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Abstract: Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcriptional elongation, through
which short-lived antiapoptotic proteins are overexpressed and make cancer cells resistant to apop-
tosis. Therefore, CDK9 inhibition depletes antiapoptotic proteins, which in turn leads to the rein-
statement of apoptosis in cancer cells. Twenty-seven compounds were synthesized, and their CDK9
inhibitory and cytotoxic activities were evaluated. Compounds 7, 9, and 25 were the most potent
CDK9 inhibitors, with IC50 values of 0.115, 0.131, and 0.142 µM, respectively. The binding modes of
these molecules were studied via molecular docking, which shows that they occupy the adenosine
triphosphate binding site of CDK9. Of these three molecules, compound 25 shows good drug-like
properties, as it does not violate Lipinski’s rule of five. In addition, this molecule shows promising
ligand and lipophilic efficiency values and is an ideal candidate for further optimization.

Keywords: quinazolinones; cytotoxic agents; CDK9; molecular docking

1. Introduction

Cyclin-dependent kinases (CDKs), a family of Ser/Thr PKs belonging to the CMGC
[Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glyco-
gen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] superfamily, play an es-
sential role in controlling and regulating the cell cycle and the transcription of genes in
eukaryotes [1–6]. In humans, 20 different CDKs (1–20) have been discovered and can be
divided into two main categories according to their primary function. CDK1-4 and CDK6
regulate cell cycle phases [3–7], whereas CDK7-9 and CDK11 promote transcription for
cell growth, differentiation, and viral pathogenesis [3–6,8,9]. CDK9 is overexpressed in
various solid and hematological malignancies, where CDK9 is the principal regulator that
stimulates transcriptional elongation, through which short-lived antiapoptotic proteins
(e.g., Mcl-1) are overexpressed, leading to cancer cells becoming resistant to apoptosis [9].
Pharmacological inhibition of CDK9 induces apoptosis in cancer cells, making it a potential
drug target in oncology [10–15]. It is expected that selective CDK9 inhibitors will lead to an
improvement in the toxicity profile of currently available CDK9 inhibitors [16]. Moreover,
unlike other transcriptional CDKs, such as CDK7 and CDK8, CDK9 has been validated
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as a druggable target for treating other diseases, such as cardiac hypertrophy and HIV
infection [9,17]. Several CDK9 inhibitors have been synthesized, with many entering clin-
ical trials. The vast majority of these small molecules are potent competitive inhibitors.
In addition, they are effective against hematological malignancies as well as solid tumors
such as breast cancer [11,18–21]. These include, derivatives of flavonoids (flavopiridol, I),
thiazoles (SNS-032, II), pyrimidines (CDKI-73, III), pyridines (AZD4573, IV), and benzimi-
dazoles (5,6-dichlorobenzimidazole 1-beta-D-ribofuranoside (BDR), V) [11,14,15,18,19,22].
Quinazoline derivatives are known for their wide range of therapeutic activities, such
as anticancer, antiviral, antihypertensive, and antidiabetic [23–25]. This wide range of
therapeutic activities exhibited by quinazoline derivatives is mediated by inhibiting several
molecular targets, such as protein kinases, carbonic anhydrases, antitumor and cyclooxy-
genases (COX) [26–42]. In addition, they exhibit promising CDK9 inhibitory activity
(such as compound VI and VII) that warrants further investigation and improvement
(Figure 1) [43,44].
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Figure 1. Structures of some known CDK9 inhibitors.

As a continuation of our studies on quinazoline derivatives (VI) as promising CDK9
inhibitors that exhibit cytotoxic activity [45], several quinazolin-4-ones linked to substituted
anilides and 4-sulfamoylphenethyl were designed, as shown in Figure 2. In addition, the
introduction of different substitutions at position 6 of the quinazolin-4-one ring (VII)
was performed to improve CDK9 inhibitory activity via possible interaction with the
gatekeeper region of CDK9. It was expected that such modifications would improve the
antiproliferative activity of these molecules against cancer cells by increasing their affinity
for the CDK9 enzyme. Molecular docking studies were carried out on this new series of
compounds to explore the structural requirements for inhibitory activity toward CDK9.
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2. Results and Discussion
2.1. Chemistry

2-Mercapto-3-(4-sulfamoylphenethyl)quinazolin-4-one (1) was prepared, as reported
previously [46], in a yield of 95%. Compounds 2–16 were prepared in excellent yields (>90%)
by treating compound 1 with 2-chloro-N-substituted-amide and potassium carbonate at
room temperature in acetone, as reported previously in the literature, the reaction scheme
of which is shown in Scheme 1 [26].
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Scheme 1. Synthesis of compounds 2–16.

