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Abstract: The dramatic rise in cancer incidence, alongside treatment deficiencies, has elevated cancer
to the second-leading cause of death globally. The increasing morbidity and mortality of this disease
can be traced back to a number of causes, including treatment-related side effects, drug resistance,
inadequate curative treatment and tumor relapse. Recently, anti-cancer bioactive peptides (ACPs)
have emerged as a potential therapeutic choice within the pharmaceutical arsenal due to their high
penetration, specificity and fewer side effects. In this contribution, we present a general overview of
the literature concerning the conformational structures, modes of action and membrane interaction
mechanisms of ACPs, as well as provide recent examples of their successful employment as targeting
ligands in cancer treatment. The use of ACPs as a diagnostic tool is summarized, and their advantages
in these applications are highlighted. This review expounds on the main approaches for peptide
synthesis along with their reconstruction and modification needed to enhance their therapeutic effect.
Computational approaches that could predict therapeutic efficacy and suggest ACP candidates for
experimental studies are discussed. Future research prospects in this rapidly expanding area are also
offered.

Keywords: anticancer peptides; cancer therapy; peptide conformation; peptide mode of action;
cancer microenvironment

1. Introduction

Various approaches to cancer treatment have been proposed and investigated; how-
ever, many limitations persist, including toxic side effects, developed drug resistance and
low selectivity. These limitations motivated the search for new non-conventional methods
in cancer therapy, of which anti-cancer bioactive peptides (ACPs) demonstrated potential
in diagnostic and therapeutic applications, making them a good prospect for theranostic
agents. In therapeutic applications, ACPs have demonstrated higher specificity, sensitivity,
accuracy and lower toxicity than conventional anticancer therapeutics [1]. ACPs were
also applied in combined therapy to increase cancer cell sensitivity to other therapeutic
agents [2].

Peptides are small bioactive proteins, ranging between 10 and 100 amino acid units,
that perform various biochemical roles in the body [3,4]. They are linked by peptide
bonds that are formed by dehydration and condensation. The application of peptides
in medicine was first proposed in 1922 through the use of insulin extracted from animal
pancreas in the treatment of type 1 diabetes [5]. To date, more than 600 peptides have
been applied in clinical and preclinical investigations, of which 60 have been approved as
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drugs [6,7]. These therapeutic applications of these peptides include cancer treatment, drug-
delivery systems, hormonal regulators, inflammation modulators, vaccines, antibiotics and
quorum-sensing molecules [8–13]. Peptides that have therapeutic effects are classified into
three main categories based on their source: natural, artificially modified and artificially
synthesized [14,15]. They can be obtained from living organisms, such as animals, plants,
bacteria and fungi. They can also be attained through proteolysis, synthesized chemically
or by recombinant genes [16,17]. Recently, computational methods such as traditional
machine learning (ML) and deep learning (DL), which are a subset of artificial intelligence
(AI), have been employed in ACPs screening [13,18,19] in order to overcome potential
adverse in vitro effects due to peptidases or unknown immunogenicity [20].

Antimicrobial peptides (AMPs) are part of the innate immunity in numerous or-
ganisms [21]. They are typically cationic, amphipathic molecules with high content of
hydrophobic residues. These properties allow them to interact, within a short time frame,
with negatively charged microbial membranes that have a low probability of developing
AMP resistance, resulting in microbial death [22,23]. A group of AMPs has also displayed
anticancer activity, and hence they are also regarded as ACPs and are summarized in
Table 1, which lists all ACPs discussed in this review. This anticancer activity is most likely
due to their interactions with the higher abundance of negatively charged molecules, such
as phosphatidylserine, glycoproteins and glycolipids, on the outer plasma membranes in
cancer cells relative to their counterparts in normal cells [24].

Table 1. Summary of ACPs discussed in this review.

Peptide Source Primary Amino Acid Sequence a Class Net
Charge b Anticancer Mechanism Reference

Aurein 1.2 Litoria
raniformis GLFDIIKKIAESF α-Helix +1 Barrel-stave pore

mechanism [25]

BMAP-27 Bos taurus GRFKRFRKKFKKLFKKLSPVIPLLHL α-Helix +10 Membranolytic [26]

BMAP-28 Bos taurus GGLRSLGRKILRAWKKYGPIIVPIIRI α-Helix +7 Membranolytic [27]

Brevinin Limnonectes
fujianensis frog KLKNFAKGVAQSLLNKASCKLSGQC

Mixed α-Helix,
β-sheet and
random coil

+5

Lysosomal death
pathway and

autophagy-like cell
death through

depolarizing the
transmembrane

potential of cancer cells

[28]

Cecropin A
Silk moth

Hyalophora
cecropia

KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK α-Helix +7 Membranolytic
Apoptosis inducer [29]

Cecropin B
Silk moth

Hyalophora
cecropia

KWKVFKKIEKMGRNIRNGIVKAGPAIAVLGEAKAL α-Helix +8
Tumor growth inhibition

using pore formation
and apoptosis

[30]

Citropin 1.1 Litoria citropa
frog GLFDVIKKVASVIGGL α-Helix +2 Carpet model of

membrane disruption [31,32]

D-K6L9 Synthetic LKLLKKLLKKLLKLL α-Helix +3

Reduce
neovascularization

through cell membrane
depolarization

[33]

Gaegurins Rana rugose
frog

Gaegurin 5:
FLGALFKVASKVLPSVKCAITKKC α-Helix +4

Destruction of cell
membranes through a

carpet-like model
and/or barrel-stave

model

[34,35]
Gaegurin 6:

FLPLLAGLAANFLPTIICFISYKC

HMGB1 Homo sapiens GRRRRSVQWCAVSQPEATKCFQWQRNMRKV
RGPPVSCIKRDSPIQCIQA α-Helix +9

Immature dendritic cells
activation and

tumor-specific cytotoxic
generation

[36–38]
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Table 1. Cont.

