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in key therapeutic targets, listing medicinal chemistry hits and appealing screening compounds. Lat‑
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1. Introduction
The 2‑phenethylamine motif is widely present in nature, from simple, open‑chain

structures to more complex polycyclic molecular arrangements. The importance of this
moiety is probably best exemplified by the endogenous catecholamines dopamine, nore‑
pinephrine and epinephrine (an example of open‑chain 2‑phenethylamines), exhibiting a
central role in dopaminergic neurons, which play a critical role in voluntary movement,
stress or mood [1]. Several naturally occurring alkaloids, i.e., morphine, (S)‑reticuline or
berberine, embedded in the 2‑phenethylamine unit form more complex cyclic frameworks
derived from its natural biosynthetic pathways (Figure 1).

 
 

 

 
Molecules 2022, 27, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/molecules 

Review 

2-Phenethylamines in Medicinal Chemistry: A Review 
Carlos T. Nieto 1, Alejandro Manchado 1, Leland Belda 1, David Diez 1 and Narciso M. Garrido 1,* 

1 Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, Pl. Caídos, s/n, 
37008 Salamanca, Spain; eneas@usal.es (C.T.N.); alex92mc@usal.es (A.M.); lelandbelda@usal.es (L.B.); 
ddm@usal.es (D.D.) 

* Correspondence: nmg@usal.es 

Abstract: A concise review covering updated presence and role of 2-phenethylamines in medicinal 
chemistry is presented. Open-chain, flexible alicyclic amine derivatives of this motif are enumerated 
in key therapeutic targets, listing medicinal chemistry hits and appealing screening compounds. 
Latest reports in discovering new bioactive 2-phenethylamines by research groups are covered too. 

Keywords: 2-phenethylamine; medicinal chemistry; ligands; adrenoceptors; carbonyl anhydrase; 
dopamine receptor; DAT; 5-HT; MAO; PPAR; sigma receptors; TAAR1 
 

1. Introduction 
The 2-phenethylamine motif is widely present in nature, from simple, open-chain 

structures to more complex polycyclic molecular arrangements. The importance of this 
moiety is probably best exemplified by the endogenous catecholamines dopamine, nore-
pinephrine and epinephrine (an example of open-chain 2-phenethylamines), exhibiting a 
central role in dopaminergic neurons, which play a critical role in voluntary movement, 
stress or mood [1]. Several naturally occurring alkaloids, i.e., morphine, (S)-reticuline or 
berberine, embedded in the 2-phenethylamine unit form more complex cyclic frameworks 
derived from its natural biosynthetic pathways (Figure 1). 

 
Figure 1. Examples of naturally occurring biologically active compounds displaying a 2-phenethyl-
amine scaffold. 

Additionally, in addition to their prominent therapeutic applications, it is worth 
mentioning the recreational use of a long list of alkaloids incorporating the aforemen-
tioned moiety (“designer drugs”) [2], responsible for drug abuse-related conditions [3–8]. 
Surprisingly, the literature lacks a comprehensive summary that bundles up 2-phenethyl-
amine-based structures and known therapeutic targets, including basic hits or advanced 
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Figure 1. Examples of naturally occurring biologically active compounds displaying a 2‑phenethylamine
scaffold.

Additionally, in addition to their prominent therapeutic applications, it is worth men‑
tioning the recreational use of a long list of alkaloids incorporating the aforementioned moi‑
ety (“designer drugs”) [2], responsible for drug abuse‑related conditions [3–8]. Surprisingly,
the literature lacks a comprehensive summary that bundles up 2‑phenethylamine‑based struc‑
tures and known therapeutic targets, including basic hits or advanced leads. Pairing these will
present an appealing opportunity to both new and experienced researchers to summarize
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2‑phenethylamines target binding and therapeutic scope, as well as selectivity/antitarget
issues. Considering all these, a review covering the medicinal chemistry landscape is pre‑
sented here as a brief, central resource linking up 2‑phenethylamine hits and receptors.
From the structural point of view, 2‑phenethylamines present a vast therapeutic chemi‑
cal space, not just as is, but considering different substitutions, functional group decora‑
tions, ring enclosures or heteroaromatic analogues. Describing such a massive quantity
of scaffolds with the phenethylamine resemblance is beyond the scope of this review and
more, such asly requires a dedicated book. For this reason, the present review covers only
structures where there is an alicyclic amine (Figure 2, blue examples), clustering them all
under the 2‑phenethylamine label. The authors believe that such cases as 2‑heteroaryl
ethylamines or cyclic amines, despite presenting 2‑phenethylamine resemblance, repre‑
sent other categorized entities (i.e., tetrahydroisoquinolines or 3‑phenyl‑pirrolidines exam‑
ples) on their own, worth independent review (Figure 2, red examples). This review also
covers those 2‑phenethylamines where the phenyl ring is condensed with a heteroaryl ring,
as the primary motif ring is a phenyl one.
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Figure 2. Description of 2‑phenethylamine scope of the present review.

