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Abstract: Color in food has multiple effects on consumers, since this parameter is related to the quality
of a product, its freshness, and even its nutrient content. Each food has a characteristic color; however,
this can be affected by the technological treatments that are applied during its manufacturing process,
as well as its storage. Therefore, the development of new food products should take into account
consumer preferences, the physical properties of a product, food safety standards, the economy, and
applications of technology. With all of this, the use of food additives, such as dyes, is increasingly
important due to the interest in the natural coloring of foods, strict regulatory pressure, problems
with the toxicity of synthetic food colors, and the need for globally approved colors, in addition to
current food market trends that focus on the consumption of healthy, organic, and natural products.
It is for this reason that there is a growing demand for natural pigments that drives the food industry
to seek or improve extraction techniques, as well as to study different stability processes, considering
their interactions with the food matrix, in order to meet the needs and expectations of consumers.

Keywords: anthocyanins; carotenoids; chlorophyl; colorants; extraction; stability

1. Importance of Natural Colorant Application in the Food Industry

Color is an influential and crucial sensory parameter when accepting or rejecting a
food product, as it creates an idea of the state and composition of foodstuff [1,2]. It is even
the case that color can reduce the desire to eat or drink a certain food, as this attribute relates
to other sensorial perceptions such as taste, smell, texture, or quality index. Thereupon,
the food industry seeks technologies that guarantee a stable color during production,
distribution, and storage processes, such that food products have the quality expected
by consumers [2,3]. The European Food Safety Authority (EFSA—www.efsa.europa.eu,
accessed on 25 November 2022) defines “food colors” as “food additives which are added
to food aiming to make up for color losses following exposure to light, air, moisture and
variation in temperature, to enhance naturally occurring colors and to add color to foods
that would otherwise be colorless or colored differently” [4].

Food colorants have been employed since ancient times; the Romans and Egyptians
used colorants to improve the appearance of food. In the Middle Ages, extracts of carrot,
chard, or herbs were added to preparations to avoid food monotony [5]. At the beginning of
the fourteenth century, with advancements in chemistry, foods were colored with different
mineral salts, such as lead chromate, mercury sulfite, copper arsenate, or coal tar. The
chemist William Perkin (1838–1907) developed the first synthetic organic colorant “aniline
purple”, or “mauve”, from coal tar, which triggered the development of a wide variety
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of organic colorants, replacing mineral salts [6]. At the end of the century, some evidence
of toxicity created demand for determining the safety of food additives. In 1883, Harvey
W. Wiley presented the first law on colorants, and between 1916 and 1929 the use of
10 synthetic colorants (Red 2, Red 3, Red 4, Blue 1, Blue 2, Green 3, Yellow 5, and Yellow
6) by the food industry was regulated; however, in 1969 Soviet science concluded that the
long-term ingestion of Red 2 had caused cancer in laboratory animals. This being the case,
1976 the FDA replaced Red 2 and Red 4 with the Red 40 colorant (Alluna Red AC), which
was safer for use in food and other industries [6,7].

In the past decade, the European Food Safety Authority (EFSA) has been evaluating
a large quantity of research associating the use of certain synthetic food colorants with
increased hyperactivity in children [8], allergies, toxicity, attention deficit hyperactivity
disorder (ADHD) in children [9], and carcinogenicity [10], among other health issues [11].
Therefore, in recent years there has been a growing interest in natural food dyes that
not only hold the ability to pigment, but that also provide therapeutic outcomes to the
consumers [12].

Currently, there are studies analyzing the different advantages and disadvantages of
using natural and synthetic colorants. Synthetic pigments are more stable and less expensive;
however, they can cause potential health problems, with allergic reactions, attention deficit
in children, and cancer pointed out as the most common consequences [9,10]. Therefore,
the study and development of natural colorants are stronger due to the benefits that they
can provide to a consumer, since they have different compounds to which the coloration is
attributed, besides providing antioxidant and antimicrobial bioactivities, among others [13].
Nevertheless, these pigments have several stability problems: they are sensitive to various
external factors such as light, pH, and temperature, among others (Figure 1) [14]. In
addition, only a limited number of natural dyes are available for use as food additives due
to strict FDA and European Union restrictions as well as the requirement of rigorous safety
evaluations for approval, which slow down the progress in this field of research [15–17].
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Figure 1. Natural and synthetic colorants’ advantages and disadvantages.

This report brings together the most recent advances and challenges in this field,
highlighting natural pigments for their diverse properties. The molecules considered in this
report were anthocyanins, chlorophylls, and carotenoids, describing their chemical struc-
tures, the factors that affect their stability (pH, temperature, oxygen, etc.), their therapeutic
effects, such as the reduction in coronary diseases, anticancer, antitumor, anti-inflammatory,
and antidiabetic properties, the different classical as well as novel extraction methodologies,
and the most commonly used purification methods according to the characteristics of each
pigment. Additionally, a compilation was made of the formulations that are currently being
studied to obtain natural colorants that are stable during the manufacturing, production,
and storage processes of different food products. The aim is to contribute with information
that can be useful for industries, researchers, and professionals of food science as well as
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nutrition to continue with the study, development, and application of natural colorants in
the food industry.

2. Molecular Structures of Natural Origin with Colorant Properties

Natural colorants are selectively extracted from natural matrices such as plants, ani-
mals, or mineral substances. These are considered safe, so their use has fewer limitations
than that of synthetic colorants. Natural pigments can be divided into three main groups:
The first is heterocyclic compounds that contain oxygen as flavonoids (anthocyanins), these
being found exclusively in vegetables and fruits. The second group includes heterocyclic
compounds with a tetra-pyrrole structure, called chlorophylls, which are mainly present in
vegetables. The third group has an isoprene structure, which represents carotenoid com-
pounds that are mainly found in vegetables, algae, and bacteria, and that are ingested by
animals in their diets (Figure 2) [3,18]. There is another group of pigments called betalains,
which are water-soluble nitrogenous compounds derived from betalamic acid, mainly
present in beets, that are responsible for a wide range of colorations, ranging from yellow
to deep red, and are characterized by a high antioxidant capacity [19]. Curcumin is another
natural colorant from turmeric (Curcuma longa L.) that is a diarylheptanoid belonging to
the curcuminoid group. It imparts a very bright color; however, it is known for its low
light stability with high water activity. Therefore, the most popular applications tend to be
those with low water activity, such as high-boiling-point candies, jellies, and gum confec-
tionery. It has been traditionally used as an antidiabetic and has been shown to possess
anticancer and antioxidant properties [20]. On the other hand, spirulina also has the ability
to provide an intense blue tone to food, besides having potential as an anticancer, antiviral,
antioxidant, and antiallergic agent, which explains its increasing use. It is currently applied
in foods with low water activity at neutral or slightly acidic pH values (pH > 4.5), such
as candies, chewing gum, sugar decorations, sweets, dairy products, and ice cream. Its
performance is poor under conditions that lead to the denaturation of the protein pigment,
e.g., at pH values below 4.5 or at ethanol contents above 20% [21].
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There are also pigments of animal origin; for example, the colorant carmin or carmic
acid, known for its red color. It is obtained by drying and crushing female Cochineal insects
(Dactylopius coccus Costa) and has a greater stability to exposure to high temperatures, light,
and oxygen, and can be chelated with metal ions, forming carmine, compared to other
natural dyes. Another dye that can be obtained from insects is Kermes, which is obtained
from the adult female Kermes ilicis or kermococcus vermilis that lives in the young branches
of the Mediterranean kermes oak (Quercus coccifera L.). Likewise, a bright red and scarlet
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dye can be obtained from a small red arthropod with dark legs called Laccifer lacca that lives
on Zyziphus Mauritania, Schleichera oleosa, and Butea monosperma [22].