Compounds 17–20 and 29 were prepared as reported previously
(Figure 3) [31,47–49]. 2-(3-Bromobenzamido)-5-methylbenzoic acid (23) was prepared
in 97% yield via the reaction of 5-methylanthranilic acid (21) with 3-bromobenzoyl
chloride (22) in pyridine at room temperature (Scheme 2). Compound 23 underwent
hot cyclization in acetic anhydride to give compound 24 in 95% yield.
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Multiple spectroscopic techniques were used to confirm the structures of the tar-
get compounds 23–28. The chemical structure of compound 23 was established by the
presence of the carboxylic (COOH), amide (CONH), and methyl (CH3) peaks at 12.06,
8.51, and 2.33 ppm in 1H NMR and 170.52, 163.37 and 20.73 ppm in 13C NMR, respec-
tively. 2-(3-Bromophenyl)-6-methyl-4H-benzo[d][1,3]oxazin-4-one (24) was confirmed by
the disappearance of the carboxylic and amide peaks of compound 23 in NMR spectra. In
addition to the occurrence of a new carbonyl group due to 4H-benzo[d][1,3]oxazin-4-one
at 159.02 ppm in 13C NMR. Boiling compound 24 in formamide gave 2-(3-bromophenyl)-
6-methylquinazolin-4(3H)-one (25) in 80% yield. Its formation was confirmed by the
disappearance of the carbonyl group of benzo[d][1,3]oxazin-4-one (24) at 159.02 ppm
and the appearance of a new carbonyl group peak due to the quinazoline nucleus at
165.30 ppm in 13C NMR spectrum. 2-(3-Bromophenyl)-6-methylquinazoline-4(3H)-thione
(26) was prepared in a yield of 68% by boiling compound 25 with phosphorus pentasulfide
(P2S5) in toluene. Its successful formation was confirmed by singlet peaks related to the
thioamide (CSNH) group at 13.94 ppm in 1H NMR and 187.62 ppm in 13C NMR spectra,
respectively. Furthermore, 3-amino-2-(3-bromophenyl)-6-methylquinazolin-4(3H)-one (27)
was obtained in a yield of 87% by heating compound 24 with hydrazine hydrate in ethanol,
while 2-(3-bromophenyl)-3-hydroxy-6-methylquinazolin-4(3H)-one (28) was obtained in a
yield of 84% by heating compound 24 with hydroxylamine hydrochloride in dry pyridine.



Molecules 2023, 28, 120 6 of 16

Compounds 27 and 28 were identified by the presence of new characteristic amine (NH2)
and hydroxyl (OH) peaks at 5.66 and 11.73 ppm, respectively, in 1H NMR spectra, as shown
in Scheme 2.

2.2. Structure-Activity Relationship (SAR) Analysis

The CDK9 inhibition activities of the target compounds were evaluated, with flavopiri-
dol used as a reference. Compound 1 has a similar scaffold to those of several reported
CDK9 inhibitors and shows promising CDK9 inhibitory activity with an IC50 value of
0.644 µM [39]. Therefore, it was selected as a hit compound and modified with different
substituents at the quinazoline position 2 to improve its inhibition properties. The results
show that introducing acetamide and acetanilide groups at position 2 in compounds 2 and
3 showed better inhibition than the hit compound, with IC50 values of 0.454 and 0.421 µM,
respectively, as shown in Table 1. To investigate the effects that other functional groups
substituted at the p-position of the acetanilide ring have on improving the potency of
the compound, analogs 4−8 with various substituents, such as methyl, acetyl, methoxy,
and ethoxy groups, were prepared and evaluated. Compound 4, with a p-methyl group,
displays lower inhibitory activity than compounds (1–3), with an IC50 value of 0.788 µM,
as shown in Table 1.