Peptide Source Primary Amino Acid Sequence a Class Net
Charge b Anticancer Mechanism Reference

HNP-1, HNP-2
and HNP-3

Homo sapiens

HNP-1:
ACYCRIPACIAGERRYGTCIYQGRLWAFCC

β-Sheet
+3 Membranolytic

Antiangiogenic c

Cytolytic activity
[39]HNP-2:

CYCRIPACIAGERRYGTCIYQGRLWAFCC
HNP-3:

DCYCRIPACIAGERRYGTCIYQGRLWAFCC

hBD3 Homo sapiens GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKC
STRGRKCCRRKK Mixed +11

Binding to the
phosphatidylinositol

4,5-bisphosphate
[40]

LfcinB * Mammalian
lactoferrin FKC1RRWQWRMKKLGAPSITC1VRRAF β-Sheet +8

Membranolytic
Apoptosis inducer

Antiangiogenic
[41]

LL-37 * Homo sapiens LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES α-Helix +6 Toroidal pore formation [42]

Magainin 2 * Xenopus laevis
frog GIGKFLHSAKKFGKAFVGEIMNS α-Helix +3

Formation of pores on
cell membranes

Apoptosis
[43]

Melittin *

Venom of the
European

honeybee Apis
mellifera

GIGAVLKVLTTGLPALISWIKRKRQQ α-Helix +6

Destabilizes the
membrane through the
barrel stave mechanism
PLA2 d activator PLD e

activator

[44]

P18 Synthetic
hybrid KWKLFKKIPKFLHLAKKF-NH2 α-Helix +7 Membranolytic [38,45]

PR-39
Porcine small
intestine and
neutrophils

RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPRFP Linear +11 Induces syndecan-1
expression [46,47]

Tachyplesin I * Tachypleus
tridentatus crab KWC1FRVC2YRGIC2YRRC1R β-Sheet +6

Binds hyaluronan and
activates complement

(C1q) Antiangiogenic c

Induces cancer cell
differentiation

[48]

a Amino acid sequences are given in one-letter codes. Subscripts indicate pairings of Cys residues that form disul-
fide bonds. Boldface indicates cationic amino acid residues. b At neutral pH. c Suggested activity d Phospholipase
A2. e Phospholipase D. * Naturally occurring cationic antimicrobial peptides with anticancer activities.

2. Conformations of ACPs
2.1. ACPs with α-Helical Conformations

Most ACPs adopt α-helical conformations; for example, BMAP-27 and BMAP-28 both
adopt this conformation and are both bovine cathelicidin-derived AMPs with demonstrated
antitumor activity against leukemia [26,49]. They are composed of 27 and 28 amino acid
residues, respectively, where the first 18 residues from their NH2-termini form amphipathic
α-helices, while the remaining residues form hydrophobic tails, a crucial feature for their
cytotoxic activity [50]. Another example is P18, where its α-helical COOH-terminus has
been shown to be responsible for selective anticancer activity towards human cancer cells,
including Jurkat T leukemia, K562 chronic myeloid leukemia and MDA-MB-361 breast
carcinoma cells with no hemolytic effects [45].

The peptide leucine-37 (LL-37) belongs to the cathelicidin family and is encoded by
the CAMP gene with a highly conserved NH2-terminal α-helix. It was initially synthesized
as the preproprotein, hCAP-18, then converted into its active form, LL-37, by proteinase
3-mediated extracellular cleavage [51]. The preproprotein hCAP-18 is expressed in various
cell types, including neutrophils [52] and squamous epithelial cells [53]. The active form,
LL-37, plays a crucial role in adaptive immunity, growth inhibition, chemotaxis and wound
healing [42,54–56].

Cecropin A and B are ACPs first discovered in insects such as the giant silk moth
Hyalophora cecropia [57], then later in mammals [58]. The insect-derived peptides consist
of 34-39 amino acid residues [30,59]. These peptides are each composed of two α-helices.
Cecropin A has an NH2-terminal helix that is highly amphipathic, while the carboxylic
terminal helix is hydrophobic. Cecropin B1, on the other hand, has two amphipathic helices
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and exhibits high antitumor activity against HL-60 human promyelocytic leukemia cells
and low toxicity toward normal cells [60].

Some other α-helical ACPs, such as magainins and their analogs, gaegurins, aurein
1.2 and citropin 1.1, have been isolated from amphibian skin [25,31,34,61–63]. Magainins
consisting of 21–27 amino acid residues, with separate cationic and hydrophobic faces
within their helices, have been isolated from the African frog Xenopus laevis [64]. The most
common ACP, magainin 2, and its synthetic analogs, magainins A, B and G, all show lytic
activity against hematopoietic and solid tumor cell lines at concentrations 5–10 fold lower
than that affecting normal cells [62,65]. These ACPs have also demonstrated antitumor
activity against the human lung cancer cell line A59 [66] and against several human bladder
cancer lines through the formation of ion-conducting pores in cell membranes [62,67].

Gaegurins are a class of six peptides exhibiting cytotoxic activities that have been
isolated from the skin of the Korean frog Rana rugose [68]. These peptides acquire a random
coil conformation in solution but revert to an α-helix in membrane environments. Gaegurin
5 and 6 each consist of 24 amino acid residues and possess selective anticancer cytotoxicity
with minimal effect on normal cells [34,35,61]. Gaegurin 5 and two of its synthetic analogs
have shown selective antitumor activity against HCT116 colon and MCF-7 breast carcinoma
cells [34]. Similarly, gaegurin 6 and its synthetic analog, PTP7, have shown selective and
broad antitumor activity against various human cancer cells and, more importantly, against
a multidrug-resistant variant of the breast cancer MCF-7 cell line. This demonstrated action
is thought to be via an apoptotic mechanism, as evident in the DNA fragments detected in
the cell line environment after being treated with the peptides [61].

Aurein 1.2 and citropin 1.1 are isolated from the Australian frog Litoria raniformis and
the tree frog Litoria citropa, respectively. Both are short peptides consisting of 13 and 16
amino acid residues, respectively. Aurein 1.2 acquires α-helical conformation in solution
and has shown moderate anticancer activity against almost 60 human cancer cell lines, with
no significant lytic effect on erythrocytes [25]. Citropin 1.1 has an α-helical structure with
well-defined hydrophobic and hydrophilic regions. This peptide exhibits a wide range of
antitumor activity against human hematopoietic and non-hematopoietic cancer cell lines,
with no significant lytic effect on erythrocytes [31].

Melittin is a 26 amino acid residue peptide isolated from the venom of the European
honeybee Apis mellifera [69]. Starting from the NH2-terminus, 19 out of 20 residues are
hydrophobic, whereas the six residues ending at the COOH-terminus are hydrophilic for
an overall alkaline peptide [70,71]. At low membrane concentrations, melittin adopts an
α-helical structure parallel to the lipid bilayer [44]. The activity of melittin has been shown
against both cancer cells and normal erythrocytes [70–72].

