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Abstract: H2S is an endogenous gas signaling molecule and its multiple biological effects have been
demonstrated. The abnormal level of H2S is closely related to the occurrence and development of
many diseases, and H2S donors has important pharmacological implications. In recent years, H2S
donors represented by ADTOH (5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione) are often used to
synthesize new ‘conjugate’ compounds that can release H2S and parent drugs. These hybrids retain
the pharmacological activity of the parent drugs and H2S and have a synergistic effect. ADTOH and
parent drug hybrids have become one of the important strategies for the development of H2S donor
conjugate drugs. This review summarizes molecular hybrids between ADTOH and clinical drugs to
provide new ideas for the study of H2S donor drug design.
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1. H2S and H2S Donors

Hydrogen sulfide (H2S) is the third endogenous gas signaling molecule discovered
after nitric oxide (NO) and carbon monoxide (CO). H2S plays an important regulatory role
in a variety of physiological and pathological processes [1–3]. The reduction of H2S level in
the body would lead to the occurrence and development of hypertension, atherosclerosis,
gastrointestinal ulcer, liver cirrhosis, diabetes, inflammation, Alzheimer’s disease, cancer,
and other diseases. Therefore, the supply of exogenous H2S is an effective way to solve
the above questions [4–9]. However, the toxicological concentration of H2S is close to
the physiological and pharmacological effective concentration, and the gas is volatile.
Considering that, it is difficult to accurately control its effective concentration in vivo,
which greatly limits the application of H2S gas itself as a drug in basic research and clinical
trials. Therefore, sustained-release and controllable H2S donor drugs have not only broad
application prospects, but also important significance for further elucidating the biological
effect of H2S [10].

Like other gas signaling molecules, the activity of H2S is closely related to the site,
concentration, and velocity of its release [11]. Therefore, the key problem in the study
of H2S donor drugs is how to improve the selectivity of H2S donor molecules, release
appropriate concentrations of H2S at the target site (generally the lesion site), play a
therapeutic role while limiting its adverse reactions. At present, H2S donor can be roughly
divided into sulfide salt, natural organic sulfur compounds, and synthetic H2S donors.
Among them, many researchers focused on synthetic H2S donors. According to the different
molecular structures and functional group properties, they can be broadly classified into
thiophosphate derivatives (GYY4137) [12], aryl thiamides (TBZ) [13], 1,2-dithiole-3-thiones
(ADT-OH) [14,15], thiol-activated H2S donors (NSHDs) [16], etc. (Figure 1).
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Figure 1. Structures of representative synthetic H2S donors.

2. ADTOH and Its Conjugates

5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADTOH) is the main metabolite of 5-(4-
methoxyphenyl)-3H-1,2-dithiole-3-thione (ADT). The thione of ADTOH can be transformed
into the corresponding ketone by hydrolysis and release H2S (Figure 2) [17]. In recent years,
the research on ADTOH has been boosting. New H2S donor derivatives represented by
ADTOH have been developed and designed widely, especially in some basic experimental
studies. ADTOH is often used to synthesize new ‘conjugate’ compounds that can release
H2S and parent drugs. Therefore, this paper reviews the hybrid compounds of ADTOH
and parent drugs in order to provide a reference for the study of ADTOH-based donor
drug design.

Molecules 2023, 28, x FOR PEER REVIEW 2 of 16 
 

 

 

 

 

Figure 1. Structures of representative synthetic H2S donors. 

2. ADTOH and Its Conjugates 

5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADTOH) is the main metabolite of 

5-(4-methoxyphenyl)-3H-1,2-dithiole-3-thione (ADT). The thione of ADTOH can be 

transformed into the corresponding ketone by hydrolysis and release H2S (Figure 2) [17]. 

In recent years, the research on ADTOH has been boosting. New H2S donor derivatives 

represented by ADTOH have been developed and designed widely, especially in some 

basic experimental studies. ADTOH is often used to synthesize new ‘conjugate’ com-

pounds that can release H2S and parent drugs. Therefore, this paper reviews the hybrid 

compounds of ADTOH and parent drugs in order to provide a reference for the study of 

ADTOH-based donor drug design. 