Table 1. Structures of compounds 1–16 and their biological activity.
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MCF-7 1,a

1 - - 0.644 ± 0.007 0.65 ± 0.15
2 A H 0.454 ± 0.006 2.31 ± 0.39
3 A Ph 0.421 ± 0.006 0.82 ± 0.08
4 A 4-tolyl 0.788 ± 0.012 0.16 ± 0.02
5 A 4-acetylphenyl 0.829 ± 0.014 0.18 ± 0.09
6 A 4-methoxyphenyl 0.463 ± 0.007 4.65 ± 1.38
7 A 4-ethoxyphenyl 0.115 ± 0.002 1.57 ± 0.04
8 A 3,4,5-trimethoxyphenyl 0.501 ± 0.009 2.48 ± 0.32
9 A 4-bromophenyl 0.131 ± 0.002 1.72 ± 0.26
10 A 4-chlorophenyl 0.193 ± 0.003 1.04 ± 0.07
11 A 4-fluorophenyl 0.336 ± 0.005 3.86 ± 0.78
12 A 4-flourobenzyl 0.218 ± 0.004 0.69 ± 0.23
13 A 4-methoxybenzyl 0.334 ± 0.006 0.84 ± 0.15
14 A 3,4-dimethoxybenzyl 0.229 ± 0.004 0.59 ± 0.10
15 B Ph 0.444 ± 0.007 0.67 ± 0.18
16 B 4-chlorophenyl 0.350 ± 0.006 0.73 ± 0.01

Flavopiridol - - 0.020 ± 0.008 0.04 ± 0.001
1 Antiproliferative activity by the metabolic assay MTT-48 h. Data are expressed as mean ± SD. a all of the values
in the table showed statistical differences (1-way ANOVA and post hoc Tukey-Kramer multiple comparison tests,
p < 0.05) compared with the untreated control group.

Furthermore, substituting the p-methyl group for a larger group, such as an acetyl
group used to generate compound 5, was found to be detrimental as it was less potent than
the previous analogs, showing an IC50 value of 0.829 µM, as shown in Table 1. However,
introducing a methoxy group at the p-position gave compound 6, which led to a recovery in
the inhibitory activity, exhibiting an IC50 value of 0.463 µM. Interestingly, when an ethoxy
group was introduced, as in compound 7, the inhibitory activity increased by around
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6-fold compared to the hit compound 1, with the compound exhibiting an IC50 value
of 0.115 µM. However, replacing the p-methoxy group with 3,4,5-trimethoxy groups in
the acetanilide ring led to compound 8, which demonstrated less potency than the hit
compound, exhibiting an IC50 value of 0.501 µM. Interestingly, introducing a halogen (such
as Br, Cl, or F) at the p-position of acetanilide led to the generation of compounds 9–11,
which show excellent inhibition of CDK9.

Furthermore, introducing bromine at this position, as in the formation of compound 9,
seemed to be more favorable to the inhibitory activity compared with the introduction of
other halogens at the same position, with compound 9 showing an IC50 value of 0.131 µM.
Analogously, increasing the lipophilicity of the benzylacetamide substituents in compounds
12–14 could be essential for improving their CDK9 inhibitory activity compared to their
corresponding acetanilide-containing counterparts, such as compounds 6 and 11. It was
observed that the phenylpropanamide substituents in compounds 15 and 16, which exhibit
IC50 values of 0.444 and 0.350 µM, respectively, were not conducive to improving their
CDK9 inhibitory activity when compared to the corresponding phenylacetanilide sub-
stituents in compounds 3 and 10, which have IC50 values of 0.421 and 0.193 µM. Among the
investigated compounds, compounds 7 and 9 showed the best CDK9 inhibition activities,
with IC50 values of 0.115 and 0.131 µM, respectively.

Compounds 17–20 and 23–29 were synthesized to investigate their SAR further
(Table 2). Compounds 17–20 are 4-quinazolinone derivatives with different substituents at
2 and 6 positions. Keeping position 2 unsubstituted while introducing iodine at position
6 resulted in the formation of compound 17, which showed sub-micromolar activity against
CDK9, exhibiting an IC50 value of 0.639 µM. Keeping the iodine at position 6 while intro-
ducing a thiophene ring at position 2, as in compound 18, led to a doubling of the potency
of the compound, with it exhibiting an IC50 value of 0.296 µM. Introducing p-tolyl and
chlorine groups at positions 2 and 6, respectively, leading to the formation of compound
19, did not lead to any significant improvement in the CDK9 inhibitory activity, with the
compound showing an IC50 value of 0.282 µM. However, replacing the p-tolyl group at
position 2 with a p-chlorophenyl group and the chlorine with a nitro group, which is firmly
electron withdrawing, led to the formation of compound 20, which exhibited a 1-fold
reduction in potency against CDK9. Five bromophenyl derivatives with a methyl group
at position 6 were synthesized to further explore the compounds’ SAR. The quinazolin-
4-one derivative (25), with a (3-bromophenyl) moiety at position 2, showed significant
improvement in CDK9 inhibitory activity, whereas the quinazoline-4-thione analog 26
exhibited a 2-fold reduction in inhibitory activity, with IC50 values of 0.142 and 0.289 µM,
respectively. Replacing 4-quinazolinone with benzo[d][1,3]oxazin-4-one, as in compound
24, led to a 3-fold reduction in CDK9 inhibitory activity compared with compound 25. Inter-
estingly, intermediate 23, used in the synthesis of compound 24, was tested and shown to
be more potent, with IC50 values of 0.210 and 0.486 µM, respectively. N-hydroxy derivative
28 was shown to be a less potent inhibitor of CDK9 when compared to compound 25,
showing IC50 values of 0.210 and 0.142 µM, respectively. Compound 27, the N-amino ana-
log of compound 25, showed an approximately 6-fold decrease in potency against CDK9.
A quinazoline-2,4-dione analog, compound 29, was also tested and exhibited inhibitory
activity against CDK9, with an IC50 value of 0.589 µM.
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Table 2. Structures of compounds 17–20 and 23-29 and their biological activity.
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Compound X Y R1 R2 CDK9 (µM) a
Cytotoxicity
IC50 (µM),
MCF-7 1,a