2.2. ACPs with β-Sheet Conformations

The second most common geometric arrangement for ACPs is β-sheet conforma-
tions [73,74]. Adopting this conformation are defensins, which are a group of Cys- and
Arg-rich closely related ACPs, ranging from 29 to 45 amino acid residues [75], where
some of its plant-derived are reported to have activity on cancer cells [76]. In this group
of ACPs, three intramolecular disulfide bridges form between the NH2-terminal and
COOH-terminal regions and are formed by six conserved Cys residues. In human α- and
β-defensins, the disulfide bridges occur from the NH2-terminal between Cys1–Cys6, Cys2–
Cys4 and Cys3–Cys5 in α-defensins, and between Cys1–Cys5, Cys2–Cys4 and Cys3–Cys6
in β-defensins [77–79]. This results in a cyclic, triple-stranded, amphiphilic β-sheet struc-
ture with separated hydrophobic and hydrophilic regions [80,81]. The human neutrophil
peptides HNP 1, 2 and 3 are α-defensins, originally purified from the azurophilic granules
of neutrophils [39,82]. These three ACPs exhibited their activity against several types of
cancers, including the pro-monocytic human myeloid leukemia cell line U937, the human
erythroleukemic cell line K562, and lymphoblastoid B cells IM-9 and WIL-2 [83].

Lactoferricin is another ACP adopting a β-sheet conformation that is obtained through
the pepsin-mediated hydrolysis of mammalian milk, iron-binding and glycoprotein lacto-
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ferrin [84]. The bovine peptide LfcinB consists of 25 amino acid residues, with one disulfide
bridge linking the two terminal regions of the peptide. It has two amphipathic structures,
a loop peptide and a twisted β-sheet configuration that is attained in solution [85,86],
with segregation of the basic amino acids on one face and the hydrophobic amino acids
on the other [41]. LfcinB has demonstrated wide anticancer activity, including against
human and mouse leukemia, fibrosarcoma and neuroblastoma cells, as well as other
carcinomas [85,87–89], with no toxicity towards normal cells at the applied peptide con-
centrations [89,90]. LfcinB also suppresses both the basic fibroblast growth factor and the
vascular endothelial growth factor-driven proliferation as well as migration of human
endothelial cells [91].

Tachyplesin I, a 17 amino acid residue peptide isolated from the horseshoe crab
Tachypleus tridentatus [48], is arranged in two parallel β-sheets joined together by two
disulfide bridges. This geometry exposes six basic Arg and Lys amino acid units on the
peptide surface to give it an amphipathic structure [92]. The Cys residues maintain the
stability of the peptide in serum, with no effect on its cytotoxic action [93].

2.3. Linear, Hybrid, Diastereomeric and Synthetic ACPs

Brevinin, a 25 amino acid residue peptide identified in the skin secretions of the
Fujian large-headed frog, Limnonectes fujianensis, was predicted to be an amphipathic,
hydrophobic, alpha helical and beta turn peptide that has the ability to penetrate membrane
lipid bilayers [28]. PR-39, on the other hand, a Pro- and Arg-rich linear peptide of the
cathelicidin family containing 39 amino acid residues with no secondary structure, is
isolated from the porcine small intestine and neutrophils [94,95]. Hybrid ACPs, on the
other hand, are a class of synthetic peptides created by combining different regions of
different peptides, for example, the positively charged NH2-terminal α-helical region
of cecropin A with the NH2-terminal α-helical hydrophobic region of either melittin or
magainin 2 [96–98]. Both hybrids have shown anticancer effects against lung cancer cell
lines. Modest hemolytic activity was demonstrated by the melittin hybrid, while the
magainin hybrid has exhibited little or no lytic effect on erythrocytes [96]. The central
hinge region (Gly–Ile–Gly) was reported to be crucial for anticancer activity, as it provides
the required conformational flexibility allowing for interactions between the α-helical
NH2-terminus and cell membranes. This flexibility leads to parallel alignment of the
peptides, which in turn permits the insertion of the α-helical COOH-terminus through cell
membranes [98].

Synthetic peptides are able to permeabilize cancerous cell membranes without being
degraded enzymatically in serum [99,100]. D-K4R2L9 is a synthetic, 15 residue, diastere-
omeric amphipathic peptide, with D-amino acids making up a third of its sequence while
also containing Leu, Lys and Arg residues. This synthetic peptide has shown anticancer
activity against mouse melanoma cell lines, human prostate cancer cell lines, and signifi-
cant prevention ability against lung tumor formation [101]. D-K6L9, another 15-residue
synthetic diastereomeric amphipathic peptide, with D-Lys and D-Leu residues in one-third
of its sequence, showed selective anticancer activity against human prostate cancer cell
lines similar to D-K4R2L9 [33]. L-K6L9, an analog of D-K6L9, which consists of L-amino
acids only, also showed similar anticancer activity; however, it also caused lysis of normal
fibroblast and erythrocytes [102]. Magainins A, B and G which are synthetic analogs of
magainin, all show significant antitumor cytotoxic activity against lung cancer and drug-
resistant tumor cells [62,66,103,104]. It is noteworthy that the hybrid peptide formed by
linking cecropin with magainin 2 has shown remarkable anticancer activity against several
cancer cell lines, with low toxicity to erythrocytes and fibroblasts [105]. The synthetic
derivatives of LfcinB, with clear cationic and hydrophobic sectors, show higher anticancer
activity than their natural analog. The glutamic acid-containing murine peptide, on the
other hand, has shown no anticancer activity, suggesting that the high net positive charge
plays a major role in the demonstrated anticancer cytotoxicity [106–108]. Synthetic ACPs
are typically coupled to targeting domains to further promote their selectivity and cytotoxic
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activity. For example, cyclic CNGRC and double cyclic RGD-4C have both been coupled
to a mitochondrial membrane targeting 14 D-amino acid residues (a repeating KLAKLAK
unit), pro-apoptotic peptide [109].

3. Modes of Action of ACPs

Some ACPs are active against microbial and cancerous cells, such as cecropins and
magainins, while other ACPs are additionally active against normal cells, such as melittin
and human neutrophil defensins HNP-1, HNP-2 and HNP-3 [72,73,110]. In most cases,
the main action of ACPs is through their interactions with cell membranes, resulting ei-
ther in their lysis or in their penetration. However, in a small number of cases, some
other minor mechanisms also occur [24]. Interactions of ACPs with membranes involve
several factors that promote tumor cell membrane charge modification and electrostatic
interactions between typically cationic peptides and highly negatively charged cell mem-
branes. Hypoxia and elevated levels of reactive oxygen species modify tumor microenvi-
ronments, disrupting phospholipid symmetrical distribution between the inner and outer
plasma membrane layers. This exposes the highly expressed anionic phosphatidylserine
on the outer layer, allowing for recognition by cationic ACPs [111,112]. High concentra-
tions of phosphatidylethanolamine zwitterions, deregulation of glycosylation, glycolipids
and membrane glycoproteins with repeated regions of O-glycosylation, in addition to
over-expression of heparan sulfate proteoglycans, all contribute to the acquired negative
charge of a tumor cell membrane [111,113]. Other factors such as an increased number
of filopodia and microvilli, which provides more surface area for contact [114]; lower
cholesterol content and rigidity of the tumor plasma membrane, exposing it to hydrophobic
interactions [115,116], also contribute to selective ACPs cytotoxicity towards tumor cell
membranes.