This review is divided in sections covering those molecular targets where 2‑
phenethylamines were found to be biologically relevant. Medicinal chemistry leads
and state‑of‑the‑art research on novel molecules are described here.

2. 2‑Phenethylamine Targets of Biological Importance
2.1. Adenosine Receptors

Adenosine receptors family are G‑protein‑coupled receptors (GPCR) widely distributed
in human body tissue. They have four members, named A1, A2A, A2B and A3, with well‑
reported activities in mediating inflammation, cardiovascular vasodilation or central and
peripheral nervous system pathological responses [9–12].

The 2‑phenethylamine moiety may be found in a range of AR (adenosine receptors)
ligands, such as N6‑(2‑phenylethyl)adenosine (1) [13], APNEA (N6‑[2‑(4‑ainophenyl)
ethyl]adenosine) (2) [14,15], CGS 21680 (3) [16–19] or ZM241385 (4) [20–22]. Murai et al.
synthesized photoreactive CGS 21680 derivatives comprising photophores, such as ben‑
zophenone 5 or phenylazide 6 for photoaffinity labeling (Figure 3). This allows elucida‑
tion of the functional analysis of adenosine receptor A2A through competitive binding
assays against [3H]‑NECA (N‑ethyladenosine‑5′‑uronamide) [23].
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2.2. α‑Adrenergic Receptors
Another class of GPCR targeted by 2‑phenethylamines are constituted byα‑adrenergic

receptors (or α‑adrenoceptors). There are two main groups of α‑adrenergic receptors, α1
andα2, with several subtypes within (α1A,α1B,α1D,α2A,α2B,α2C). Groupα1 is distributed
in cardiovascular, intestinal, CNS and urinary systems, while group α2 is located in pan‑
creas, CNS, and cardiovascular regions as well [24].

Probably the best representatives of the 2‑phenethylamine chemical space are the en‑
dogenous catecholamines L‑DOPA (7), dopamine (8), norepinephrine (9) (noradrenaline)
and epinephrine (10) (adrenaline), biosynthetically produced in cascade from phenylala‑
nine (11)/tyrosine (12) naturally occurring amino acids (Figure 4).
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Based on these catecholamines, several studies were performed to investigate the
effect of chirality, further functionalization, and activity on different derivatives [25–31].
This later triggered the elaboration of many derivatives conserving the 2‑phenylethyl moi‑
ety, which have been frequently used in the context of medicinal chemistry as tool com‑
pounds (Figure 5, Table 1).

Table 1. α‑Adrenergic medicinal chemistry leads.

Molecule Name Primary Targets Secondary Targets References

13 D2343 α1 β2‑adrenoceptor [32]

14 Dobutamine α1
β1,

β2‑adrenoceptors [33–35]

15 Etilefrine α1

AMP‑activated
protein kinase

(AMPK)
[36]

16 HEAT (BE2254) α1 [37–39]
17 Labetalol α1 β‑adrenoceptors [40]
18 Methyldopa α2 [41,42]
19 OPC‑28326 α2 [43,44]
20 Phenylephrine α1 [45,46]
21 Silodosin α1 [47,48]
22 Synephrine α1 β‑adrenoceptors [49,50]
23 Tamsulosin α1 [51]

24 Ulimorelin α1
Ghrelin receptor

(GRLN) [52]
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2.3. β‑Adrenergic Receptors
Close to the previously described α‑type, the β‑adrenergic receptors are also acti‑

vated by catecholamines norepinephrine and epinephrine. There are three receptor sub‑
types (β1, β2 and β3) that are implicated in diverse cardiovascular and pulmonary func‑
tions [53,54], leading to a vast ligand chemical space (Figure 6, Table 2) to treat cardiogenic
shock, heart failure, asthma, overactive bladder (agonists), arrhythmias, hypertension (an‑
tagonists commonly known as beta blockers) [55].