17 O NH H I 0.639 ± 0.004 3.88 ± 0.12
18 O NH 2-thienyl I 0.296 ± 0.003 21.4 ± 0.68
19 O NH 4-tolyl Cl 0.282 ± 0.003 12.3 ± 0.39
20 O NH 4-chlorophenyl NO2 0.434 ± 0.003 6.07 ± 0.19
23 - - - - 0.210 ± 0.003 11.5 ± 0.37
24 O O 3-bromophenyl CH3 0.486 ± 0.004 10.4 ± 0.33
25 O NH 3-bromophenyl CH3 0.142 ± 0.001 16.8 ± 0.54
26 S NH 3-bromophenyl CH3 0.289 ± 0.002 5.21 ± 0.17
27 O N-NH2 3-bromophenyl CH3 0.835 ± 0.006 28.7 ± 0.92
28 O N-OH 3-bromophenyl CH3 0.210 ± 0.002 6.27 ± 0.2
29 - - - - 0.589 ± 0.002 17.4 ± 0.56

Flavopiridol - - - - 0.020 ± 0.008 0.04 ± 0.001
1 Antiproliferative activity by the metabolic assay MTT-48 h. Data are expressed as mean ± SD. aAll of the values
in the table showed statistical differences (1-way ANOVA and post hoc Tukey-Kramer multiple comparison tests,
p < 0.05) when compared with the untreated control group.

Breast cancer often occurs with dysregulation in CDK9 levels, and several studies
have shown the efficacy of CDK9 inhibitors in breast cancer [20,21]. Therefore, the antipro-
liferative activity of compounds 1–20 and 23-29 was evaluated against the breast cancer
cell line MCF-7 by the metabolic assay MTT. Compounds 1–16 showed potent cytotoxic
activities with IC50 values ranging from 0.16 to 4.65 µM, with compounds 4 and 5 being the
most potent cytotoxic agents, which could be due to their multitarget inhibitory activities
against EGFR, HER2, and VEGFR2 as well as CDK9 [26]. However, compounds 17–20 and
23–29 were significantly less potent than compounds 1–16, with IC50 values ranging from
3.88 to 28.7 µM.

2.3. Molecular Docking

Molecular docking experiments were performed using the genetic algorithm docking
program GOLD 5.2 to rationalize the observed potency of compounds 7, 9, and 25. In
addition, flavopiridol was used as a reference compound to compare the binding pattern.
The modeled complexes with CDK9 are shown in Figure 4.

At the binding cavity of CDK9, flavopiridol, compounds 7, 9, and 25 occupy the
adenosine triphosphate (ATP) binding site. Compounds 7 and 9 display similar binding
modes. These conformations, however, are different from the ones shown by flavopiridol.
The benzene ring of the quinazolinone is in contact with the Phe105 residue in the hinge
region. In addition, the sulphonamide moieties of compounds 7 and 9 bind differently,
forming hydrogen bonds with the Thr29 and Glu107 residues in the enzyme, respectively.



Molecules 2023, 28, 120 9 of 16Molecules 2022, 27, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 4. Binding modes of (A) flavopiridol, (B) compound 7, (C) compound 9, and (D) compound 

25 with CDK9. 