Anthocyanins: Anthocyanins enclose the most important group of water-soluble pig-
ments, and they are detectable in the human visible region [23]. Found in the form of
glycosides of anthocyanins, which consist of an aglycone (anthocyanidin) bound to some
sugar by means of a glyosidic bond (Figure 2a) [24], these molecules are responsible for the
different colors of vegetables, such as blueberries, blackberries, purple cabbage, haskap,
etc., which have shades ranging from red to blue [25,26]. Color depends on several factors,
such as chemical substituents in the general structure and the positions of these in the
flavylium group; therefore, if phenolic rings have more hydroxyl groups, the blue color
prevails, whereas the presence of methoxy groups results in a red tonality [27].

Beyond coloring properties, these molecules also present important beneficial effects in
human health, such as reducing blood pressure, oxidative stress, and lipid peroxidation, as
demonstrated in spontaneously hypertensive rats by cranberry anthocyanins [28]. Another
study conducted in 2019 highlighted the potential of elderberry anthocyanins to protect
cells from oxidative damage, measured by ROS, being in turn an alternative agent to
modulate mitochondrial dysfunctions [29]. Regarding the anti-inflammatory capacity
of anthocyanins, several studies have shown a reduction in proinflammatory bacteria
populations in the intestinal microbiota due to the anthocyanins present in strawberry,
blackberry [30], blueberry [31], and siyah goji [32]; however, these molecules present
various stability problems due to different factors:

Effect of pH: The reversible transformations caused in anthocyanins by variations
in pH make this parameter extremely important in their stability [3]. Thus, in aqueous
solutions with a pH below 2, the pigment is red and very stable, since the predominant
form is the flavylium ion; however, when the pH becomes alkaline, the flavylium ion
undergoes nucleophilic attack by water, which produces the pseudo-carbinol base at a
pH of 4.5, followed by the formation of chalcones that are colorless and very unstable. At
pH values above 8, purple quinoidal forms occur, which are rapidly degraded through
oxidation with air [33,34].

Effect of temperature: Anthocyanins lose their color when there is an increase in
temperature (>25 ◦C) because the equilibrium between the structures is endothermic,
which will cause two mechanisms to occur: hydrolysis of the glycosidic bond that leads to
the formation of an aglycone, or hydrolytic cleavage that originates a chalcone. These can
occur during the processing or storage of anthocyanins, compromising their stability [34].

Effect of light: Exposure to UV, visible light, or other sources of ionizing radiation
makes anthocyanins generally unstable, mainly those that present substituents on the
hydroxyl of carbon 5 [35].

Effect of oxygen: The presence of oxygen is a factor contributing to the degradation
of anthocyanins, even in the absence of light. This occurs due to the direct or indirect
oxidation of the medium components, with which they react. Color stability is improved
when oxygen is excluded from the system by heating, a vacuum, or nitrogen flow, and a
low pH is maintained because a high pH causes further degradation [36].

Chlorophylls: Chlorophylls are the most abundant natural pigments found in plants;
they are responsible for photosynthesis [37]. They are complex molecules belonging to the
class of porphyrins, formed by four pyrrole rings and a fifth isocyclic ring located next to
the third pyrrole ring. The rings are interconnected by methylene bridges, and the molecule
holds a magnesium atom inside. In the fourth pyrrole ring, the propionic acid present there
is esterified by a long-chain acyclic alcohol, generally a phytol, which gives chlorophyll a
hydrophobic character (Figure 2b) [38].

There are different types of chlorophyll: type a, present in most vegetables, is re-
sponsible for absorbing light during photosynthesis and nowadays is widely used as a
natural colorant in the pharmaceutical and food industries; type b, located in chloroplasts,
absorbs light of another wavelength and transfers energy for chlorophyll a; type c, which is
found in the chloroplasts of brown algae; and finally, type d, which is only found in red
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algae [12,39]. Chlorophylls a and b are related to therapeutical effects, acting as anticancer,
antibacterial, antioxidant, anti-inflammatory, and energizer agents; likewise, they improve
the oxygenation of blood and the detoxification of the body [12,40]. In 2021, the contents
of chlorophylls a and b in grapefruit leaves were studied, as was the ability of chlorophyll
extract to inhibit the growth of A375 melanoma cells [41]. A significant decrease in glucose
levels in diabetic mice was evidenced, showing the ability of Sauropus androgynus leaves to
ameliorate the oxidative stress associated with diabetes mellitus [42].

The stability of chlorophylls is low, since their structure can be modified by different
factors that consequently alter their chromatic properties. The most frequent reaction that
affects the stability of chlorophylls is the substitution of the central magnesium ion by
two hydrogens, generating a drastic change in color, since magnesium derivatives are
green, while derivatives without magnesium (mainly pheophytins and pheorphorbides)
are brown. Among the most relevant factors that alter chlorophyll color, photo-oxidation,
heating, an acid medium, and freezing during storage are the most important, especially
the latter factor, since low temperatures increase the tendency for the precipitation of food
proteins by reducing the pH, which increases the speed of acid catalytic reactions, such as
pheophytinization, thus influencing the stability of chlorophylls [43].

Carotenoids: Natural fat-soluble colorants with nutritional and antioxidant proprieties,
carotenoids are responsible for the yellow, orange, and red colors of higher plants. Espe-
cially present in leaves, flowers, and fruits, they can be synthesized by plants, algae, and
photosynthetic bacteria. Their structure belongs to the terpene family, consisting of eight
units of isoprene that originate a skeleton of 40 carbon atoms. Carotenoids are classified
in two large groups: carotenes, which are exclusively hydrocarbons, such as lycopene
and β-carotene (Figure 2c), and xanthophylls, derived from the above by incorporating
oxygenated functions as hydroxyl, methoxy, carboxyl, keto, or epoxy groups, such as lutein,
β-cryptoxanthin, zeaxanthin, and fucoxanthin. Additionally, carotenoids may have an
acyclic structure, such as lycopene, or possess different cyclic structure at one or both ends,
such as β-carotene. Due to the large number of double bonds in the chain, carotenoids can
exist in different cis/trans conformations, although the most stable and therefore present in
nature is the all-trans [44,45].