Table 2. β‑Adrenergic medicinal chemistry leads.

Molecule Name Primary Targets Secondary Targets References

25 Amibegron β3 [56,57]
26 Arbutamine β [58–60]
27 Bambuterol β [61]
28 Batefenterol β2 Muscarinic M2, M3 [62,63]
29 BI‑167107 β2 [64]

30 BRL 37344
sodium β3 [65]

31 Brombuterol β [66]
32 Bromchlorbuterol β [67]
33 CL 316243 β3 [68,69]
34 Clenproperol β2 [70]
35 Clorprenaline β2 [71]
36 Denopamine β1 [72]
37 Dopexamine β2 [73]
38 Epanolol β [74]
39 Fenoterol β2 [75,76]
40 Guanfacine β1 α2‑adrenoceptors [77]
41 HOKU‑81 β2 [78]
42 Imoxiterol β [79]
43 Indacaterol β [80]
44 Isoprenaline β [81–83]
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Table 2. Cont.

Molecule Name Primary Targets Secondary Targets References

45 Isoxsuprine β N‑methyl‑D‑
aspartate
(NMDA)

[84]

46 KUC‑7322 β3 [85]
47 KUL‑7211 β [86]
48 L748337 β3 [87]
49 L755507 β3 [88]
50 Levalbuterol β2 [89]
51 Lubabegron β [90]
52 LY377604 β3 [91]
53 Mapenterol β2 [92]
54 Metaproterenol β2 [93,94]
55 Mirabegron β3 [95]
56 N‑5984 β3 [96]
57 Naminterol β2 [97]
58 Navafenterol β2 Muscarinic M3 [98]
59 Octopamine β [99,100]
60 Olodaterol β2 [101,102]
61 Pamatolol β [103]
62 PF‑610355 β2 [104,105]

63 Phenylethanolamine
A β [106]

64 Pronethalol β [107]
65 Reproterol β2 Phosphodiesterase

(PDE)
[108]

66 Ritodrine β2 [109]
67 Ro 363 β1 [110]

68 Rotigotine β

α2‑adrenoceptor,
5‑HT1A, Dopamine

D2, D3, D4, D5
[111]

69 Salbutamol β2 [112]
70 Salmeterol β2 [113]
71 SB‑206606 β3 [114]
72 Sibenadet β Dopamine D2 [115]
73 Solabegron β3 [116]
74 Sulfinalol β [117]
75 Synephrine β α‑adrenoceptor [118]
76 Talibegron β3 [119]
77 TD‑5471 β2 [120]
78 Terbutaline β2 [121,122]
79 Tulobuterol β2 [123]
80 Vilanterol β [124,125]
81 Zinterol β2 [126]
82 ZK‑90055 β2 [127]
83 ‑ β3 [128]
84 ‑ β3 [129]
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2.4. Aldose Reductase
ALR2 aldose reductase is an enzyme of the polyol pathway responsible for the trans‑

formation of glucose into sorbitol, with relevant involvement in long‑term diabetic compli‑
cations. A series of modified 2‑phenethylamines 85 comprising the insertion of aliphatic
chains, aromatic rings or carboxylic acids were elaborated by Sun et al. [130]. This resulted
in the obtention of a small library of derivatives with low inhibition effects towards in vitro
pig kidney ALR2 (Figure 7).
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2.5. Carbonic Anhydrase
Carbonic anhydrases (CAs) are Zn‑based (also Fe‑based) metalloenzymes present across

all living organisms of the different life kingdoms. Divided in eight different families
(α, β, γ, δ, ε, ζ, η, θ, and t types), they catalyze the hydration of carbon dioxide to bicarbon‑
ate, with the purpose of transporting CO2 to HCO3

‑ between tissue types, contributing to
pH homeostasis, bone calcification and electrolyte transport, and ultimately participate in
biogenic routes/processes, such as lipogenesis, ureagenesis or gluconeogenesis [131–133].