 

Figure 2. Mechanism of H2S release from ADTOH. 

2.1. ADTOH–NSAID Conjugates 

Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most widely used 

drugs. NSAIDs generate anti-inflammatory activities by inhibiting cyclooxygenase to 

reduce the production of inflammatory cytokines such as prostaglandins. However, 

long-term use of NSAIDs may lead to significant side effects, such as gastrointestinal 

adverse effects. It has been reported that NO and H2S could enhance the local defense of 

gastric mucosa, thus reducing NSAID-induced gastrointestinal disorders and other side 

effects [18,19]. Therefore, designing hybrids of H2S donors or NO donors together with 

NSAIDs to enhance the efficacy and reduce the side effects of NSAIDs is an important 

strategy of current research. 

In recent years, new hybrid compounds linking ADTOH with NSAIDs are the most 

widely studied category in H2S research. These ADTOH–NSAID hybrids can release H2S 

and exert H2S activity while exerting the pharmacological effects of NSAIDs. The biggest 

advantage of these compounds compared with the parent NSAIDs is alleviating the gas-

trointestinal adverse effects. 

Figure 2. Mechanism of H2S release from ADTOH.

2.1. ADTOH–NSAID Conjugates

Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most widely used
drugs. NSAIDs generate anti-inflammatory activities by inhibiting cyclooxygenase to re-
duce the production of inflammatory cytokines such as prostaglandins. However, long-term
use of NSAIDs may lead to significant side effects, such as gastrointestinal adverse effects. It
has been reported that NO and H2S could enhance the local defense of gastric mucosa, thus
reducing NSAID-induced gastrointestinal disorders and other side effects [18,19]. There-
fore, designing hybrids of H2S donors or NO donors together with NSAIDs to enhance the
efficacy and reduce the side effects of NSAIDs is an important strategy of current research.

In recent years, new hybrid compounds linking ADTOH with NSAIDs are the most
widely studied category in H2S research. These ADTOH–NSAID hybrids can release
H2S and exert H2S activity while exerting the pharmacological effects of NSAIDs. The
biggest advantage of these compounds compared with the parent NSAIDs is alleviating
the gastrointestinal adverse effects.

NOSH-aspirin is a derivative formed by combining aspirin with ADTOH and NO
donors (Figure 3). It has similar antipyretic, analgesic, anti-inflammatory and anti-platelet
aggregation effects as aspirin, but has less adverse effects on gastrointestinal bleeding and
better tumor prevention effects. In addition, HS-aspirin, a hybrid of aspirin and ADTOH
exhibited inhibitory effects in estrogen receptor-negative breast cancer cells and leukemic
Jurkat cells [20,21].
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Figure 3. Structures of NOSH-aspirin and HS-aspirin.

ATB-429 is a hybrid of mesalamine and ADTOH, which has improved anti-inflammatory
and analgesic activity (Figure 4). ATB-429 significantly reduced gastrointestinal side ef-
fects compared to mesalamine, especially in a mouse model of colitis with better anti-
inflammatory activity. ATB-429 exerts anti-inflammatory effects in LPS-induced liver
injury, lung injury, ulcerative colitis. Additionally, it has anti-inflammatory effects in
NSAID-induced gastric mucosal injury. ATB-429 is superior to mesalamine in reduc-
ing mucosal damage and disease severity; moreover, it significantly reduces the infil-
tration of chronic granulocytes and the expression of several important inflammatory
cytokines mRNA. ATB-429 has entered Phase III clinical trials with the U.S. FDA [22].
Inspired by the above findings, Wang et al. [23] designed and synthesized a series of
ATB-429 derivatives containing NO-releasing moieties, and evaluated its anti-tumor ac-
tivity. The results showed that the derivatives have strong anti-tumor activity. Among
them, compound 1a (IC50 = 2.677 µM), 1b (IC50 = 3.051 µM) against MCF-7 cancer cell line
and 1a (IC50 = 1.270 µM) against DU145 cancer cell line are more active than Vandetanib
(IC50 = 3.536, 1.974 µM).
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ACS15 is an H2S donor-type derivative formed by the combination of diclofenac and
ADTOH (Figure 5). Compared with diclofenac, it has better anti-inflammatory effects and
less gastrointestinal adverse effects. ACS15 can release H2S in vitro and in vivo, thus not
only improving anti-inflammatory activity, but also significantly reducing the lung injury
associated with pancreatitis [24]. Another study found that ACS 15 had anti-myocardial
ischemia reperfusion injury activity, while diclofenac did not show this activity [25].