The nutritional importance of carotenoids is mainly due to the fact that some have
provitamin A activity [46,47]; however, various authors have reported these molecules as
being antioxidant compounds [48,49] and beneficial for the prevention of various diseases,
such as certain types of cancer [50,51], eye [52,53] and vascular disorders [54,55], and
others. They have been found in tomatoes (Solanum lycopersicum), and an association
between the antioxidant activity of lycopene and protection against the appearance as
well as development of malignant or cancerous cells in the prostate was suggested [56].
Astaxanthin, the pigment with the highest antioxidant propensity, is not only found in
vegetables and some species of freshwater microalgae (Haematococcus pluvialis); it is also
found in some animal species, such as trout, salmonids, shrimp, and some species of
mussels. Carotenoids, in particular astaxanthin, improve the response of the immune
system and are also powerful anti-inflammatories; therefore, in addition to preventing
aging, they are very beneficial in most pathologies with chronic levels of inflammation,
such as arthritis, muscle pain, cardiovascular disease, and Alzheimer’s disease, also being
known to regulate cholesterol levels and contribute to good blood circulation [57].

The stability of carotenoids is mainly related to the large number of double bonds
of their molecules, which makes them vulnerable to oxidative processes, especially in
photo-oxidation reactions with singlet oxygen. Carotenoids also oxidize in the presence of
lipoxygenases, but not directly, still via reacting with hydroperoxides. Hence, exposure
to light, temperature, or pH leads to color loss and a consequent decrease in food nutri-
tional value [58]. Table 1 shows different studies of natural matrices rich in anthocyanins,
chlorophylls, and carotenoids, with their respective properties and beneficial effects on
consumer health.
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Table 1. Studies on natural matrices rich in coloring compounds (anthocyanins, chlorophylls, and
carotenoids) with their respective therapeutic potential.

Health-Promoting Effects Matrix Chemical Compound Reference

Combat hyperglycemia and
hyperuricemia

Cherries (Prunus avium L.) and purple sweet potato (Ipomoea
batatas L.) Anthocyanins

[59]

Mulberry (Morus alba L.) [60]

Star gooseberry (Sauropus androgynus L.) Chlorophylls [42]

Lettuce (Lactuca sativa) Carotenoids [61]

Anticancer

Blueberry (Vaccinium myrtillus)

Anthocyanins

[62]
Black rice (Oryza sativa L. indica) [63]
Chokeberry (Aronia meloncarpa E.), elderberry (Sambucus nigra
L.), bilberry (Vaccinium myrtillus L.), grape (Vitis Vinifera L.),
purple carrot (Daucus dacota L.), purple corn (Zea mays L.), and
red radish (Raphanus sati Vus L.)

[64]

Conyza trilova Chlorophylls [65]
Pomelo (Citrus grandis) [41]

Purple tomato (Solanum lycopersicum L. cv Micro-Tom) Carotenoids [66]

Cardiovascular disease

Elderberry (S. nigra), bilberry (V. myrtillus), and chokeberry
(A. melanocarpa) Anthocyanins

[67]

Strawberry (Fragaria × ananassa) var. Alba [68]
Roselle (Hibiscus sabdariffa L.) [69]

Paprika (Capsicum annuum) Carotenoids [70]

Visual health
Bilberry (Vaccinium myrtillus L.) Anthocyanins [71]
Seed coat of black soybean (Glycine max L.) [72]

Antimicrobial

Ribes species, several cultivars (Ben Tirran, Lūšiai, Čiornyj
negus, Corona’, Au Gs-5, and Jonkher van Tets)

Anthocyanins
[73]

Mulberry (Morus nigra L.) and non-black mulberry (Morus
mongolica and Morus alba L. ‘Zhenzhubai’) [74]

Mushrooms (Lactarius deliciosus (L.) Gray and Lactarius
piperatus (L.) Pers) Carotenoids [75]

Antioxidant properties

Haskap (Lonicera careulea L.) Anthocyanins [25]
Sweet cherry fruits (Prunus avium Linnaeus (L.)) [76]

Broad-leaf bamboo (Sasa senanensis) Chlorophylls [77]

Tomato (Solanum lycopersicum L.)
Carotenoids

[78]
Carrot (Daucus carota L.) peels [79]

3. Extraction and Purification of Plant-Based Extracts

When working with molecules from natural matrices, it is important to consider that
compounds are found in very complex mixtures in nature. This being the case, in order
to obtain a natural pigment in the purest possible way, different methods of extraction
and purification should be employed and depend on the nature and further application of
target molecules. A crucial step is determining the best extractor solution, since it must
be able to extract the metabolites of interest, be easy to remove, should not react with the
matrix, and, when making pigments for the feed area, cannot be toxic. It is also important to
consider particle size, porosity, and temperature, since many metabolites are thermolabile.
Considering the above, there is a demand for the optimization and standardization of re-
covery approaches that not only ensure recovered compounds’ functionality and maximum
recovery yields, but also meet principles of green chemistry and sustainability [80–83].

Different extraction methods are developed that not only produce high yields of
anthocyanins, chlorophylls, and/or carotenoids, but also consider the conditions that
influence the stability of such molecules, namely temperature, pH, time, extractor solvent,
and concentration, to avoid loss of functionality [82]. Likewise, the use of simple, fast,
and low-cost methods, the use of solvents of low or no toxicity, and their application in
industries are important factors when choosing an optimal extraction method [84].

On the other hand, concerning the methods of separation of compounds and their
identification, the application of an adequate and efficient purification process to the extract
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avoids extra costs to the process, in addition to minimizing the loss of solvents and reagents.
Currently, chromatography is one of the most widely used methods, being considered as
more accurate than spectrophotometry and fluorimetry [85–87].

3.1. Anthocyanins

Anthocyanins are polar molecules due to the aromatic rings with substituent groups
(hydroxyl, carboxyl, and methoxyl) as well as glucoside residues within their structure.
They are traditionally extracted from plants using methanol acidified with hydrochloric acid
or formic acid. Acidification is performed because low pH values prevent the degradation
of non-acylated anthocyanin pigments; however, the food industry has preferred other
extractor solutions due to the potential toxicity of traditional ones [88,89].