Several models describing the interactions of ACPs with cell membranes have been
investigated. Those models have been elucidated through various techniques, including
circular dichroism, X-ray crystallography, nuclear magnetic resonance, reverse-phase high-
performance liquid chromatography and surface plasmon resonance [117,118].

3.1. Membrane Interaction Mechanisms
3.1.1. The Carpet Model

In the so-called carpet model, the α-helical ACPs accumulate on the plasma mem-
branes of cells through electrostatic interactions in a parallel fashion similar to a carpet, as
shown in Figure 1. After reaching a critical concentration, the ACPs rotate on themselves,
redirecting the membrane phospholipids. Similar to a detergent effect, this results in in-
creased membrane fluidity, destruction of the lipid bilayer and micelle formation. The cells’
plasma membranes rupture due to the strain exerted on them, causing their eventual death
due to their penetration by the ACPs [73,119]. Defensins are an example of ACPs acting
through this model [120]. Magainins and their analogs, gaegurins, aurein 1.2 and citripin
1.1, also adopt this mechanism through this model at low concentrations [120], with the
latter two ACPs adopting other mechanisms when they dimerize [121,122].
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3.1.2. The Barrel-Stave Model

The initial accumulation of ACPs in their monomeric forms on cell plasma membranes,
then as their local concentration increases, as barrel-shaped multimers, is the namesake
hallmark of this model. This induces conformational changes in the lipid bilayer, exposing
the hydrophobic core to the hydrophobic amino acids in the peptides, which weakens
the cell membranes and forms transmembrane pores through the hydrophilic peptide
sections, as shown in Figure 1. This, in turn, leads cells to leake their contents and cause
their subsequent death [116,123]. The ACPs LfcinB, the helical alamethicin, the dimers
of each of aurein, citropin 1.1 and melittin peptides, through this mode of action, form
transmembrane pores that disturb membrane integrity, allowing for their entrance into the
cells cytoplasmic compartments, and for their co-localization with the negatively charged
mitochondria causing cell death [85,124]. Gaegurins were also reported to achieve their
cytolytic effect is achieved through the barrel stave and or the carpet model [125].

3.1.3. The Toroidal Pore Model

The toroidal pore model is a multi-step model, where initially, the ACPs are disposed
of parallel to the lipid bilayers, reverting to their active form upon reaching a threshold
concentration. This allows the ACPs to attain a perpendicular position over the bilayers,
destabilizing the membraned of the cells and forming within them toroidal pores that
enable the peptides to reach their inner membrane leaflets. This, in turn, is followed by
pore disintegration, allowing the peptides into the cells compartments, as presented in Fig-
ure 1 [119,126]. Inside the cells, ACPs inhibit essential pathways, such as DNA replication
or protein synthesis, causing cells termination. Cecropin A, magainin 2, protegrin-1 and
LL-37 are examples of ACPs acting through the toroidal pore mechanisms [116,127]. LL-37
has also been shown to be selective in mitochondrial depolarization and cause caspase-
independent apoptosis in human oral squamous cell carcinoma SAS-H1 cells [128,129].

3.1.4. Other Minor Models

There are several other minor mechanisms that are in common with the action of AMPs
and allow for ACPs to interact with cancer cell membranes. Among these is the sinking
raft model, in which peptides bind to the plasma membrane, resulting in the formation of
transient pores [130]. The molecular electroporation model is another example; while not
fully understood, this model involves the high charge density on the peptides providing
an electrostatic potential that, upon interacting with the plasma membrane, results in
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electroporation and pore formation followed by cell death [130]. Cecropin A and B, as
well as high concentrations of HNP1, HNP2 and HNP3, express their action through this
latter model [29,30,59]. In the case of the last three peptides, the suppression of DNA
synthesis in renal cell carcinoma lines causes reduced cell viabilities [131], while membrane
permeabilization occurs through forming voltage-dependent, ion-permeable channels [132].
These three peptides may also induce DNA damage, as single-strand DNA breaks were
detected in treated cells [133]. HNP-1 and HNP-3 may also disrupt neovascularization
during tumor development and inhibit the proliferation of endothelial cells induced by
vascular endothelial growth factor [134]. However, they were shown not to be tumor-
selective, causing lysis of normal human leukocytes, epithelial cells and fibroblasts [135,136].
It has also been reported that their cytotoxicity can be serum-inhibited [137].

Another minor mechanism for ACPs membrane interaction is the aggregate channel
model, where peptides form clusters on the plasma membrane by binding to the phospho-
lipidic heads. The formed aggregates associate with water molecules, forming channels
through which ions and larger molecules can pass without significant depolarization or
destruction of the plasma membrane [138]. Magainins 2, A, B and G, at high concentrations,
are reported to exhibit their anticancer activities through the formation of ion-conducting
pores in cell membranes [62,67]. The anticancer activities of melittin are thought to involve
the hyperactivation of phospholipase A2, an influx of Ca+2 and the subsequent destruction
of the transformed cells, as in cells with ras overexpression [139,140]. Another reported
mechanism involves the transient activation of endogenous phospholipase D, which leads
to a signal transduction pathway, in turn promoting the membrane permeability of the
peptide, as in U937 human monocytic leukemia cells [141].

The peptide-induced lipid segregation and the leaky-slit models play a limited role
in ACPs interactions with membrane proteins. In the former, peptides binding to cell
membranes lead to the grouping of anionic lipids into separate peptide–lipid domains
and the segregation of zwitterionic lipids. The resulting rearrangement of the membrane
layers affects cell viability and survival [116,142]. In the latter model, peptides bind to the
membrane lipids forming linear amphipathic matrices, with the hydrophobic regions facing
the double layer. The resulting highly positive curvature adopted by the lipids causes the
formation of transient toxic fibrillar oligomers, the so-called leaky slits, that increase cell
membrane permeability [142].