Several groups have independently used 2‑phenethylamine based sulfamides and
monothiocarbamates (Figure 8) as CA inhibitors, as frequently targeting a specific CA is
related to a certain syndrome or disease, such as glaucoma [134], obesity [135], or certain
types of cancer [136].
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Nocentini et al. tested phenethylamine monothiocarbamates 87 and 88 as well as
other cyclic derivatives against human CA I/II (hCA), with 26–43 nM activities in type
II (Figure 8a) [137]. Symmetric sulfamides were employed by Topal et al. (Figure 8b) with
hCAI/II inhibition demonstrated at nanomolar level [138]. Branched sulfamides integrat‑
ing the 1‑phenyl‑2‑phenethylamine scaffold, elaborated by Akıncıoğlu et al. [139] were
found to be single‑digit nanomolar inhibitors of both type I/II hCA (Figure 8c).

2.6. Dopamine β‑Hydroxylase
Dopamine β‑hdroxylase (DBH) is a Cu‑based oxidoreductase that controls dopamine

transformation into norepinephrine (Figure 2) in several neuron types (like adrenergic or
noradrenergic ones) [140]. Limited studies have been developed on the use of modified 2‑
phenethylamines to target DBH. Kruse et al. [141] developed 2‑vinyl‑ and 2‑alkynyl‑based
2‑phenethylamines with moderate vitro activities (Figure 9).
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Figure 9. 2‑Phenylethyl‑based DBH ligands by Kruse et al [141].

More advanced DBH inhibitors are constituted by imidazolethione amines, such as etam‑
icastat [142,143], nepicastat [144] or zamicastat [145], with low resemblance to dopaminergic
amines.

2.7. Dipeptidyl Peptidases (DPP)
Dipeptidyl peptidases are exopeptidases responsible for proteolytic transformations,

specifically cleaving the peptide bond after the penultimate proline residue. DPP4 is a
serine protease displaying a critical role in cell adhesion, inflammation processes and im‑
mune regulation by deactivating GLP‑1 and hence lowering blood glucose levels [146].
Type 2 diabetes is the main therapeutic area were DPP4 ligands have been discovered
(Figures 10 and 11, Table 3).
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Table 3. DPP4 medicinal chemistry leads.

Molecule Name Primary Targets Secondary Targets References

93 Evogliptin DPP4 [147–149]
94 Nateglinide DPP4 [150]
95 Retagliptin DPP4 [151]
96 Sitagliptin DPP4 [152,153]

Backes et al. [154] and and Pei et al. [155] developed pyrrolidine‑constrained and
piperidine‑constrained phenethylamines selectively targeting DPP4 with interesting PK
profiles (Figure 11).

2.8. Dopamine Receptors (DX)
Dopamine receptors are a class of GPCR widely distributed in the brain, with key

functionalities related to cognition, motivation and muscular drive. Pharmacologically,
they are grouped into two families: D1‑type (D1 and D5 receptors) and D2‑type (D2S,
D2L, D3 and D4) [156,157]. Medicinal chemistry of D1/D2‑type receptor ligands addresses
mainly the treatment of schizophrenia. From the chemical point of view concerning this
review, a few small molecules presenting a basic 2‑phenethylamine structure are reported
in the literature (Figure 12, Table 4).

Table 4. Dopamine receptor medicinal chemistry leads.

Molecule Name Primary Targets Secondary Targets References

101 A‑77636 D1 [158]
102 A68930 D1 [159]
103 Ansofaxine D [160]
104 Oxidopamine D [161]
105 Ropinirole D2, D3, D4 [162]
106 5‑OH‑DPAT D [163]
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2.9. Dopamine Transporter (DAT)
The dopamine transporter receptor modulates the availability of released dopamine

in the synaptic space by relocating it back into the presynaptic cell. It serves as a main
target for recreational drugs as well as psychostimulant and antidepressant drugs. Clas‑
sically, DAT ligands are classified in amphetamine‑type and cocaine‑type structures [164].
While cocaine‑type molecules exert inhibitory binding to DAT, amphetamine‑type ones are
substrates that are effectively transported to the presynaptic neuron, stimulating efflux of
cytosolic dopamine [165].