In anthocyanin extraction, the classical method is solid–liquid due to the polarity
of these molecules in solvents such as methanol/ethanol and acetone, which must be
acidified; however, new approaches based on clean technologies have been developed to
improve anthocyanins’ extraction yields, such as enzyme-assisted extraction, supercritical
fluid extraction, ultrasound-assisted extraction, and pressurized liquid extraction (also
known as solvent-accelerated extraction), alongside microwave-assisted extraction, ohmic
heating-assisted extraction (synonymous with electroconductive heating), and others [90].
In 2013, the process of extraction via the maceration of eggplant (Solanum melongera L.) pulp
and peel was optimized by using response surface methodology, considering three factors:
solvent concentration, time, and temperature. The results show that the optimum extrac-
tion conditions are 50% solvent (ethanol), 4 h and 30 ◦C, with a content of 62 mg/100 g of
anthocyanins [91]. Puertas et al. (2013) studied the anthocyanin content in beans (Phaseolus
vulgaris L.), comparing solid–liquid extraction and microwave-assisted extraction (MAE).
The authors verified that both techniques provided optimal results; however, the use of mi-
crowaves significantly reduced solvent use as well as the thermodegradation of the matrix
and analytes [92]. Another study conducted by Flores et al. in 2017, with elderberries (Sam-
bucus nigra L. subsp. Peruviana), evaluated the use of enzymes, ultrasound, microwaves,
and maceration in order to find the most efficient extraction method, where maceration pro-
duced extracts with better antioxidant characteristics, followed by microwaves, enzymes,
and ultrasound [93].

In a more recent study, Grillo et al. in 2020 studied two green extraction methodologies,
namely microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE)
for the recovery of anthocyanins from mulberry residues, using five distinct natural deep
eutectic solvents (NADES). Both technologies obtained superior performance in compar-
ison with conventional extraction. MAE and EAU yielded 25.83 and 21.18 mg/gmatrix
of total anthocyanin content, respectively, after 15 and 30 min of extraction [94]. In the
same year, a study was carried out to optimize the recovery of anthocyanins from black-
berry wine residues by employing ultrasound-assisted enzymatic extraction. The authors
reported the identification of two anthocyanins (cyanidin-3-O-glucoside and cyanidin-3-
O-ruthinoside) as the major compounds of the extracts, suggesting that this approach is
efficient, economical, and environmentally friendly for anthocyanin recovery [95].

Other extraction methodologies for phenolic and anthocyanin recovery are extraction
with supercritical fluids (SFE) and extraction with pressurized liquids (PLE), as they operate
with low temperatures and short extraction times, avoiding the degradation of thermolabile
secondary metabolites and allowing the use of non-toxic economic solvents, carbon dioxide
being one of the most used [96]. In a study conducted in 2020, two optimized PLE methods
were used for the extraction of anthocyanins and total phenolic compounds from açai
berries. The percentage of methanol in the extraction solvent proved to be the most
significant variable for anthocyanin extraction. The methods developed showed high
precision, with relative standard deviations (RSDs) lower than 5% [97].

Enzyme extraction is another relatively novel technique that is still under development.
One of the studies in which its efficacy was evidenced was conducted by Swer TL. et al.
(2018). The authors recovered anthocyanins from Prunus nepalensis L. by using cellulase
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and reported the detection of cyanidin-3-O-glucoside, petunidin-3-O-glucoside, peonidin-3-
O-glucoside, and malvidin, in addition to a higher recovery of anthocyanins in comparison
with conventional solvent extraction process [98].

On the other hand, it has been evidenced that the preparation of juices allows different
metabolites, such as anthocyanins, to be easily acquired, these being one of the most used
to obtain natural colorants. Türkyılmaz et al. (2019), for instance, obtained juices from
Guindas (Prunus cerasus L.) of the Kütahya variety with high anthocyanin concentrations
(168 mg/L of cyandin-3-O-glucosylrutinoside and 62 mg/L of cyanidin-3-O-rutinoside)
to perform a co-pigmentation analysis [99]. Likewise, Molina et al. (2019) made a juice
from haskap (Lonicera careulea L.) fruits with high anthocyanin content, obtaining solid
coloring formulations with antioxidant and antimicrobial properties for application in
food [25]. Table 2 compiles different anthocyanin extraction studies and describes, in detail,
the optimized method used in each investigation.

The different extraction methodologies may not be selective for anthocyanins; there-
fore, non-phenolic substances such as sugars, organic acids, and proteins may be present in
the extract. It is therefore important to apply an adequate and efficient purification pro-
cess, considering that 80% of process costs are associated with purification methods [100].
A great variety of techniques have been studied in order to obtain an extract free of any
undesired component, ranging from solid-phase extractions (SPEs) and liquid–liquid extrac-
tions (LLEs) to the use of chromatographic techniques such as counter current chromatog-
raphy [101,102], medium-pressure liquid chromatography (MPLC), UPLC, and HPLC.
Currently, the most widely used method for the separation of anthocyanins is HPLC with
UV–Vis or photodiode array detectors (PDA) [103,104].

Table 2. Comparison of different methods employed for anthocyanin extraction.

Plant Matrix Extraction Aaproach Solvent Extraction Conditions Anthocyanin Recovery Yield Ref.

Purple sweet
potatoes (Ipomoea
batatas L.)

Conventional solvent
extraction Ethanol 80%; HCl 0.1% (v/v) T (◦C): 60

t (min): 90
217.58 mg·(100 g)−1

Cyanidin-3-O-glucoside DW

[105]
Ultrasound-assisted
extraction

Ethanol 90% (v/v); HCl 0.1%
(v/v)

T (◦C): 50
t (min): 45
Power (W): 200

229.41 mg·(100 g)−1

Cyanidin-3-O-glucoside DW

Accelerated solvent
extraction

Ethanol 80% v/v; HCl 0.1%
(v/v)

T (◦C): 90
Static time (min): 15
Static cycle: 2

244.07 mg·(100 g)−1

Cyanidin-3-O-glucoside DW

Blackberries (Rubus
glaucus Beneth) Cold extraction Methanol; C6H8O9 1% t (h): 72 1.478 g·kg−1

Cyanidin-3-O-glucoside
[80]

Purple corncob (Zea
mays L.)

Conventional solvent
extraction Ethanol 20%, pH of 2

T (◦C): 25, 60, 75, and 90
t (min): 30, 60, 120, and 240
The best extraction
conditions (75 ◦C and
240 min)

Values between 11.567 and
37.127 mg·g−1 of purple

corncob
Total anthocyanins

[106]

Eggplant
(Solanum melongena L.)

Heat solvent
extraction

Ethanol 50% v/v;
orthophosphoric acid 1%

T (◦C): 305
t (h): 4

62 mg·(100 g)−1 in eggplant
peel

Total anthocyanins
[91]

Haskap berry
(Lonicera caerulea L.)
pulp

Conventional solvent
extraction

Methanol/water 80:20 (v:v);
formic acid, 0.02 mL

T (◦C): 35
t (min): 20 38.3% Total anthocyanins

[107]Supercritical carbon
dioxide (scCO2) Water

The highest total
anthocyanin (TA) yield
was achieved at 45 MPa,
65 ◦C, and 5.4 g water to
3.2 g berry pulp paste,
15 min static and 20 min
dynamic time

52.7% Total anthocyanins
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Table 2. Cont.

Plant Matrix Extraction Aaproach Solvent Extraction Conditions Anthocyanin Recovery Yield Ref.