2.4. Analyses of the Physicochemical Properties of the Compounds 

2.4.1. Lipinski’s Rule of Five 

Lipinski’s rule of five was used to evaluate the drug-like properties of compounds 1–

20 and 23–29. DataWarrior was used to estimate the molecular weight (MW), CLogP, hy-

drogen bond acceptors (HBAs), and hydrogen bond donors (HBD) for each molecule, and 

the values are presented in Table 3. The data in the table show that compounds 4–16 have 

molecular weights of >500 Da. In addition, compound 8 offers an additional violation of 

Lipinski’s rule, with HBAs >10. However, all the compounds satisfy Lipinski’s rule re-

garding lipophilicity and the number of HBDs, with CLogP and HBD values below 5. 

Table 3. Summary of the physicochemical properties of compounds 1–20 and 23-29. 

Compound MW (Da) CLogP HBA HBD No. of Violations 

1 361 1.83 6 1 0 

2 418 0.87 8 2 0 

3 495 2.93 8 2 0 

4 509 3.28 8 2 1 

5 537 2.80 9 2 1 

6 525 2.86 9 2 1 

7 539 3.27 9 2 1 

8 585 2.72 11 2 2 
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25 with CDK9.

Moreover, the Ethoxy group of compound 7 forms a hydrogen bond with Lys48,
whereas there is no interaction between the enzyme and the anilide moiety of compound
9. This suggests that the sulphonamide moiety is essential for the activity, whereas the
acetanilide groups could be necessary for the potency in the context of 2-mercapto-3-(4-
sulfamoylphenethyl)quinazolin-4-one. However, compound 25 adopts a similar orientation
to that of flavopiridol. Unlike compounds 7 and 9, the NH group of compound 25 forms a
hydrogen bond with Glu107. Moreover, the methyl group of compound 25 is in contact
with Phe103 of the gatekeeper region of the enzyme. In addition, the m-bromophenyl
group in compound 25 occupies a similar position to that occupied by the o-chlorophenyl
ring of flavopiridol.

2.4. Analyses of the Physicochemical Properties of the Compounds
2.4.1. Lipinski’s Rule of Five

Lipinski’s rule of five was used to evaluate the drug-like properties of compounds
1–20 and 23–29. DataWarrior was used to estimate the molecular weight (MW), CLogP,
hydrogen bond acceptors (HBAs), and hydrogen bond donors (HBD) for each molecule,
and the values are presented in Table 3. The data in the table show that compounds 4–16
have molecular weights of >500 Da. In addition, compound 8 offers an additional violation
of Lipinski’s rule, with HBAs >10. However, all the compounds satisfy Lipinski’s rule
regarding lipophilicity and the number of HBDs, with CLogP and HBD values below 5.
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Table 3. Summary of the physicochemical properties of compounds 1–20 and 23-29.

Compound MW (Da) CLogP HBA HBD No. of Violations

1 361 1.83 6 1 0
2 418 0.87 8 2 0
3 495 2.93 8 2 0
4 509 3.28 8 2 1
5 537 2.80 9 2 1
6 525 2.86 9 2 1
7 539 3.27 9 2 1
8 585 2.72 11 2 2
9 573 3.66 8 2 1
10 529 3.54 8 2 1
11 513 3.03 8 2 1
12 527 2.74 8 2 1
13 539 2.57 9 2 1
14 569 2.50 10 2 2
15 509 3.34 8 2 1
16 543 3.95 8 2 1
17 272 1.00 3 1 0
18 354 2.51 3 1 0
19 271 3.16 3 1 0
20 302 1.89 6 1 0
23 334 3.36 4 2 0
24 316 3.42 3 0 0
25 315 3.28 3 1 0
26 331 3.61 2 1 0
27 330 1.97 4 1 0
28 331 2.62 4 1 0
29 162 0.51 4 2 0

2.4.2. Ligand Efficiency (LE)

The LE is a property that describes the potency per heavy atom of a drug [50–52]. The
LE values of the synthesized compounds were obtained using DataWarrior according to
the following equation [50,52]:

LE =
−RT ln IC50

N
(1)

N represents the number of heavy atoms, i.e., non-hydrogen atoms in the drug, R is
the universal gas constant, T is the absolute temperature in degrees Kelvin, and IC50 is
CDK9 IC50 in mol/L.