The classical and lysis-mediated complement pathways are other mechanisms adopted
by by some ACPs such as Tachyplesin I to exhibit their anticancer activities. This mecha-
nism involves binding to over-expressed hyaluronan in human TSU prostate carcinoma
cells and to the C1q in human serum [143]. Tachyplesin I also adopts a non-cytolytic mech-
anism by inducing tumor cell differentiation, thereby reversing the malignant phenotype.
This is manifested in the decreased expression of tumor-associated antigens (α-fetoprotein,
proliferating cell nuclear antigen), modulation of differentiation-associated enzyme ex-
pression (γ-glutamyltransferase, tyrosine aminotransferase), decreased expression of the
c-myc oncogene and increased expression of the tumor suppressor gene p21WAF1/CIP1,
as observed in the peptide-treated SMMC-7721 human hepatoma cell and BGC-823 human
gastric adenocarcinoma cell cultures [144,145].

The induction of syndecan-1 expression is another anticancer mechanism adopted by
PR-39, as evident in hepatocellular carcinoma cell lines treated by this ACP [146]. PR-39
enters eukaryotic cells through a receptor-mediated process without permeabilizing the
plasma membrane [46]. Within the cytosolic compartment, the NH2-terminal Arg residues
in PR-39 form complexes with multiple SH3-containing cytoplasmic proteins, including the
signaling adaptor protein p130Cas and the p85α regulatory subunit of phosphatidylinositol
3-kinase [46,147,148]

3.2. Non-Membrane Interactions

Apart from membrane interactions, some ACPs can act through angiogenesis in-
hibition, tumor apoptosis induction, essential cell protein targeting or immune cell re-
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cruitment [149]. The peptides P9, P12 and SP5031 were shown to cause angiogenesis
inhibition due to interference with growth factor receptors [150–152]. ACPs, such as bovine
lactoferricin, can penetrate into the intracellular compartment to reach the mitochondria,
resulting in programmed cell death [86,90,153,154]. Some ACPs interfere with functional
proteins to inhibit tumor genesis and progression, such as human LL-37, which inhibits
proteasomes in gastric cancer cells [155,156]. Other ACPs, such as LTX-315 and LTX-401,
can trigger immunogenic events against tumor cells [157,158]. LTX-315, for example, causes
immunogenic cell death through the infiltration of T-lymphocytes and myeloid cells, which
results in triggering a local inflammatory response. This can also release the inflammatory
cytokine HMGB1 and ATP through transient focal necrosis, in addition to activating the
apoptotic lysosome caspase-3 [36,159,160]. LTX-401, on the other hand, causes oncolytic
necrosis that can promote the combined therapeutic effect of immunotherapies [158].

4. Effects of Hypoxia, pH and Enzyme Activation on ACPs

Hypoxia is a characteristic feature of the cancer tissue microenvironment. Fusing the
trans activator of transcription with the hypoxia-inducible factor, HIF-1α protein, results
in a species that is stable in a hypoxic environment but is degradable in healthy cell
microenvironments; thus, selective penetration of cancer cell membranes is obtained [161].

Since cancer cells require high-energy uptake, they trigger a shift from oxidative to
glycolytic metabolism. This is typically due to the upregulation of HIF-related genes, even
when the physiological oxygen level is available, in a phenomenon known as the Warburg
effect. This, in turn, results in increased cell accumulation of lactate acid [162–164]. Hypoxia
also triggers increased activities of carbonic anhydrases, Na+/H+ exchangers, bicarbonate
transporters and of indoleamine 2,3 dioxygenase, in addition to the accumulation of lactate
acid all of these factors contribute to lowering the pH and are ultimately responsible
for the acidic microenvironment that is always observed for cancer cells [165–168]. By
taking advantage of this acidic microenvironment, pH low insertion peptides (pHLIPs)
can be coupled to cell-penetrating peptides (CPPs) or to nano-carriers, where their acidic
amino acid residues allow for their permeabilization of cancer cell membranes and their
subsequent internalization [169,170]. The pH low insertion peptides are short unstructured
peptides exhibiting weak interactions with cell membranes at neutral pH [171] but revert
to helical conformation when the transmembrane domain becomes protonated at pH < 6.5,
allowing the COOH-terminus to be inserted through the cell membrane [172].

Cancer cell membranes are externally coated with specific enzymes, not expressed on
membranes of normal cells. These enzymes, such as metalloproteases, degrade protein
structures in the extracellular matrix and therefore play a crucial role in tumor invasion and
eventual metastasis. CPPs have their positively charged domain shielded with a negatively
charged peptide domain through a peptide linker that can be cleaved by metalloproteases
causing the activation of the CPP in the tumor microenvironment [173]. These cancer cell
surface membrane receptors are therefore utilized for selective targeting by peptides or
small ligands attached to CPPs such as brain and glioma targeting homing peptides and
mitochondrial SS-peptides [174–181].

5. ACPs as Diagnostic Tools
5.1. Imaging Biosensors Employing ACPs

Radiolabeled antibodies have been recently widely applied with good outcomes.
However, their high molecular weights which make them liable to sequestration by the
reticuloendothelial and liver Kupffer cells, in addition to the long half-life of the isotopes
employed, leading to their long elimination times from the body were shown to be dis-
advantages [182]. Radiolabeling of low molecular weight peptides that are typically less
than 50 amino acid residues provides a better alternative as imaging tracers [183,184].
These peptides offer several advantages including their rapid uptake by the target tissues,
good sensitivity in deep tissues, low bone marrow uptake, rapid plasma renal clearance
and relatively low pharmacological dose to be administered, which make them suitable
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for imaging procedures. Analogs of regulatory peptides have also been applied for this
purpose [185,186].

Examples of radiolabeled peptides and peptide analogs include somatostatin, a cyclic
hormone expressed in the central and peripheral nervous systems, and cholecystokinin,
a hormone present in the gastrointestinal tract and nervous system which is similar to
gastrin both structurally and functionally. Further examples include the gastrin-releasing
peptide and bombesin, which bind G-coupled receptors on prostate, breast, pancreatic
and small-cell lung carcinoma cancer cells; agonistic peptide-receptor coupling binds to G-
coupled proteins, internalizing the peptide-receptor complex, while antagonistic coupling
acts externally on the cell membrane [187,188]; the secretin-like neuropeptides vasoactive
intestinal peptide and pituitary adenylate cyclase-activating peptide; the glucagon-like
peptide 1; and neurotensin [189].

Dipeptide nanoparticles have also been used as imaging and sensing probes. They are
characterized by biocompatibility, visible fluorescence and photostability [190]. Fluorescent
quantum dots and nanoclusters, such as gold nanoclusters, can also be conjugated with
such peptide nano-assemblies for cancer imaging [191,192].