Haskap berry (L.
caerulea) pulp

Juice extraction Water

Two-step press process
followed by osmotic
treatment

24.58 mg
Cyanidin-3-glucoside/g DW

[108]
One press and osmotic
treatment

32.24 mg
Cyanidin-3-glucoside/g DW

Haskap berry (L.
caerulea) pulp

Conventional solvent
extraction

Ethanol/water 80:20 (v:v);
trifluoroacetic acid 0.1%

Double extraction of
1 h each

97.9 mg·g−1 ext.
Total anthocyanins

[25]

Blueberries
(Vaccinium sp.),
O’Neal variety

Solid–liquid
extraction Ethanol; citric acid 1% T (◦C): 36

T (h): 2
879.0 mg·(100 mL)−1

Cyanidin-3-glucoside
[82]

Mulberry (Morus alba
L.) wine residues

Ultrasonic-assisted
enzymatic extraction

Water acidified to a pH of 3.5
Enzyme dosage: 0.22%

T (◦C): 52
Power (W): 315
t (min): 94

5.98 mg·g−1

Total anthocyanins
[95]

Açai (Euterpe oleracea
Mart.)

Pressurized Liquid
Extraction Methanol/water 43%

T (◦C): 81
200 atm
60 s purge
pH: 7.00
50% flushing

5.76 mg·g−1 açai
Total anthocyanins

[97]

Blueberry (Vaccinium
myrtillus L.) peels

Microwave
extractions

Natural deep eutectic solvent
(Choline chloride:lactic acid)

T (◦C): 60
T (min): 15

25.83 mg·g−1 matrix Total
anthocyanins

[94]Ultrasound-assisted
extractions

Natural deep eutectic solvent
(Choline chloride:lactic acid)

30 min of sonication
Power (W): 500

21.18 mg·g−1 matrix
Total anthocyanins

Residues of red grape
(Vitis vinifera L.) skins Ohmic heating effect Water

I. T (◦C): 40; t (min): 20
II. T (◦C): 40 a 100; t (s): 20
Electric field: 80 and
16 V/cm
Frequency (kHz): 25

1349 µg·g−1 [109]

3.2. Chlorophylls

Due to the strong absorption of chlorophylls in the electromagnetic spectrum between
the blue and red regions, these pigments hold an intense green coloration [110]. In general,
chlorophylls are unstable and sensitive to light, heating, oxygen, and chemical degradation,
so it is necessary to study, from the different matrices, specific conditions with which
to obtain chlorophyll extracts. In addition, variation sources that may interfere with
the process, such as the nature, polarity, and purity of the solvent, temperature, and
incubation time, as well as the methods used to identify and quantify chlorophylls must
be considered [111]. Therefore, some of the methods described in the literature for the
extraction as well as purification of chlorophylls from plants and green algae can be
considered complicated, wasteful, or expensive processes.

In 1985, the extraction and purification of chlorophylls from plant sources were carried
out using acetone and methanol as solvents due to the polarity and molecule–solvent
interaction. During the process, the solution formed was cooled with liquid nitrogen and
taken to reflux with filtration to perform the rupture as well as separation of the matrix
elements. According to the author, the process is expensive and inefficient, considering
the high rigor and complexity involved [112]; however, this method was complemented
by the study of Lichtenthaler (1987), in which the extracted pigments were purified in a
polyethylene chromatographic column by using the same solvent applied in extraction.
Finally, the pigment fraction was separated by using sugar chromatographic columns and
crystallized in the presence of iso-octane. The author reported that pure organic solvents
gave better results for chlorophyll recovery in the laboratory, increasing the yield of the
whole process [113]. In another study, maceration extraction was optimized with the use
of different solvents, varying the different existing conditions (volume of solvent, with
controlled temperature and humidity) for the extraction of chlorophylls a, b, and total (a + b)
from the forage ramin Tifton 85 (Cynodon spp.), confirming that the use of organic solvents
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associated with destructive extraction methods gives good results [111]. Nonetheless,
conditions such as the temperature, solvent/matrix ratio, and extraction time must be
considered in order to evaluate and determine the best model for the extraction as well as
quantification of chlorophyll from natural matrices [114–117]. According to D. Barnes et al.
(1992), the use of dimethyl sulfoxide (DMSO) as the solvent, followed by repetitive washing
with acetone, provides optimal results for chlorophyll extraction, avoiding the degradation
of this molecule into pheophytin in addition to being hydroscopic and miscible in water,
thus providing more agility in the process [118]. This information was corroborated and
complemented by Tait, M.A. and Hik, D.S., who indicated that N,N-dimethylformamide
(DMF) is effective for extractions that do not involve the destruction of the matrix and the
use of maceration [85].

Other non-conventional methods are also studied for the extraction of chlorophylls in
order to obtain better extraction results. Molina et al. (2022) extracted chlorophylls from the
aerial parts of tomato and carrot, using maceration as well as ultrasound-assisted extrac-
tions and evaluating different parameters in each of them [119]. The ultrasound technique
was more effective than maceration, where tomato aerial parts revealed a higher concentra-
tion of chlorophylls (211.6 ± 0.3 µg/g) than carrot aerial parts (110.4 ± 0.4 µg/g) did. In
another study, maceration, Soxhlet, ultrasound-assisted, and pressurized liquid extractions
were compared for the recovery of chlorophylls from the green microalgae Chlorella vul-
garis; all techniques were optimized with a central composite design. Pressurized liquid
extraction yielded the best results among the four investigated methods [120].

For the use of chromatography, attention must be paid to the selection of the stationary
phase as well as to the elution program considering the polarity range, since in chlorophylls
this is high, in addition to some of them having an acidic character. Generally, for the sepa-
ration of chlorophyll derivatives, reversed-phase columns (C18 and C30) are the preferred
stationary phase. Different mixtures of common organic solvents (methanol, acetone, and
acetonitrile) and water are used in the mobile phase. Resolution is often improved when ion
suppression or ion pairing techniques are used [121]. Table 3 describes different chlorophyll
extraction studies, detailing the method optimized in each investigation and indicating the
extraction, identification, and quantification of these compounds via different methods,
matrices, conditions, and solvents. The purpose of these studies was the quantification and
validation for the use of chlorophyll pigments as natural colorants and antioxidants in the
food industry.

Table 3. Comparison of different methods used for chlorophyll extraction.

Plant Matrix Extraction
Approach Solvent Conditions Chlorophyll Recovery Yield Reference

Sheets of Tifton 85
grass (Cynodon spp.)

Maceration

Dimethyl
sulfoxide (DMSO)

Volume: 20 mL
Eight evaluations of
12 h/12 h
T (◦C): 23–26
Humidity: 40–75%.

Chlorophyll a: 316 ± 2.93 µmol·m−2

Chlorophyll b: 66 ± 1.41 µmol·m−2

[111]

N,N Dimethylfor-
mamide

Volume: 20 mL
Eight evaluations of
12 h/12 h
T (◦C): 23–26
Humidity: 40–75%.