LE is an essential metric in lead optimization, which allows the comparison of the
affinity of molecules according to their size. Compounds with LE values higher than
0.3 are considered promising lead compounds. The LE values for the target compounds
in this study are presented in Table 4, which shows that the LE values of the synthesized
compounds are between 0.2 and 0.7. Except for compounds 3–16, the LE values fall into an
acceptable range and are >0.3 [52,53].
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Table 4. LE and LLE values of compounds 1–20 and 23-29.

Compound IC50 (µM) pIC50 N LE LLE

1 0.644 6.19 24 0.354 4.36
2 0.454 6.34 28 0.311 5.47
3 0.421 6.38 34 0.257 3.44
4 0.788 6.10 35 0.239 2.83
5 0.829 6.08 37 0.225 3.28
6 0.463 6.33 36 0.241 3.47
7 0.115 6.94 37 0.257 3.67
8 0.501 6.30 40 0.216 3.58
9 0.131 6.88 35 0.270 3.22
10 0.193 6.71 35 0.263 3.18
11 0.336 6.47 35 0.254 3.44
12 0.218 6.66 36 0.254 3.92
13 0.334 6.48 37 0.240 3.90
14 0.229 6.64 39 0.234 4.14
15 0.444 6.35 35 0.249 3.01
16 0.35 6.46 36 0.246 2.51
17 0.639 6.19 12 0.708 5.20
18 0.296 6.53 17 0.527 4.02
19 0.282 6.55 19 0.473 3.39
20 0.434 6.36 21 0.416 4.47
23 0.21 6.68 20 0.458 3.32
24 0.486 6.31 19 0.456 2.89
25 0.142 6.85 19 0.494 3.57
26 0.289 6.54 19 0.472 2.93
27 0.835 6.08 20 0.417 4.11
28 0.21 6.68 20 0.458 4.06
29 0.589 6.23 12 0.712 5.72

2.4.3. Ligand Lipophilic Efficiency (LLE)

LLE is used to link the potency of a compound to its lipophilicity [52,53]. The challenge
in drug discovery is optimizing a compound’s activity while maintaining lipophilicity at
a constant value. For this reason, LLE is considered an effective strategy to control the
lipophilicity of a molecule to avoid any “molecular obesity” during lead optimization.
The LLE values for compounds 1–20 and 23–29 shown in Table 4 were obtained using
DataWarrior according to the following equation [52]:

LLE = pIC50 − CLogP (2)

pIC50 is the negative log of the CDK9 IC50 and CLogP is the calculated LogP value.
An acceptable lead compound should have an LLE value of ≥ 5. Compounds 2, 17,

and 27 show good LLE values, i.e., LLE > 5 [52,53]. However, the other compounds have
values that are below the recommended limit.

In conclusion, compound 17 is a good candidate for lead optimization since it has the
lowest non-hydrogen atoms (N), an acceptable LE value of 0.708, and an acceptable LLE
value of 5.20.

3. Materials and Methods
3.1. Chemistry

Chemicals and solvents were obtained from suppliers and used directly without any
purification. Agilent 6320 Ion Trap mass spectrometer was used to generate mass spectra
(MS). Melting Point Apparatus Barnstead 9100 Electrothermal was used to record the
final compounds’ melting points (uncorrected). IR spectra were obtained using an FT-IR
Perkin-Elmer spectrometer. Bruker 700 Ultrashield NMR spectrometer was run at 700 MHz
and 175 MHz to generate 1H and 13C spectra, respectively. Compounds 1–20 and 29 were
synthesized as reported previously [22,27,40–43]. the newly synthesized compounds were
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re-crystalized from ethanol. IR, NMR and mass spectra of compounds 23–28 are available
in the Supplementary Material of this article.

2-(3-Bromobenzamido)-5-methylbenzoic acid (23). Equimolar amounts of 2-amino-5-
methylbenzoic acid (20 mmol, 3.0 g) and 3-bromobenzoyl chloride (20 mmol, 4.40 g)
were stirred at room temperature in 20 mL of anhydrous pyridine for 3 h. The solvent was
then removed in vacuo, and the resulting crude solid was washed with 5% HCl ice–water
before being filtered and dried to give the final product in 97% yield. M.P. 200–202 ◦C;
IR (KBr, cm−1) ν: 3233 (NH), 2600 (COOH), 1653 (C=O); 1H NMR (DMSO-d6): δ 12.06 (s,
1H), 8.51 (s, 1H), 8.50 (d, 1H, J = 8.47 Hz), 8.08 (s, 1H), 7.93 (d, 1H, J = 7.70 Hz), 7.84 (t, 2H,
J = 6.79 and 7.98 Hz), 7.55 (t, 1H, J = 7.84 Hz), 7.47 (d, 1H, J = 8.47 Hz), 2.33 (s, 3H); 13C NMR
(DMSO-d6): δ 170.52, 163.37, 138.74, 137.27, 135.22, 135.20, 132.94, 131.73, 131.64, 130.26,
126.49, 122.64, 120.65, 117.46, 20.73; MS [M–OH; 316 and M–OH + 2: 318; M–COOH; 288
and 290].