The linkage of dyes to the NH2-termini of pHLIPs allows for the labeling of tumor
cells [193]. Changing one or two amino acid residues in the transmembrane domain of
pHLIPs to alter their pH50, the pH at which 50% of the pHLIPs are inserted in the cancer
cells, has been reported [194]. However, pHLIPs generally show relatively low tumor
specificity and accumulate in the kidneys in pathologic and inflammation cases [195].

5.2. Non-Imaging Biosensing Techniques Employing ACPs

ACPs that are used in non-imaging biosensing techniques are typically short synthetic
peptide ligands that are used for the detection of specific cancer markers [196]. In ELISA, an
enzyme-linked conjugate and substrate are used to identify and quantify a specific target
molecule in biological fluids through an antigen-antibody reaction with rapid low limit
colorimetric detection with high specificity [197].

Synthetic peptides can also be used as probes in microarrays, where they are ad-
sorbed on the surface of nitrocellulose-coated glass slides and are exposed to the specimen.
A number of different unique peptide disease-specific biomarkers can be used in real
time, randomly immobilized, to ensure equal accessibility to all antibodies on the peptide
microarray during epitope mapping [198].

Binding of different peptides to biologically sensitive fluorophores creates various
probes or molecular sensors [199]. In addition, peptides coupled to nanomaterials, such as
Ag nanoparticles [200] and Au@Pt nanorods [201] have shown higher sensitivity, selectivity,
stability as well as faster signal response [202–205]. This is of special significance since most
diagnostic techniques target tumors but cannot efficiently detect circulating tumor cells
due to their low concentration levels, heterogeneity in the blood sample, and non-specific
binding of other normal cells, such as leukocytes [206].

6. Synthesis and Modification of ACPs

Solid phase peptide synthesis (SPPS) is the preferred synthesis method for small
peptides containing less than 50 amino acid residues [207]. This can be achieved by means
of fully automated peptide synthesizers employing non-proteinogenic amino acids with the
possibility of applying post-transational modifications during the process. In this technique,
the α-amino group and side chain are bound to temporary and semi-permanent protecting
groups, respectively, while a polymer resin is coupled to the COOH-terminal residue from
which the synthesis cycle is initiated proceeding towards the NH2–terminus, following
the removal of the α-amino protecting group. The resin, typically stationed to the right for
correct interpretation of sequence and stereochemistry, swells in the applied organic solvent
to expand alongside the area of peptide growth, finally cleaving off the final product by
means of a bifunctional linker that provides either a peptide acid or a peptide amide that is
then isolated and characterized.
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From a green chemistry perspective, SPPS has several disadvantages, including high
solvent consumption and the use of hazardous chemicals [208]. On the other hand, SPPS
meets many green criteria, such as a one-pot reaction, no mechanical losses, a simple work-
up process, automatization and miniaturization, high yield and purity, and the potential
for simultaneous synthesis of different peptides at the same conditions. Typically, two
approaches can be applied in SPPS; these are the tert-butyloxycarbonyl (Boc)/benzyl and
9-fluorenylmethyloxycarbonyl (Fmoc)/tBu approaches. In the first of these strategies, the
α-amino group is protected by the Boc group, which is later removed by trifluoroacetic acid
in dichloromethane, while the side chain functional groups are protected by benzyl-base
groups, which are later removed by hydrogen fluoride [209,210]. The second approach has
the α-amino group being protected by the base labile Fmoc group, which is later removed
typically by 20% piperidine in dimethylformamide, while the side chain functional groups
are protected by the acid-labile tert -butyl or trityl-based groups, which are later removed
by trifluoroacetic acid [211].

Liquid phase peptide synthesis, on the other hand, involves the synthesis of peptides
in solution employing tags with different properties than the reagents and products to
allow for its facile elimination. Several tag molecules have been used, such as polydisperse
polyethylene glycol (PEG), monodisperse PEG, perfluoroalkyl substances, ionic liquids,
polycarbons, hydrophobic polymers and phosphorus-containing tags [212].

Reconstructing the main chains of ACPs, or modifying their side chains, have been
common approaches to enhancing their therapeutic effects [213]. The main chain trans-
formation of ACPs through the replacement of the amino acids changes the activity and
selectivity of the peptides by altering their net charges, hydrophilicities and conforma-
tions [214,215]. Changes involving non-natural amino acids allow for the synthesis of ACPs
with a variety of physiochemical properties [216], including higher conformational flexibili-
ties [217], higher metabolic stabilities [218] and more favored membrane interactions than
ACPs with all-natural amino acids [219].

Incorporating cholesterol into the side chains of ACPs, on the other hand, facilitates
their penetration into cancer cells by driving peptides self-assembly [220]. PEG coupling
to side chain groups of ACPs increases their diameters, changing their physicochemical
properties, extending their half-lives, improving their selectivity and reducing their toxicity
towards normal cells [221,222]. Threonine, serine and tyrosine side chains, for example,
can undergo phosphorylation [223,224], a post-synthesis modification, causing toxicity
reduction towards normal cells [213]. Glycosidic bonds via glycosyltransferases may
link sugars to specific amino acids on ACPs [225]; this sometimes results in the loss of
their activity or function [226]. ACPs palmitoylation occurs through their reaction via a
reversible thioester linkage with palmitate, a 16-carbon saturated fatty acid [227]. This
reaction may improve either the ACPs selectivity or cytotoxicity to normal cells, but not
both simultaneously [228].

7. Computational Approaches in ACPs Synthesis

Traditionally, ACPs have been lab identified and synthesized through various ex-
perimental techniques; this process is cost, time and manpower intensive [20]. Recently,
however, computationally supported studies to determine the potential interactions of
identified ACPs with different proteins helped advance their development [229]. These
techniques offer relatively accurate tools for predicting potential ACPs activities before
starting in vitro evaluations, saving time, minimizing cost and maximizing output [20]. In
the last decade, artificial intelligence (AI) has been used to develop efficient computational
methods that can predict peptide sequences with high anti-cancer activities making the
ACPs synthesis process faster and more targeted. Most of the AI-developed methods rely
on using amino acid sequences of peptides [230–232]. Three AI approaches are currently
being used in developing ACP predictors, traditional machine learning (ML), deep learning
(DL)—which is a subset of ML—and hybrid methods using a combination of both, as
shown in Figure 2 [230–234].
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7.1. Traditional Machine Learning

In supervised machine learning, a labeled dataset of inputs and outputs is used to train
the algorithm. This algorithm looks for a general formula that transforms the input into
output. Patterns in data can be found using supervised machine learning algorithms for
both continuous data and outputs with a categorical classification which is the regression.
Unsupervised machine learning algorithms, on the other hand, use unlabeled data to find
structure in the incoming data; this can be used to simplify or organize data [235]. AI
computational methods of predicting ACPs rely on the use of a dataset consisting of the
amino acid sequences of experimentally proven ACPs and non-ACPs. An initial step in
the development of a statistical predictor is the selection or building of a valid benchmark
dataset. A common dataset is utilized to examine the significance of the differences
between the datasets, which would have two predefined classifications: anticancer and non-
anticancer classes. These datasets are the base for training the machine learning algorithm
and are a benchmark for testing various developed models [13,18,19].