ATB-352 is an H2S donor derivative obtained by the coupling of ketoprofen and
ADTOH (Figure 5). Studies demonstrated that ATB-352 not only showed anti-inflammatory
activity similar to ketoprofen, but also had almost no side effects on the gastrointestinal
tract. It can be used for chemoprevention of tumors [26].

AVT-219 and AVT-18A (Figure 6) are NOSH drug complexes formed by combining
naproxen and sulindac with ADTOH and NO donors [27]. Both AVT-219 and AVT-18A
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maintain the anti-inflammatory and anti-platelet aggregation properties of naproxen and
sulindac. However, the side effect of naproxen and sulindac on the gastrointestinal tract is
reduced. These NOSH compounds also have the ability to inhibit the growth activity of
many tumor cells, including colon cancer cells, breast cancer cells, and pancreatic cancer
cells [28].
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2.2. ADTOH–Butylphthalide Conjugates

Despite the wide range of drugs available for the clinical management of ischemic
stroke, none have yet achieved satisfactory results in the treatment of ischemic stroke.
Blocking multiple components of the pathophysiological development of cerebral ischemia
is the key to treating this type of disease. For ischemic stroke, the appropriate amount
of exogenous NO and H2S supplementation can relax blood vessels, inhibit platelet ag-
gregation, increase cerebral blood flow, and protect neuronal cells. On the other hand,
supplementation of NO and H2S can inhibit the expression of iNOS, which is beneficial for
the prevention and treatment of ischaemic brain injury diseases. Therefore, research on NO
and H2S donor in anti-ischemic brain injury is a hot topic of current research [29,30].

Butylphthalide (NBP) is an effective stroke prevention drug. It inhibits platelet ag-
gregation and reduces thrombosis and cerebral infarct volume. NBP can act on multiple
pathological aspects of acute ischemic stroke through multiple targets, pathways, and links,
and its clinical effects have been confirmed; however, it still has many shortcomings and
needs to be developed further [31,32].

Wang et al. [33] synthesized a series of hydrogen sulfide-releasing derivatives by
collocating butylphthalide with ADTOH and performed a biological evaluation of them
(Figure 7). In vitro experiments, compound 2e significantly inhibited adenosine diphos-
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phate (ADP) and arachidonic acid (AA)-induced platelet aggregation, with better effects
than NBP, ticlopidine hydrochloride and aspirin. In addition, 2e produces moderate levels
of H2S slowly in vitro, which is beneficial for improving cardiovascular circulation. On top
of that, 2e has a protective effect on collagen and epinephrine-induced thrombosis in mice
and exhibits stronger antithrombotic activity than NBP and aspirin in rats. In conclusion,
2e has promising applications in the treatment of thrombosis-related ischemic strokes.
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Inspired by the above findings, Wang et al. [34] designed and synthesized a series of
ADTOH-butylphthalide derivatives (Figure 7) by combining the ring-opening derivative
of butylphthalein with ADTOH. Among them, compound 3e showed significantly better
inhibitory activity than butylphthalide against platelet aggregation induced by adenosine
diphosphate and arachidonic acid.