2-(3-Bromophenyl)-6-methyl-4H-benzo[d][1,3]oxazin-4-one (24). 2-(3-Bromobenzamido)-5-
methylbenzoic acid (23) (15 mmol, 4.74 g) was boiled in acetic anhydride for 4 h, after which
the reaction mixture was cooled, and the solid was collected by filtration and dried to give
the final product in 95% yield. M.P. 155–157 ◦C; IR (KBr, cm−1) ν: 1753 (C=O); 1H NMR
(DMSO-d6): δ 8.20 (s, 1H), 8.11 (d, 1H, J = 7.77 Hz), 7.92 (s, 1H), 7.83 (d, 1H, J = 7.77 Hz),
7.75 (d, 1H, J = 8.12 Hz), 7.60 (d, 1H, J = 8.12 Hz), 7.54 (t, 1H, J = 7.91 and 7.84 Hz),
2.45 (s, 3H); 13C NMR (DMSO-d6): δ 159.02, 154.70, 144.23, 139.53, 138.39, 135.57, 132.78,
131.66, 130.37, 128.05, 127.35, 127.02, 122.55, 117.12, 21.22; MS [m/z: 315 and M + 2: 317].

2-(3-Bromophenyl)-6-methylquinazolin-4(3H)-one (25). 2-(3-Bromophenyl)-6-methyl-4H-
benzo[d][1,3]oxazin-4-one (24) (5 mmol 1.58 g) was heated in formamide (7 mL)
for 10 h, after which the reaction mixture was cooled, and the resulting solid was fil-
tered and dried to give the final product in 80% yield. M.P. 320–322 ◦C; IR (KBr, cm−1)
ν: 3334 (NH), 1660, (C=O); 1H NMR (DMSO-d6): δ 8.35 (s, 1H), 8.15 (d, 1H, J = 7.00 Hz),
7.95 (s, 1H), 7.78 (d, 1H, J = 7.211 Hz), 7.68 (s, 2H), 7.51 (t, 1H, J = 7.28 and 7.35 Hz), 2.46 (s,
3H); 13C NMR (DMSO-d6): δ 165.30, 162.66, 150.70, 146.91, 137.16, 136.41, 135.55, 134.33,
131.22, 130.74, 127.88, 127.13, 125.72, 122.35, 21.34; MS [m/z: 314 and M + 2: 316].

2-(3-Bromophenyl)-6-methylquinazoline-4(3H)-thione (26). 2-(3-Bromophenyl)-6-methylquinaz
olin-4(3H)-one (25) (3 mmol, 945 mg) was heated with phosphorus pentasulfide in dry toluene
(5 mL) for 12 h, after which time the reaction mixture was cooled, and the solid obtained was
filtered and dried to give the final product in 68% yield. M.P. 259–260 ◦C; IR (KBr, cm−1)
ν: 3102 (NH), 1241 (C=S); 1H NMR (DMSO-d6): δ 13.94 (s, 1H), 8.40 (s, 1H), 8.34 (s, 1H),
8.15 (d, 1H, J = 7.84 Hz), 7.79 (d, 1H, J = 7.91 Hz), 7.74 (dd, 1H, J = 1.33 Hz), 7.70 (d, 1H, J = 8.26 Hz),
7.51 (t, 1H, J = 7.91 Hz); 2.49 (s, 3H); 13C NMR (DMSO-d6): δ 187.62, 149.86, 142.67, 138.70,
137.49, 134.78, 134.45, 131.42, 131.05, 128.94, 128.66, 127.94, 127.89, 122.13, 21.54; MS [m/z: 330
and M + 2: 332].