In the feature extraction approach, datasets are subject to intensive data analysis that
extracts different features linking them to the ACPs and non-ACPs datasets. The properties
predicted by this approach include amino acid composition (AAC), dipeptide composition
(DPC), atomic composition (AC), physicochemical properties (PCP), amino acid indices
(AAINDEX and BLOSUM62) and amino acid Z-scales (which are five properties of amino
acids as follows: Z1: lipophilicity, Z2: steric bulk and polarizability, Z3: polarity and charge,
Z4 and Z5: electronegativity, heat of formation, electrophilicity and hardness) [13,236–243].

Some of the widely used ML algorithm classifiers are support vector machines (SVM),
k-nearest neighbor (KNN), random forest (RF), ensemble classifiers with a clustering and
dynamic selection (LibD3C), light gradient boosting machine (LightGBM), generalized
neural network (GNN) and probabilistic neural network (PNN) [244–247]. The most
widely used classifier, SVM, is a group of supervised learning techniques for classifying
data, conducting regression analysis and identifying outliers. Because they select the
decision boundary that optimizes the distance from the nearest data points of all the classes,
SVM varies from other classification techniques. The maximum margin hyperplane is the
name of the decision boundary produced by SVM [244]. In the RF algorithm, instead of
relying on one decision tree, the random forest takes the prediction from each tree and
bases its prediction of the final output on the majority votes of predictions [248].

Classification is followed by a validation step to identify the accuracy, sensitivity, speci-
ficity and correlation coefficient of every studied case with a final suggested most accurate
prediction model. Different cross-validation tests, including jackknife, k-independent and
folding-based tests, have been employed in machine learning and pattern recognition to
gauge the effectiveness of various predictors. Due to its exceptional outcomes, Jackknife
stands out among all of these tests as being very effective and dependable, as presented in
Figure 3 [249–251].
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The SVM ML model was recently used with a balanced training dataset of 225 ACPs
and 225 non-ACPs and applied on AAC and DPC as well as on a binary profile (BP) related
order of amino acids features to develop AntiCP, an ML ACP model [242]. The second
generation of this model, AntiCP 2.0, received a bigger training-balanced dataset of 861
ACPs and 861 non-ACPs and achieved accuracies of up to 88.8% [233]. A predictor model
named MLACP [13] was developed using a Tyagi-B dataset as the training dataset and a
screened HC dataset of Hajisharifi, Chen and LEE as the benchmarking dataset [243]. The
RF and SMV ML classifiers with a 10-fold cross-validation method were recently employed,
where the RF ML model showed an accuracy of 94.6% (0.885 Matthew’s correlation coef-
ficient (MCC)) and 82.7% (0.674 MCC) on the HC and LEE dataset, respectively. In 2022,
MLACP 2.0 was enhanced with large training and independent datasets, seven different
ML classifiers on 17 different encoded features, with a final predictor model having nine
features [252]. However, MLCP 2.0 has shown accuracy and MCC on an independent
dataset of 76.5% and 0.513 respectively. The mACPpred machine learning model was
proposed to predict ACPs with a balanced dataset of a total of 532 samples [253]. In
this model, seven different encoding features are used to represent a peptide sequence
and work with an SVM model to predict ACPs. The features extracted are AAC, DPC,
composition–transition–distribution (CTD), quasi-sequence-order (QSO), amino acid index
(AAIF), BP NC5 and conjoint triad (CTF). The best-developed predictor gave an accuracy
of 91.7% and an MCC of 0.836. A highly advanced ML technique named DRACP, which
reached an accuracy rate of 96%, is one in which the sequence and chemical properties
of the amino acids were used to extract the feature of ACPs [254]. In this technique, the
average 20 amino acid composition for a sequence was taken as a first feature. Then, based
on the distribution of hydrophobic and hydrophilic residues, amino acids were divided into
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six groups according to their chemical properties, thus giving the second feature. These two
features of ACPs were subsequently encoded using deep belief networks, and to identify
the real ACPs, random relevance vector machines were employed. The effectiveness of
this technique, which was shown to be reliable, was investigated on two different datasets.
Many other ML predictor models were reported employing different datasets, features and
ML methods, as summarized in Table 2. Some additionally developed ML models are the
ACHP and the low-dimensional feature models [255,256].

Table 2. Some of the reported traditional ML predictor models showing their types of benchmark
and independent datasets, features extracted, classifiers used, accuracy and MCC.

Benchmark Dataset Independent Dataset Features Classifier Accuracy
(%) MCC Reference

ACPP SA_TRAIN
Balanced randomly
generated peptides

SA_IND

Protein-relatedness measures,
including compositional, centroidal

and distributional measures of
amino acid residues

SVM 96 0.92 [257]

iACP Hajisharifi et al. [243] Balanced 300
peptides One gap DPC SVM 92.67 0.85 [258]

iACP-
GAEnsC

Hajisharifi et al. [243] NA

Pseudo g-Gap DPC
Ensemble method
(SVM/RF/PNN/

KNN/GRNN)
96.45 0.91 [259]

Amphiphilic pseudo amino
acid composition

Reduce amino acid
alphabet composition

ACPred Hajisharifi et al. [243] Balanced 205
peptides

AAC

SVM/RF 95.61 0.91 [260]
DPC
PCP

Pseudo AAC
Amphiphilic pseudo AAC

ACPred-FL balanced dataset
ACP500

balanced dataset
ACP164

Composition–Transition–
Distribution

SVM 91.4 0.835 [261]