Chlorophyll a: 297 ± 3.58 µmol·m−2

Chlorophyll b: 85 ± 2.03 µmol·m−2

80% acetone

Volume: 20 mL
Eight evaluations of
12 h/12 h
T (◦C): 23–26
Humidity: 40–75%.

Chlorophyll a: 250 ± 2.65 µmol·m−2

Chlorophyll b: 111 ± 1.50 µmol·m−2

Absolute ethanol

Volume: 20 mL
Eight evaluations of
12 h/12 h
T (◦C): 23–26
Humidity: 40–75%.

Chlorophyll a: 259 ± 2.84 µmol·m−2

Chlorophyll b: 84 ± 2.25 µmol·m−2
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Table 3. Cont.

Plant Matrix Extraction
Approach Solvent Conditions Chlorophyll Recovery Yield Reference

Sheets of canola
(Brassica napus L.
var oleifera)

Maceration 80% acetone Conventional
extraction

Chlorophyll a: 0.87 mg·g−1

Chlorophyll b: 0.39 mg·g−1

[117]
No maceration 80% acetone t (h): 24

Cold camera, no light
Chlorophyll a: 0.98 mg·g−1

Chlorophyll b: 0.38 mg·g−1

Carrot (Daucus
carota L.) and
tomato (Solanum
lycopersicum var.
cerasiforme), aerial
parts

Maceration Ethanol/water
90/10 v/v t (min): 60 and 120

Best: ethanol, 120 min
Chlorophyll a: 2.46 ± 0.06 µg·g−1

Chlorophyll b: 28.5 ± 0.2 µg·g−1

[119]

Ultrasound-
assisted Hexane Power: 100, 200, and 400 W

T (min): 5

Best: ethanol, 400 w
Chlorophyll a: 107.7 ± 0.2 µg·g−1

Chlorophyll b: 99.6 ± 0.1 µg·g−1

Microalgae
(Chlorella vulgaris) Maceration Ethanol/water

90/10 v/v

T (◦C): 30–60;
t (h): 6–24
Solvent-to-biomass ratio:
20–90 mLsolv/gbiom

Chlorophyll total: 53.47 mg·g−1 extr [122]

Three hybrids,
crosses between
urucum (Bixa
orellana L.)

Incubation
Maceration

DMSO
80% acetone

T (◦C): 25–65
t (h): 24, 48, and 72

DMSO for chlorophylls a and
b > acetone 80% Acetone

maximum point: 65 ◦C in 48 h
[123]

Chokecherry
(Prunus virginiana)
Alpines strawberry
(Fragaria vesca)
Sunflower
(Helianthus annuus)
Two graminoids
(Andropogon
gerardii, big
bluestem;
Cymbopogon citrates,
lemongrass)

Maceration DMSO
80% acetone T (◦C): 25, 30, and 40

Chl DMSO < acetone extraction for C. citrates
Extraction efficiency was not influenced

by temperature.
The species may need to be macerated

to extraction using DMSO

[85]

R. capsulatus
CB1200 cultured in
Tween 80,
supplemented with
growth medium

Maceration
Diethyl
ether/ethanol
(1:1)

Repeatedly washed with
20% ethanol Chlorophyll a: 7 mg·L−1 [115]

Chlorella vulgaris
(KMCC C-024)

Maceration
(MAC) Ethanol 90% t (h): 6

Chlorophyll a: 4.26 ± 0.53 mg·g−1

sample
Chlorophyll b: 2.58 ± 0.09 mg·g−1

sample

[120]

Soxhlet (SOX) Ethanol 90% t (h): 2

Chlorophyll a: 3.32 ± 0.30 mg·g−1

sample
Chlorophyll b: 3.45 ± 0.28 mg·g−1

sample

Ultrasound-
assisted
extraction
(UAE)

Ethanol 90% t (h): 2

Chlorophyll a: 5.12 ± 0.29 mg·g−1

sample
Chlorophyll b: 3.71 ± 0.41 mg·g−1

sample

Pressurized
liquid extraction
(PLE)

Ethanol 90% t (min): 8, 19, and 30
T (◦C): 50, 105, and 160

Chlorophyll a: 9.63 ± 0.65 mg·g−1

sample
Chlorophyll b: 5.77 ± 0.68 mg·g−1

sample

Leaf pigments of
two grapevine
rootstock varieties
(Vitis vinifera ×
Vitis rotundifolia
and Vitis riparia)

Maceration

DMSO saturated
with calcium
carbonate

t (h): 24 and 48
Chlorophyll a: DMSO has been shown to

be as efficient as that with 80% acetone
Chlorophyll b: DMSO > acetone 80% for V.

vinifera × V. rotundifolia

[116]

Acetone 80% t (h): 24 and 48

Clitoria fairchildiana
(Fabaceae) and
Gossypium sp.
(Malvaceae)

Maceration Ethyl alcohol 95%

Room temperature for
maceration and
refrigeration for 48 h for
conventional

Clitoria fairchildiana
Maceration > conventional

Gossypium sp.
Without differentiation

[114]
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3.3. Carotenoids

Carotenoids are compounds of great interest at the industrial level, not only due to
the colors that they impart (yellow, orange, and red), but also to the therapeutic properties
that they provide to the consumer, such as reducing cancer, being a source of provitamin
A, and helping to improve the immune system thanks to their antioxidant properties in
addition to hepatoprotective and antibacterial effects [45,124].

Carotenoid extraction techniques should be selected with the aim of minimizing
compound degradation, considering that environmental factors such as heat, light, and
oxygen can affect the structure of these molecules, resulting in a low efficiency of the
extraction process. Therefore, the extraction time, extraction solution, appropriate container,
and temperature must be considered for an optimal extraction process [125].

As for the solvents, these must be organic due to the hydrophobicity that carotenoid
molecules hold. For non-polar carotenoids, the most frequently used solvents are hexane
and petroleum ether, whereas polar solvents such as acetone, ethanol, and methanol are
suitable for the recovery of polar carotenoids [17]. To prevent oxidation, especially when it
is not possible to work under an inert atmosphere or when the extraction process time is
too long, antioxidants such as pyrogallol, sodium ascorbate, BHT, or ascorbyl palmitate are
added to the extraction medium. Correspondingly, weak bases, such as calcium carbonate,
magnesium carbonate, or sodium bicarbonate (1 g/10 g of sample), can be added to the
extraction medium to neutralize the acids that are released. Another preventive measure
with which to avoid the degradation of carotenoids is to work in cold conditions, adding
dry ice or working with precooled solvents [124].