Amphetamine‑type DAT ligands can be grouped in two families: amphetamine derivatives
107 and cathinone derivatives 114. Amphetamines are 1‑alkyl‑2‑phenethylamine deriva‑
tives 107 summarized below (Figure 13, Table 5). SAR attributes [166] are well known in
this series, with diversification of the biological response with aryl substitutions, pharma‑
cokinetic parameter shift upon alkylation of the amino group and decrease in dopaminer‑
gic pathways influenced by elongation of the alkyl chain at position 1. Due to being con‑
trolled substances in most countries, the number of compounds is constantly increasing,
trying to avoid the introduction of compounds in the corresponding prohibition lists of
each state [164,167]. Major concerns of this series are neurotoxicity, myocardial infarction,
aneurysms, pulmonary hypertension, and tooth decay [168].

Table 5. Dopamine transporter classical binders.

Molecule Name References

108 Ephedrine [169]
109 Amphetamine [170]
110 Methamphetamine [170]
111 MDMA [170]
112 MBDB [170]
113 MDEA [170]
115 Cathinone [170]
116 Methcathinone [170]
117 Mephedrone [170]
118 Pyrovalerone [170]
119 Methylone [170]
120 Ethylone [170]
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2.10. Galectin‑1 Receptor
Galectins are a family of soluble carbohydrate binding proteins with several roles in

inflammation, immune response, autophagy or signaling. Comprising 16 members, only
12 are expressed in humans [171]. Tejler et al. [172] described the synthesis of lactose deriva‑
tives, such as 121 with the phenethylamine moiety by 1,3‑dipolar cycloadditions, with se‑
lective galectin‑1 inhibition (Figure 14).
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2.11. HIV‑1 Reverse Transcriptase Receptor
Human immunodeficiency virus (HIV), origin of acquired immunodeficiency syn‑

drome (AIDS), is a single‑stranded (ss) RNA virus whose infection and propagation mecha‑
nisms requires reverse transcription into double‑stranded (ds) DNA as a critical stage [173].
HIV‑1 reverse transcriptase receptor (HIV‑1 RT) is a well‑explored target for antiretroviral
therapies [174].
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Venkatachalam et al. [175] designed a library of phenethyl thiourea compounds with
good potency against HIV‑1 RT inhibition without any evidence of cytotoxicity [175–177].
Eventually (Figure 15), these derivatives evolve in the phenethylthiazolylthiourea (PETT)
family, with trovirdine as its prominent inhibitor [178–180].
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2.12. 5‑Hydroxytriptamine (5‑HT) Receptors
5‑Hydroxytryptamine (5‑HT) receptors are one of the most extensively studied re‑

ceptor families, with seven subtypes (5‑HT1, 5‑HT2, 5‑HT3, 5‑HT4, 5‑HT5, 5‑HT6, 5‑HT7)
identified [181]. Therapeutic indications of 5‑HT ligands and advanced leads (Figure 16,
Table 6) cover different conditions, such as migraine, depression, social phobia, obsessive–
compulsive disorder, anxiety, schizophrenia, eating disorders, panic‑disorders, hyperten‑
sion, pulmonary hypertension, emesis, vomiting, and irritable bowel syndrome (IBS) [182].
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Table 6. 5‑HT medicinal chemistry leads.

Molecule Name Primary Targets Secondary Targets References

124 3‑Hydroxy
agomelatine 5‑HT2C [183]

125 8‑OH‑DPAT 5‑HT1A [184,185]

126 7‑Desmethyl‑3‑
hydroxyagomelatine 5‑HT2C

Melatonin MT1,
MT2 [186]

127 Agomelatine 5‑HT Melatonin MT1,
MT2 [187]

128 AR‑A000002 5‑HT1B [188]
129 AS19 5‑HT7 [189,190]
130 Benzoctamine 5‑HT [191]
131 PCPA methyl ester 5‑HT [192]
132 U92016A 5‑HT1A [193,194]
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A novel class of 2‑phenethylamines with hallucinogenic/psychedelic effects are N‑
benzylphenethylamines or NBOMes (133, 134) (Figure 17) [195]. These agents have a se‑
lective binding profile towards 5‑HT2 receptor subtypes (5‑HT2A, 5‑HT2B, 5‑HT2C), mak‑
ing them promising therapeutic compounds. Traditionally, the assumption of convert‑
ing the primary amine into a secondary one was associated with a prominent loss in 5‑
HT2A activity. N‑benzyl substitution was found to be the exception, increasing affinity
and potency at the receptor [196]. SAR exploration of the NBOMes scaffold led to defin‑
ing avoidable regions for SAR expansion, while mapping tolerated substitutions seeking
potency/selectivity [197]. From the original 25X‑NBOMe halide derivatives [198], different
derivatives have evolved.
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Figure 17. NBOMes with 5‑HT receptor activity.