Additionally, Wang et al. [35,36] also synthesized a series of new NOSH-type com-
pounds by combining butylphthalide with NO donors and ADTOH (Figure 8). Compared
to butylphthalide parent, compound NOSH-NBP-5 has stronger anti-platelet aggrega-
tion activity and is capable of releasing both NO and H2S, exerting a protective effect on
cardiovascular and cerebral circulation.
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2.3. ADTOH–Niacin Conjugates

Niacin is known to be involved in lipid metabolism in the body, reducing plasma
triglyceride and very low-density lipoprotein concentrations and increasing high density
lipoprotein levels [37]. In addition, niacin has a vasodilating effect and is therefore com-
monly used clinically to treat hyperlipidemia, headaches, venous migraines, and cerebral
artery thrombosis. Recent studies have shown that niacin can act as a neuroprotective agent
in the treatment of stroke [38]. Therefore, the development of H2S donor-nicotinic acid
hybrids designed to exert a synergistic neuroprotective effect is considered as a potential
therapeutic strategy for ischemic brain injury.

Sun et al. [39] synthesized a range of derivatives by combining nicotinic acid with
ADTOH. Most of the compounds were found to exhibit significant neuroprotective effects.
Among them, compound 4f (Figure 9) can significantly reduce the volume of cerebral
infarction in the pMCAO model. The results suggest that such compounds have promising
applications in the interventional treatment of cerebral ischemic injury.

2.4. ADTOH–Levodopa Conjugates

Levodopa (L-DOPA) is currently an important drug in the treatment of Parkinson’s
syndrome, but it only replenishes dopamine levels in the brain and does not inhibit the
progression of the disease. Lee et al. [14] have combined L-DOPA with ADTOH to obtain
a series of H2S-releasing derivatives (compounds ACS83 to ACS86, Figure 10). These
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derivatives not only can release dopamine but also protect nerves, and have antioxidant
effects. Research has shown that ACS84 can avoid β-amyloid-induced neuronal cell damage
through anti-inflammatory effects, and protect mitochondrial in p38- and JNK-mediated
stress responses. Thus, ACS84 has the potential to treat neurodegenerative diseases [40].
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2.5. ADTOH–Doxorubicin Conjugates

Doxorubicin is one of the most clinically effective antitumor agents, but cardiotoxicity
and drug resistance limit its clinical use. In order to design doxorubicin derivatives with
low cardiotoxicity and resistance, Chegaev et al. [41] used doxorubicin as a parent for
conjugating with different hydrogen sulfide donors to obtain a series of compounds that
can release hydrogen sulfide (compound 5b and 5d, Figure 11). It was found that all of these
compounds reduced oxidative stress in cardiomyocytes, and some of them showed stronger
activity in sarcoma cell lines. Unlike doxorubicin, most of the products are non-toxic to
H9c2 cells at 5 µM concentration and have potential for further research and development.

2.6. ADTOH–Latanoprost Conjugate

Latanoprost (Xalatan) is an inactive but rapidly penetrating substance in the cornea,
which can be hydrolyzed to active free acid in the cornea and plasma, increasing the
outflow of atrial water through the corneal layer and having a good IOP lowering effect.
Perrino et al. [42] designed and synthesized a hybrid (ACS 67, Figure 12) by combining
latanoprost acid with ADTOH. Experimental data showed that this compound could
increase the production of glutathione in the atrial fluid of rabbit eyes, antagonize the
oxidative damage of hydrogen peroxide on the neuronal cells in the fundus, and thus
alleviate the retinal ischemic damage, with significant optic neuroprotective effect. It has
a significant effect on the treatment of glaucoma [43]. In addition, it has been found that
ACS67 can inhibit L-type Ca2+ channels and reduce L-type voltage-dependent Ca2+ channel
currents in pancreatic β-cells, thereby inhibiting insulin secretion, but the inhibitory effect
is lower than that of NaHS [44].
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2.7. ADTOH–Monastrol Conjugate

Monastrol, a mitotic kinesin inhibitor with potent and cell-permeable properties, was
reported as an anti-cancer inhibitor back in the 1990s. Recent studies have shown that
monastrol also has calcium channel blocker effects. Considering that H2S also has some
calcium channel blocking effect, Braga et al. [45] designed and synthesized a Monastrol–
ADTOH hybrid (MADTOH, Figure 13) using a conjugate strategy. Compared to monastrol,
this compound was effective in reducing the overall calcium transient amplitude in cardiac
myocytes via L-type calcium channels. Most notably, the intermediates ADTOH and
monastrol were less effective than the hybrid MADTOH in controlling Ca2+ homeostasis.
Overall, ADTOH hybridized with calcium channel blockers has a wide range of applications
in the discovery of suitable calcium channel blockers.