3-Amino-2-(3-bromophenyl)-6-methylquinazolin-4(3H)-one (27). 2-(3-Bromophenyl)-
6-methyl-4H-benzo[d][1,3]oxazin-4-one (24) (5 mmol 1.58 g) was heated with ab-
solute hydrazine hydrate (3 mL) and absolute ethanol (3 mL) for 8 h, after which
time the reaction mixture was cooled. The separated solid was filtered and dried
to give the final product an 87% yield. M.P. 170–172 ◦C; IR (KBr, cm−1) ν: 3401,
3308 (NH2), 1668 (C=O); 1H NMR (DMSO-d6): δ 8.00 (t, 1H, J = 1.68 and 1.75 Hz),
7.99 (s, 1H), 7.81 (d, 1H, J = 7.84 Hz), 7.70 (tt, 1H, J = 0.98 and 0.77 Hz), 7.67 (dd, 1H,
J = 1.82 Hz), 7.64 (d, 1H, J = 8.119 Hz), 7.45 (t, 1H, J = 7.91), 5.66 (s, 2H), 2.48 (s, 3H); 13C
NMR (DMSO-d6): δ 161.53, 154.06, 145.12, 137.56, 137.28, 136.21, 132.66, 132.60, 130.09,
129.16, 127.83, 125.72, 120.96, 120.47, 21.35; MS [m/z: 329 and M + 2: 331].

2-(3-Bromophenyl)-3-hydroxy-6-methylquinazolin-4(3H)-one (28). 2-(3-Bromophenyl)-6-
methyl-4H-benzo[d][1,3]oxazin-4-one (24) (5 mmol 1.58 g) was heated with hydroxylamine
hydrochloride (6 mmol, 417 mg) in dry pyridine (10 mL) for 15 h. The reaction mixture
was cooled, and the solvent was removed in a vacuo. The solid obtained was then washed
with 5% HCl ice–water and filtered, dried, and recrystallized from ethanol to give the final
product an 84% yield. M.P. 235–237 ◦C; IR (KBr, cm−1) ν: 3301(OH), 1670 (C=O); 1H NMR
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(DMSO-d6): δ 11.73 (s, 1H), 9.00 (d, 2H, J = 9.24 Hz), 7.84 (d, 1H, J = 7.77 Hz), 7.76 (dd, 1H,
J = 0.84 and 0.92 Hz), 7.68 (q, 2H, J = 8.19 and 8.26 Hz), 7.49 (t, 1H, J = 7.91 Hz), 2.48 (s, 3H);
13C NMR (DMSO-d6): δ 158.55, 151.48, 144.59, 137.43, 136.12, 135.47, 133.39, 132.41, 130.54,
128.97, 127.99, 125.64, 121.81, 121.36, 21.33; MS [M–OH: 313 and M–OH + 2: 315].

3.2. Metabolic Assay

The antiproliferative activity of the twenty-seven compounds was evaluated by 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) metabolic assay against the
MCF-7 cell line, according to a previous method [26].

3.3. CDK9 Kinase Assay

In vitro luminescent CDK9 kinase assay was performed as reported previously using
Kinase- Glo® MAX as a detection reagent [43]. Briefly, 5 µL of each inhibitor in concen-
trations ranging from 10 µM to 1 nM (10 µM, 1 µM, 0.1 µM, 0.01 µM, and 0.001 µM) and
10 µL of enzyme substrate were mixed in 20 µL of kinase assay buffer (obtained from BPS
Bioscience, catalog #79334) at room temperature. Then 20 µL of 5 ng/µL CDK9/cyclin
T was added to the mixture to initiate the reaction. After 45 min, 50 µL of Kinase-Glo®

Max reagent was added, and the resulting mixture was incubated for 15 min at room
temperature. The chemiluminescence was measured microplate reader, and IC50 values
were calculated using Prism 8.0 (GraphPad Software, San Diego, CA, USA).

3.4. Molecular Docking

Molecular docking was performed according to the procedure reported previously
using the X-ray crystal structure of flavopiridol in a complex with CDK9 (PDB ID: 3BLR)
which was retrieved from the PDB Data Bank (URL: http://www.rcsb.org; accessed on 20
September 2022) [26].

4. Conclusions

Twenty-seven compounds were synthesized, and their CDK9 inhibitory and cytotoxic
activities were evaluated. Compounds 7, 9, and 25 were the most potent CDK9 inhibitors,
with IC50 values of 0.115, 0.131, and 0.142 µM, respectively. The binding modes of these
molecules were studied using molecular docking, which showed that they occupy the
ATP binding site of CDK9. Of these three molecules, compound 25 shows good drug-like
properties since it does not violate Lipinski’s rule of five. In addition, this molecule shows
promising LE and LLE values and is an ideal candidate for further optimization.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28010120/s1, 1H NMR, 13C NMR, FT-IR, and mass
spectra of compounds 23–28.
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