changes in human and
rodent models of PD have been demonstrated by a number of studies. For instance, mito-
chondrial iron uptake and the production of ROS were increased in SH-SY5Y dopaminergic
neuroblastoma cells treated with rotenone (a mitochondrial complex I inhibitor) [154,155].
Further evidence comes from observations of the accumulation of transferrin in dopamine
neurons (with much of it accumulating in the mitochondria) in a rodent rotenone model of
PD [156].
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Figure 3. The process of iron accumulation in AD patients. In AD, iron accumulation induces oxida-
tive stress, lipid peroxidation, and inflammatory responses by disrupting mitochondrial function,
and inducing ROS production. The combined effects of oxidative stress, lipid peroxidation, and
neuroinflammation lead to the production of amyloid-beta (Aβ). Aβ can induce lipid peroxidation in
the presence of iron ions. Through these mechanisms, iron accumulation induces apoptosis and/or
necrosis, thus leading to cell death. This finally leads to becoming an AD patient.

4.7. Cancers

Iron overload is related to the occurrence of various cancers such as liver, colon, rectum,
lung, esophagus and bladder cancers (Figure 4) [157,158] because iron is needed in all stages of
tumor development, survival, proliferation and metastasis [159]. There are two well-defined
mechanisms of cancer development induced by iron excess [160,161]. One is associated with
the pre-oxidant effects of iron, which can lead to DNA damage and subsequently promote
oncogenesis [162]. The dependence of cancer cells on iron to maintain their rapid growth
rate constitutes the other mechanism [161,163]. During rapid cell proliferation, more iron
may be imported to mitochondria of cancer cells, in order to produce heme and ISC and to
satisfy increasing demands for these cofactors [164]. For instance, the rates of heme-synthesis
are elevated in non-small cell lung cancer cells compared to normal nonmalignant lung
cells [165]. Intriguingly, the expression of iron homeostasis proteins associated with iron
accumulation is altered in multiple cancer cell types, such as an elevated expression of the
iron uptake-related protein TFR1, a reduced expression of the iron export-related protein FPN,
and an elevated production of hepcidin [160,161,166–168]. Tumor growth and survival can
be greatly influenced by altered expression of these proteins. Evidence for this is provided
by observations found in breast cancer that a high expression of FPN and low expression of



Molecules 2023, 28, 29 10 of 18

hepcidin predicts a favorable prognosis, while a low expression of FPN is related to metastatic
progression and reduced survival [169–171]. In addition, the expression of mitoferrin-2 (related
to mitochondrial iron uptake) is altered in head and neck cancers [172]. The demand for iron
in cancer cells is an important strategy for the anti-cancer targeting of chelating agents. Iron
chelators affect the initiation, growth, proliferation, and metastasis of cancer cells by targeting
different stages of disease progression, including associated iron metabolic pathways and
iron-containing proteins [160,173]. The first iron chelator for clinical trials is desferrioxamine
(DFO) [174,175], which was originally used as a treatment for iron overload [176]. It can
also target ferritin through autophagy degradation [177]. Quercetin can not only effectively
form complexes with iron, but also induce iron deficiency behaviors in cancer cells, such as
induction of transferrin receptor-1 and iron regulatory protein-2 expression and decreased
ferritin expression. In addition, quercetin can regulate the expression of iron metabolism genes
in rats and reduce the expression of DMT1, Dcytb, FPN, and hepcidin. This reduces the level
of iron absorption [178]. In addition, the new iron chelator CN128 has great potential in the
treatment of clinical skin cancer, with good oral bioavailability and tissue distribution [179]. It
is worth mentioning that, according to a new study, the increase in iron can promote estrogen-
induced carcinogenesis by producing additional ROS [49]. This may be a new breakthrough
in the treatment of cancer.
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Figure 4. Iron accumulation is related to the occurrence of various cancers. Iron overload is related to
the occurrence of various cancers such as liver, colon, rectum, lung, esophagus, and bladder cancers.
There are two well-defined mechanisms of cancer development induced by iron excess. One is
associated with the pre-oxidant effects of iron, which can lead to DNA damage and subsequently
promote oncogenesis. The other one is that more iron may be imported to mitochondria of cancer cells
during rapid cell proliferation, in order to produce heme and Fe-S cluster and to satisfy increasing
demands for these cofactors. Meanwhile, the expression of iron homeostasis proteins associated with
iron accumulation is altered in multiple cancer cell types, such as an elevated expression of the iron
uptake-related protein TFR1, a reduced expression of the iron export-related protein ferroportin, and
an elevated production of hepcidin.
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5. Summary

The literature reviewed here indicates that iron has important physiological and
pathological significance in the body. Disorders of mitochondrial iron metabolism underlie
the pathogenesis of many diseases (Figure 5). In detail, mitochondrial iron deficiency or
overload can result in dysfunctional mitochondrial synthesis of heme and/or ISC, causing
mitochondrial dysfunction and consequent oxidative damage. This may lead to further
downstream signals to induce various diseases. However, information is limited to the
optimal iron treatment strategy for the diseases. In the near future, more efforts should be
made to find better diagnostic parameters for accurately gauging iron status and to take
measures to maintain the mitochondrial iron balance, ultimately promoting the healthy
growth of the body.
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Figure 5. Abnormal mitochondrial iron metabolism can cause different diseases in the human
body. Both insufficient and excessive levels of iron can be detrimental to mitochondrial function.
Mitochondria are found in human cells, and normal cellular physiology depends on mitochondrial
function. Consequently, these cells are vulnerable to diseases associated with failure of mitochondrial
iron homeostasis and consequent mitochondrial dysfunction. The diseases described in the paper are:
Sideroblastic anemia, Cardiovascular disease, liver disease, muscle atrophy, obesity and diabetes,
kidney disease, Neurodegenerative diseases, and cancers.

Author Contributions: Conceptualization, Y.D. and C.L.; writing—original draft preparation, G.D.
and J.L.; writing—review and editing, C.Z., Q.G., F.L., J.Z., J.Y., P.Z. and M.W. All authors have read
and agreed to the published version of the manuscript.
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