For the extraction of carotenoids, the classical extraction techniques are liquid–liquid
extraction (LLE), solid–liquid extraction (SLE), or Soxhlet extraction; however, such meth-
ods present the following disadvantages that can affect the extraction yield: they require
high amounts of organic solvents, are time-consuming, use high temperatures, and are
laborious. Therefore, new extraction processes have been developed to obtain results that
are equal or better to those of conventional techniques, yet which use less organic solvent,
are of a higher selectivity, have reduced process times and temperatures, and consume less
energy. Supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), subcritical
water extraction (SWE), microwave-assisted extraction (MAE), ultrasound-assisted extrac-
tion (UAE), and liquid-phase microextraction (LPME) are some of the advanced extraction
techniques that have been applied in carotenoid extraction (Table 4) [125–127].

Within the techniques described above, the best conditions for carotenoid extraction
have been studied. In 2019, the parameters of temperature, time, and solute–solvent ratio
were evaluated to obtain carotenoids from dried palm peach peel using ultrasound-assisted
extraction. The obtained data, analyzed with response surface methodology (RSM) and
central composite design (DCP), gave the optimal conditions for carotenoid recovery:
48 ◦C, 28 min, and a solute–solvent ratio of 0.0037 g/mL. The total carotenoid content
was 151.50 mg/100 g of sample, a result that was 33.60% higher than the one observed for
the maceration technique [126]. In the same year, Tiwari et al. compared the ultrasonic
and high-shear methods for recovering carotenoids from carrot pomace, using various
combinations of time and temperature in addition to linseed oil as the solvent. In this
study, the shear technique produced a higher content of carotenoids (94.8 ± 0.08%) for
food applications [128]. Another group that used linseed oil as a solvent for obtaining
carotenoids from carrot juice processing residues optimized microwave-assisted extraction
(microwave power, extraction time, and oil/residue ratio) and compared this technique
with conventional carotenoid extraction. The latter required 180 min to achieve a yield of
87%, while the microwave technique extracted about 78% in the first 9.39 min, revealing a
considerable energy economy through the emergent extraction approach [129].

Likewise, the extraction of passion fruit rind with ethanol was assessed by using three
techniques: immersion, thermostatic bath, and Soxhlet extraction, the latter providing the
highest extraction yield where the parameters of ethanol concentration (between 80% and
90% v/v), solvent–raw material ratio (with ratios between 40:1 and 50:1), and time (defined
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between 90 and 150 min) were analyzed. The results were evaluated using the response
surface model: the highest yield was achieved with 90% ethanol, 50 mL/g bark, and 150 min
of operation, providing an extraction yield of 2208.53 µg β-carotene/100 g sample [130]. In
2019, the parameters of supercritical CO2 extraction of carotenoids from mango peel were
optimized: the highest recovery yield of 1.9 mg of all-trans-carotene equivalent/g of dried
mango peel was registered for 26 MPa, 60 ◦C, and 15% w/w ethanol [131]. Considering all of
the above, the use of novel extraction techniques as alternatives to conventional extraction
methods offers several advantages, from extraction efficiency to being environmentally
friendly; however, it is necessary to continue studying and optimizing these techniques
since many of them have a limited field of applications, which impairs their implementation
in industrial-scale systems [83].

Table 4. Comparison of different methods studied for carotenoid recovery.

Plant Matrix Extraction Approach Solvent Conditions Carotenoid Recovery Yield Reference

Pericarp of tamarillo
(Cyphomandra betacea
Sendt var. roja)

Conventional solvent
extraction

n-Hexane/petroleum
ether 50:50%

t (h): 48
Absence of light 0.051 g CT/g pericarp [132]

Tomato
(Solanum lycopersicum
L.) byproducts

Soxhlet Ethanol t (h): 5
0.703 mg/g lycopene

0.034 mg/g β-carotene
extract

[133]

Peach palm (Bactris
gasipaes Kunth) fruit
peel

Ultrasound-assisted
extraction Soybean oil

T (◦C): 48
t (min): 28
Solid–solvent ratio
(g/mL): 0.0037

151.50 mg/100 g of dry peel
Carotenoid content [126]

Enzyme-treated carrot
(Daucus carota L.)
pomace

Ultrasonication Flaxseed oil (green
solvent)

Cycle: 45%
Probe radius:
13 mm
Power (W): 750
t (min): 12

21.67 ± 0.40 µg/g
Total carotenoid content

[128]

High-shear
dispersion

Flaxseed oil (green
solvent)

20,000 rpm
t (min): 12

82.66 ± 0.06 µg/g Total
carotenoid content

Passion fruit cortex
(Passiflora edulis f.
flavicarpa)

Immersion Ethanol 90%, acidified
with citric acid at 0.03%

T (◦C): 29
t (h): 2
500 RPM
No light

113.08 ± 8.84 µg of
β-carotene/100 g

[130]
Thermostatic bath Ethanol 90%, acidified

with citric acid at 0.03%
T (◦C): 60
t (h): 24

10.34 ± 5.18 µg of
β-carotene/100 g

Soxhlet Raw material–solvent
ratio: 1:40 t (h): 2 1037.99 ± 48.70 µg of

β-carotene/100 g

Cantaloupe melon
fruits (Cucumis melo L.)

Ultrasound-assisted
extraction Hexane/acetone 80:20 Amplitude: 100%

t (min): 10 124.61 ± 3.82 µg/g [134]

Canistel (Pouteria
campechiana Kunth)
Baehni.) fruits

Agitation Extraction

n-Hexane
Dichloromethane
n-hexane/
dichloromethane (1:1)
Ratios of solvent to
sample of 15:1

T (◦C): 40
200 rpm
t (min): 30
After
6000 rpm
t (min): 10

5.17 ± 0.08 g β-carotene
equivalent per 100 g dry weight

[135]
n-Hexane
Dichloromethane
n-hexane/
dichloromethane (1:1)
Ratios of solvent to
sample of 30:1

T (◦C): 40
200 rpm
t (min): 30
After
6000 rpm
t (min): 10

3.12 ± 0.01 g β-carotene
equivalent per 100 g dry weight

Carrots (Daucus carota
L.) peels Supercritical CO2 Ethanol 15.5% T (◦C): 59

p (bar): 349 86.1% of carotenoid recovery [136]
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Table 4. Cont.

Plant Matrix Extraction Approach Solvent Conditions Carotenoid Recovery Yield Reference

Carrot (Daucus carota L.)
juice processing waste

Microwave-assisted
extraction Oil (8.06:1 g/g) Power (W): 165

t (min): 9.39 77.48%
[129]

Conventional
extraction Oil (20:1 g/g) T (◦C): 65

t (min): 30 and 180
50% and 87%

of carotenoid recovery

Mango (Mangifera
indica L. var. Sugar)
peel

Supercritical fluid
extraction Ethanol 15% w/w 25.0 MPa

T (◦C): 60

1.9 mg all-trans-β-carotene
equivalent g−1 dried mango

peel
[131]

4. Stabilization of Natural Colorant Formulations

Natural colorants derived from anthocyanins, carotenoids, and/or chlorophylls have
low stability due to their sensitivity to factors such as light, pH, temperature, and oxygen,
among others; therefore, these pigments may degrade during the extraction and storage
processes [137]. In the food industry, there are different encapsulation processes to avoid
such degradation, through which it is necessary to coat the active substance (core) with
some coating material (encapsulant), thus obtaining various forms of capsules, such as
films, spheres, or irregular particles, as well as various types of structures (porous, com-
pact, amorphous, or crystalline). These capsules are able to release their contents under
specific conditions, which allows for the better bioavailability and stability of the bioactive
compounds. The success of each of these processes depends on the choice of encapsulating
material, which must consider the physical and chemical properties of the active ingredi-
ent, the method by which it will be encapsulated, the particle size to be obtained, and its
practical application [138,139].