AAC
G-gap DPC

Adaptive skip DPC
BP Features

Overlapping Property Features
Twenty-One-Bit Features

Target ACP Hajisharifi et al. [243] Balanced 205
peptides

Composite protein sequence
representation

SVM/KNN/RF 98.78 0.97 [262]Split AAC
Pseudo position-specific scoring

matrix

7.2. Deep Learning (DL)

Several computational techniques have been proposed for the identification of ACPs,
and an increasing number of machine learning algorithms, as previously discussed, are be-
ing used to build ACP predictors. Even though some of these methods have demonstrated
comparatively good accuracy and robustness, selecting the proper features to capture the
ACP sequences remains difficult for standard machine learning methods. DL algorithms
are utilized to further increase the prediction accuracy and robustness to overcome this
restriction. In DL, unlike traditional ML, the feature identification is carried out by means of
AI rather than the researcher after a data embedding process in which the peptide sequence
data are expressed as a matrix [19,233,234]. This is followed by the feature extraction step
using DL algorithms such as convolutional neural network (CNN), long short-term memory
(LSTM), attention model, recurrent neural network (RNN) and CNN-RNN [263,264]. CNN
is a neural network architecture for DL that directly derives its learning from data, while
RNN is a sequence model that performs input and output processing in units of sequence.
Following DL feature extraction, classification is then carried out using the sigmoid dense
activation function as shown in Figure 4 [234].
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A long short-term neural network model (LSTM), that integrates binary profile in-
formation and a k-mer sparse matrix of the reduced amino-acid alphabet to successfully
identify novel anticancer peptides was recently presented [234]. For the ACP-DL predictor,
RNN was used to explicitly predict whether or not an input string of amino acids consti-
tutes an ACP after each amino acid in each sequence is transformed into feature vectors
before being fed into the LSTM. ACP-DL relies on a trained dataset ACP740 of 376 ACPs
and 364 non-ACPs and an independent dataset ACP240 of 129 ACPs and 111 non-ACPs. A
PTPD computational model utilizing a combination of Word2vec and CNN was shown
to predict therapeutic peptides very effectively and is a notable recent advance [265]. In
addition to extracting and combining various aspects, such as sequence, physicochemi-
cal and evolutionary-based features, in an interactive way for ACP identification, a new
multi-headed deep convolutional neural network called ACP-MHCNN was introduced in
2020 [266]. In another approach, the DeepACP model, the predictors are built using three
deep learning architectures; a CNN, a CNN-RNN and an RNN containing bidirectional
long short-term memory cells (biLSTMs) [263]. The benchmark datasets of 250 ACPs and
250 non-ACPs tested against experimental findings demonstrate that the RNN architecture
offers the best overall prediction performance. DeepACP results showed that biLSTMs in
the RNN outperform other topologies. In order to choose the best architecture, a variety
of alternate designs were created by changing the proportion of RNN cells, convolution
kernels and network layers in CNNs. Benchmark and independent datasets used were sim-
ilar to that of ACPred-FL. DeepACP performance was evaluated against some previously
reported models on an independent dataset of 82 ACPs and 82 non-ACPs, as reported by
Yu et al. [263].

The ACP-red LAF model developed in 2021 is a unique peptide representation-
learning model based on learnable and adaptive embedding [264]. It uses a multi-sense
and multi-scaled embedding technique that is an entirely end-to-end framework that does
not require feature engineering and can automatically learn and extract sequential context
features of ACPs. A multi-head attention method is applied in particular to help the model
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comprehend the discriminative features and enhance the feature representation capability
in order to capture global information in ACP sequences. Compared to ML, ACP-red FL, a
bigger and more refined balanced benchmark and independent datasets are used in DL
ACP-red LAF. Upon testing ACP-red LAF on a balanced ACP-mixed-80 dataset, an accu-
racy of 81.15% and MCC of 0.633 was obtained compared to 74.32% and 0.519 as obtained
for accuracy and MCC, respectively, by the AntiCP-DPC model. Several additional DL
models are reported such as CL-ACP and more recently ACPNet [267,268].

7.3. Hybrid Approach and New Methods

Combining DL with traditional ML is performed through hybrid learning. A demon-
stration of data splitting of a total of 1722 samples balanced dataset, embedding and
feature extraction were successfully handled by a DL hybrid learning process [19], whereas
classification is handled by the traditional ML approach and testing performed on a 970
ACPs and 970 non-ACPs dataset showing an accuracy of 93.5%. On the other hand, the
traditional ML approach performs data splitting and feature extraction with prediction
performance improvement by means of data augmentation in ACP-DA [269]; while the
multilayer perceptron (MLP) DL method performs classification. A newly introduced
computational model for graph learning called ACP-GCN uses graph convolution net-
works to automatically and precisely predict ACPs [270]. In this approach, each peptide
sample is represented as a graph, and for the first time, ACPs prediction is treated as a
graph classification task. The unique model xDeep-AcPEP developed in 2021 aimed to
predict the biological activity of ACPs against six tumor cells, including breast, colon,
cervix, lung, skin and prostate, using a deep learning technique based on CNN [271]. This
study demonstrated that learning models employing multi-tasking outperform traditional
single-tasking models in terms of predictor performance. The uniqueness of this study
comes from the fact that most of the prediction models of ACPs were made to sort peptides
based on their amino acid sequences. On the other hand, the prediction was seen in this
study as a multiclass classification problem that divides peptides into active, moderately
active and inactive categories.

8. Future Prospects

Cancer treatment involves several modalities, such as surgery, chemotherapy, im-
munotherapy and radiotherapy. Despite such varied treatment options, cancer remains
a leading cause of death globally. This highlights some inadequacies of such treatment
options, which are accentuated when considering that surgery is not effective unless at
an early stage and carries the risk of triggering metastasis, while chemotherapeutics gen-
erally lack specificity and may trigger cancer resistance. ACPs have shown promising
performance both as diagnostic and therapeutic tools in terms of efficiency and specificity.
ACPs, having originated from AMPs, carved out a distinct therapeutic role by extending
our abilities in molecular targeting. The high cost of large-scale production of ACPs, their
susceptibility to proteolytic cleavage and concerns about the usage of particular ACPs with
sequences similar to those of human and natural AMPs due to the potential compromising
of the human immune system and the possible subsequent threat to public health, are all
significant drawbacks to ACPs large scale adoption. However, since ACPs are typically
not targeted to specific extracellular or intracellular receptors, their use many inhibit many
resistance mechanisms. This combined with their demonstrated cytotoxic efficacies against
a variety of cancer types and will ensure their continued presence and development in
the therapeutic anti-cancer arsenal. The success of ACPs depends on their sequences,
secondary structures, net charges, amphipathicities, oligomerization abilities and high
serum stabilities. Despite the absence of clear standards for ACPs design, an improved
understanding of structures-activities relationships enhanced by innovative molecular
representations and advanced computational approaches may provide valuable tools for
advancing ACPs to theranostic success.
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