Jensen et al. developed 25CN‑NBOH (135) (Figure 17a) as a result of halide substi‑
tution by the cyano moiety, displaying high‑picomolar/low‑nanomolar binding affinities
(competition binding assays with [3H]ketanserin) and functional potencies at 5‑HT2A re‑
ceptor. Leth‑Petersen et al. [199] designed a library of 25B‑NBOMe analogues 136, such as
137 or 138 in the search of decreasing intrinsic clearance (Figure 17b). Despite the authors’
efforts to decrease intrinsic clearance by lipophilicity reduction, no correlation was found,
although several 5‑HT2 potent compounds were synthesized. Nichols et al. [200] explored
the impact of methoxy and bromo scanning along the benzyl ring of 25I‑NBOMe (139). Or‑
tho or meta positions enhanced activity, whereas the para substitution reduced it. One of
the best derivatives was 140, which was compared with its tryptamine congener 141, less
potent overall in the 5‑HT2 assays performed (Figure 17c).

NBOMes and polyalkoxylated phenethylamines could be envisaged as mescaline
(Figure 16, 142) evolving structures. In this sense, significant efforts have been made to de‑
rive rational SAR maps together with attractive bioactive chemical matter [201]. Marcher‑
Rørsted et al. [202] reported the insertion of 2,5‑dimethoxy motif in phenethylamine‑like 5‑
HT2A agonists. They demonstrated that this motif is relevant for in vivo potency, but with‑
out observed correlations in affinity or potency in competition binding assays (Figure 18a).
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Oxygen‑to‑sulfur exchange reduces hallucinogenic‑associated activity [203], while removal
of one of the 2‑ or 5‑position methoxy groups decreased in vivo activity [166]. Porter
et al. [204] have derived 3‑amino‑chromanes and tetrahydroquinolines as selective 5‑HT2B/
5‑HT7 ligands (Figure 18b). 5‑HT2B is not considered an optimal target, due to valvular
heart disease and myofibroblast proliferation by long‑term consumption of selective ago‑
nists [205,206]. 5‑HT7 is implicated in sleep, mood and circadian rhythm functions [207].
Kolaczynska et al. [208] analyzed the impact in 5‑HT activity of 4‑alkoxy exploration of 2,5‑
dimethoxyphenethylamines and amphetamines (Figure 18c). Both derivatives were found
to interact strongly and selectively with 5‑HT2A, demonstrating that size and lipophilicity
increase in this region favors 5‑HT2A/C affinity. Schultz et al. [209] and Nichols et al. [210]
explored the fusion of furane/pyrane rings with the aromatic ring, as probes of the binding
pocket size of 5‑HT2A receptor subtype and lone pair suitable orientation of the 2,5‑oxy sub‑
stituents, furnishing nanomolar‑range receptor affinities (Figure 18d). McLean et al. [211]
portrayed the conformationally restriction of 2‑phenethylamines via 1‑aminomethylbenzo
cycloalkanes syntheses (Figure 18e). Benzocyclobutene derivative 153’s strong potency
against 5‑HT2A showed the hypothesis that the side chain of the phenethylamine binds
in an out‑of‑the‑plane conformation. Some of these conformationally restricted phenethy‑
lamines exhibit affinity for muscarinic receptors [212].
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Figure 18. 2‑Phenethylamines with 5‑HT receptor activity.
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2.13. Monoamine Oxidase (MAO) Receptors
Monoamine oxidases (MAO) are flavin‑containing enzymes that catalyze the oxida‑

tive deamination of monoamines, which are bound to the outer membrane of mitochondria.
Common MAO substrates are 5‑hydroxy‑tryptamine and catecholamines (dopamine, nore‑
pinephrine and epinephrine). MAO A and MAO B are the two enzyme isoforms, sharing a
70% sequence identity and differentiating each other in the substrate scope [213]. Theoreti‑
cal approaches to rationalize isoform selection by substrates have been described [214,215].
As these two oxidases are responsible for neurotransmitter inactivation by oxidation, their
dysfunction drives several neurological disorders, hence the therapeutic attractiveness
(Figure 19, Table 7).
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Table 7. MAO medicinal chemistry leads.