2.8. ADTOH–Proglumide Conjugate

Atherosclerosis is a common cardiovascular disease. H2S has important physiological
functions in atherosclerotic lesions, and many H2S donors have been synthesized to study
atherosclerosis diseases. Proglumide can reduce the release of cytokines and inflamma-
tory mediators in acute pancreatitis by inhibiting the activation of the NF-кB pathway.
Considering that one of the etiologies of atherosclerotic disease is related to inflammation,
Ou et al. [46] combined Proglumide with ADTOH to create a hybrid PA (Figure 14). Studies
demonstrated that PA is a novel slow-releasing H2S donor and shows anti-atherosclerotic
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effect on the HUVECs injured model by inhibiting the activation of JAK/STAT pathway
and NF-кb pathway.
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2.9. ADTOH–Sildenafil Conjugate

Sildenafil is a drug that treats erectile dysfunction and pulmonary arterial hypertension.
Muzaffar et al. used sildenafil as the parent and ADTOH to form the derivative ACS6
(Figure 15) and showed that ACS6 could enhance the efficacy by slowly releasing hydrogen
sulfide, and its diastolic effect on spongy smooth muscle was much stronger than that of
the parent drug sildenafil [47] and comparable to sildenafil citrate. Both inhibited oxygen
radical generation in pulmonary artery endothelial cells compared with NaHS solution,
but the effect was stronger than that of NaHS solution. Moreover, NaHS acts through the
cAMP/PKA pathway, and ACS6 activates both the cAMP/PKA and cGMP/PKG pathways.
It was also found that ACS 6 protects PC12 cells by upregulating paraoxonase-1 (PON-1)
levels, which exerts anti-Hcy-induced neurotoxic and anti-oxidative stress effects [48,49].
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2.10. ADTOH–Glucocorticoids Conjugates

Asthma is a heterogeneous clinical syndrome. Glucocorticoids are the most effective
drugs for treating inflammation in asthma patients. Recent studies have shown that H2S has
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positive effect on this disease. Considering that an improved pharmacological activity and
a reduced toxicity can be obtained through hybridization, Giordano et al. [50] designed and
synthesized novel betamethasone and triamcinolone hybrids with H2S -donors (Figure 16).
These synthesized compounds have potential H2S-releasing characteristics both in a cell-
free environment and into the cytosol of BSMCs (bronchial smooth muscle cells). Among
them, the most promising derivatives 6b and 6f have significant inhibitory effect on mast
cell degranulation, resulting in a reduction of β-hexosaminidase release more efficiently
than the corresponding parent drugs.
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Additionally, Corvino et al. [51] also synthesized a series of novel prednisone and
dexamethasone hybrids with two H2S -donors (Figure 17). The chemical stability of the
synthesized hybrids has been investigated at differing pH values and in human serum.
The results show that these hybrids have a prolonged chemical stability both at acidic
and physiological pH. Among them, compound 7c was more effective than prednisone in
inhibiting mast cell degranulation and in promoting BSMCs membrane hyperpolarization.
Due to the protective effect on airway remodeling, compound 7c can be a potentially useful
therapeutic option for allergic asthma treatment.

Compound 8, a hybrid of dexamethasone and H2S -donor moietie [52], is used to treat
ocular diseases (Figure 18). Compound 8 has the ability to completely inhibit oxidative
stress-induced glutathione depletion. This design not only eliminated the side effects
associated with the parent compound, but also improved pharmacological effects.