Molecule Name Primary Targets Secondary Targets References

155 Amiflamine MAO A [216]
156 2‑PAT MAO A, B [217]

157 GSK‑LSD1 MAO
Lysine specific
demethylase 1

(LSD1)
[218]

158 OG‑L002 MAO A, B [219]
159 Pheniprazine MAO [220]
160 Tranylcypromine MAO [221]

161 Vafidemstat MAO B
Lysine specific
demethylase 1

(LSD1)
[222]

2.14. Opioid Receptors
Opioid receptors are a class of GPCR proteins consisting of three receptor types, mainly

µ‑, δ‑, and κ‑ types, with a variety of functional roles in the nervous system, such as pain sig‑
naling, growth, respiration, and immunological response [223,224]. Opioid ligands mod‑
ulate neuronal inhibition and ultimately analgesia. Relevant side effects are well known,
such as constipation or drug dependence/abuse.

Takahashi et al. [225–230] derived a small series of flexible 2‑phenethylamines with
analgesic activities, with moderate potency effects when compared with pentazocine or
morphine (Figure 20a). Manchado et al. [231] developed quick asymmetric routes furnish‑
ing this type of derivative. Spetea et al. [232] developed selective diphenethylamine‑based
tertiary amines as κ‑opioid receptors with 100‑fold and 1000‑fold selectivity difference
compared with its congeners (Figure 20b).
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2.15. Peroxisome Proliferator‑Activated (PPAR) Receptors
Peroxisomeproliferator‑activated (PPAR) receptors are peroxisome receptors and sub‑

cellular organelles performing several tasks related to cholesterol and fatty acid metabolism.
Three members, named PPAR‑α, PPAR‑δ, and PPAR‑γ, form this family, with different lev‑
els of expression and functionalities in diverse tissues, from energy storage in endothelial
and vascular smooth muscle cells (type γ) to energy expenditure across all bodies (type δ).
Several agents have been developed in relation to PPAR to address obesity, inflammation
or neurodegenerative disorders (Figure 21, Table 8) [233,234].
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Table 8. PPAR medicinal chemistry leads.

Molecule Name Primary Targets Secondary Targets References

169 Bezafibrate PPAR [235,236]
170 Chiglitazar PPAR [237]
171 Farglitazar PPAR‑γ [238]
172 GW 9578 PPAR‑α [239]
173 GW1929 PPAR‑γ [240]
174 GW6471 PPAR‑α [241]
175 GW7647 PPAR‑α [242]
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2.16. Sigma Receptors
Initially described as opioid receptors, sigma receptors conform their own family, un‑

related to other receptors. Both members σ1R and σ2R are primarily found at the endo‑
plasmic reticulum, and participate in diverse conditions, such as cancer, pain, neurode‑
generative diseases or depression [243]. BD‑1047 (Figure 22) is an open‑chain, flexible 2‑
phenethylamine acting as antagonist of σ1R [244].
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2.17. Trace Amine‑Associated Receptors (TAAR)
Relatively recently discovered, trace amine‑associated receptors (TAAR) are a GPCR

family composed of nine members (TAAR1 to 9) with prospective therapeutic applications
in the field of schizophrenia and metabolic disorders [245]. Lewin et al. [246] carried out
SAR explorations with simple 2‑phenethylamines to envisage improved pharmacological
hits (Figure 23).
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3. Methods
All described compounds, targets andactivitieswere retrievedusing “2‑phenethylamine”

as title or keyword term in the chemical databases SciFinder [247] and Scopus [248]. Ad‑
ditionally, a SciFinder and Scopus structure search, with the scope described early in this
review (Figure 2), was employed.

4. Conclusions
This review represents a concise, central summary of relevant 2‑phenethylamine‑based

leads and research hits, which spans receptors and their corresponding therapeutic indi‑
cations. This report serves as a guide to researchers interested in medicinal chemistry to
identify suitable ligand–target associations displaying the aforementioned motif, as well
as help to identify prospective targets of brand‑new molecules with the 2‑phenethylamine
core embedded.

Future directions will include both a complementary report covering synthetic strate‑
gies to access 2‑phenethylamine derivatives and a second, satellite review of 2‑heteroaryl‑
ethylamines in medicinal chemistry.
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