2.11. ADTOH–Atorvastatin Conjugates

Atorvastatin is an HMG-CoA reductase inhibitor that reduces plasma cholesterol
and lipoprotein levels. Tong et al. [53] designed and synthesized a series of atorvastatin–
ADTOH hybrids (Figure 19). Compared with the parent drug atorvastatin, these com-
pounds showed good activity of regulating blood lipids and anti-inflammatory and antiox-
idant properties. The results showed that these compounds have high application value in
regulating blood lipids and vascular protection.
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2.12. ADTOH–Pentacyclic Triterpene Conjugates

Oleanolic acid, ursolic acid, and glycyrrhetinic acid are the active ingredients of herbal
medicines, belonging to pentacyclic triterpenes, which have been deeply researched for
their various biological activities. Sheng et al. [54] attached the hydrogen sulfide donors to
oleanolic acid, ursolic acid, and glycyrrhetinic acid to afford series of pentacyclic triterpenes-
H2S donor hybrids (Figure 20). The anti-proliferation activity of these hybrids on the tested
cell lines was evaluated by MTTassay. The results showed that most of these pentacyclic
triterpenes-H2S donor hybrids exhibited no anti-proliferation activity against tested cell
lines. Therefore, it is not suitable to hybridize hydrogen sulfide donors with oleanolic acid,
ursolic acid, and glycyrrhetinic acid in anti-tumor applications.



Molecules 2023, 28, 331 12 of 15Molecules 2023, 28, x FOR PEER REVIEW 13 of 16 
 

 

 

Figure 20. Structures of ADTOH–pentacyclic triterpene conjugates. 

3. Conclusions 

As an endogenous gas signaling molecule, H2S has been shown to have a variety of 

biological effects. Decreased levels of H2S in the body are closely associated with the de-

velopment and progression of many diseases, therefore, using H2S donors to increase the 

internal H2S concentration has important pharmacological significance. In recent years, 

research on ADTOH has been on the rise, and H2S donors represented by ADTOH are 

often used to synthesize novel ‘conjugate’ compounds that can release H2S and parent 

drugs. This design conforms to the idea of ‘multi-mechanism drugs’. 

As a gas molecule, the activity of H2S is closely related to its release site, concentra-

tion and velocity. Although ADTOH is frequently used for the design and synthesis of 

H2S donor drugs, its selectivity of H2S-release still needs to be improved. In addition, 

how to design a long-acting, slow-controlled release of H2S from ADTOH conjugate 

drugs, and ensure it releases appropriate H2S concentrations at the target site is another 

key issue in the development of conjugate drugs. This review summarizes the hybrid 

compounds of ADTOH and parent drugs in order to provide a reference for the study of 

ADTOH-based donor drug design. 

Author Contributions:  Conceptualization, Y.M. and S.W.; methodology, Y.M. and S.W.; formal 

analysis, S.W. and Y.W.; investigation, S.W. and W.Y.; resources, S.W., W.Y. and J.G.; data cura-

tion, C.C., W.Y. and J.G.; writing—original draft preparation, S.W., C.C., W.Y., J.G. and Y.W.; 

writing—review and editing, S.W., C.C., W.Y., J.G. and Y.M.; supervision, Y.M. and S.W. All au-

thors have read and agreed to the published version of the manuscript. 

Funding:  This study was supported by Projects 81703363 of the National Natural Science Foun-

dation of China; Six Talent Peaks Project in Jiangsu Province (YY-110); the Natural Science Fund for 

Figure 20. Structures of ADTOH–pentacyclic triterpene conjugates.

3. Conclusions

As an endogenous gas signaling molecule, H2S has been shown to have a variety
of biological effects. Decreased levels of H2S in the body are closely associated with the
development and progression of many diseases, therefore, using H2S donors to increase
the internal H2S concentration has important pharmacological significance. In recent years,
research on ADTOH has been on the rise, and H2S donors represented by ADTOH are
often used to synthesize novel ‘conjugate’ compounds that can release H2S and parent
drugs. This design conforms to the idea of ‘multi-mechanism drugs’.

As a gas molecule, the activity of H2S is closely related to its release site, concentration
and velocity. Although ADTOH is frequently used for the design and synthesis of H2S
donor drugs, its selectivity of H2S-release still needs to be improved. In addition, how to
design a long-acting, slow-controlled release of H2S from ADTOH conjugate drugs, and
ensure it releases appropriate H2S concentrations at the target site is another key issue in
the development of conjugate drugs. This review summarizes the hybrid compounds of
ADTOH and parent drugs in order to provide a reference for the study of ADTOH-based
donor drug design.
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