The most widely used technique with which to encapsulate bioactive compounds in
the food industry is spray drying. Despite being an old technique, used since 1950, and
the different advances in other encapsulation methods, it is still one of the most economic
methodologies, with high quality, yield, size, and stability of the capsules [138]. Spray
drying allows for a wide variety of encapsulating agents, including polysaccharides, such
as starches, inulin [140], maltodextrin [25], or dextrose [141], corn syrups, gum arabic [26],
mesquite gum [142], lipids, such as stearic acid and mono- as well as diglycerides, and
proteins, such as gelatin, casein, whey, soy, and wheat [143].

Likewise, freeze-drying is a process that is widely used in the food industry due to its
simplicity, flexibility, and ease of scale-up. This process is suitable for encapsulating high-
temperature sensitive compounds such as anthocyanins, chlorophylls, and carotenoids,
and also helps to preserve most of the initial properties of the material to be encapsulated,
such as shape, dimensions, appearance, flavor, color, texture, and biological activity [144].
For example, in 2016, phenolic extracts from grape skin (Vitis labrusca var. Bordo) were
encapsulated using gum arabic and an inlet temperature of 140◦C, thus ensuring the
retention of phenols (81.4 to 95.3%), anthocyanins (80.8 to 99.6%), and antioxidant activity
(45.4 to 83.7%) [145]. In another study, the effect of different drying methods (freeze-drying,
vacuum drying, sun drying, and oven/hot air tray drying) on the antioxidant activity,
antimicrobial activity, and color of Camellia assamica leaves was investigated. The authors
reported that freeze-drying was significantly better in all of the parameters studied, with
the best yields for chlorophylls a and b as well as higher antioxidant activity values [146].

Another encapsulation method is thermal gelation, in which the filler is conditioned
within small droplets in an aqueous layer, wrapped in a gelled wall. It is a simple and
low-cost method where different encapsulation agents have been used, such as pectins in
soluble solutions at pHs between 2.8 and 3.5 [147]; calcium alginate, which has multiple
applications in the food area as a stabilizing, gelling, thickening, and microencapsulating
agent [148]; and curdlana gum, which has the ability to form two types of gels depending
on the heating, one reversible (low-set) and the other irreversible (high-set), with different
characteristics [149].
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On the other hand, there is the emulsion process, where two immiscible liquids are
mixed more or less homogeneously due to the presence of an emulsifier that serves as
a point of union between the two liquids. This technique, in addition to serving in the
manufacturing of food, has been used in recent years to produce encapsulation systems and
the controlled release of bioactive compounds to protect interactions and/or degradations,
improving their functionality and bioavailability [150]. There are different types of emulsion
(single, double, or multiple), allowing rapid or controlled release. A study conducted in
2018, for instance, created a water-in-oil-in-water double emulsion system suitable for the
co-encapsulation of phenols and anthocyanins from a blueberry pomace extract. High co-
encapsulation rates of blueberry polyphenols and anthocyanins, around 80% or more, were
achieved when the oil droplets were relatively small (mean diameter of < 400 nm), with
low dispersity (< 0.25) and a high negative surface charge (−40 mV or less) [151]. Likewise,
Petito et al. (2022) developed carotenoid-rich red bell pepper extract powder nanoparticles
produced by emulsification followed by lyophilization with four different encapsulating
agents: calcium caseinate (ECC), bovine gelatin (EBG), and whey protein isolate (EWPI)
as well as concentrate (EWPC). The nanoformulations presented spherical shapes and
a heterogeneous distribution profile, showing a carotenoid encapsulation efficiency of
54.0% (ECC), 57.6% (EWPI), 56.6% (EWPC), and 64.0% (EBG). As for the encapsulation
technique employed, it effectively increased the dispersibility of carotenoids in water,
indicating their potential to be applied as natural food pigments [152]. Another technique
that involves the emulsification of the active material and the wall material through a
die at high pressure is microencapsulation via extrusion, which consists of producing
small droplets of the encapsulating material by forcing a solution through nozzles or small
openings in droplet-generating devices. The smaller the inner diameter of the nozzle or
apertures, the smaller the capsules; an advantage of extrusion technology is that, in most
cases, a true encapsulation procedure is achieved, rather than simple immobilization [153].

Liposome encapsulation is a technique that forms vesicles by means of phospholipid
layers. The rolling of the lipid layer into a spherical shape forms a stable capsule, as there
is no interaction of lipids with water; the sphere varies in size, from a few nanometers to
microns. This technique has multiple benefits, such as greater stability and the possibility
of large-scale production using natural ingredients. Liposomes are widely used in the
food industry, both in research and industrial processes. Liposome preparation methods
include mechanical methods, such as extrusion, sonification, high-pressure homogenization,
microfluidization, and colloidal milling, as well as non-mechanical methods, such as reverse-
phase evaporation and the micellar depletion of detergent–lipid mixtures [154,155]. Table 5
presents the advantages and disadvantages of all of the stabilizing methods mentioned
above. There are also some studies that include the encapsulation of natural pigments rich
in anthocyanins, chlorophylls, and carotenoids.

Table 5. Advantages and disadvantages of some encapsulation methods and applications in different
natural matrices rich in anthocyanins, carotenoids, and chlorophylls.

Encapsulation
Method

Particle
Size
(µm)

Advantages Disadvantages Vegetable Source Reference

Spray drying 10–100

Low process cost, fast, versatile,
and the possibility of large-scale
production in a continuous mode.
High encapsulation efficiency and
relatively good storage stability.

Degradation of
temperature-sensitive
compounds, non-uniform
particulates, and
small–moderate batch yields.
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5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Haskap (Lonicera careulea L.) [25]
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good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Pumpkin (C. moschata) peels [156]
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industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Chlorella vulgaris [157]

Freeze-drying 20–5000
Possibility of encapsulating
thermosensitive substances
unstable in an aqueous solution.

Long times as well as high
cost and energy. Low stability
and sensitivity to oxidation.
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a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Jambolan (Syzygium cumini L.) [158]
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intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Carrot (Daucus carota L. cv.
Heitianwucun)

[159]

Molecules 2023, 28, x FOR PEER REVIEW 19 of 28 
 

 

Thermal gelation  - 
Uses gentle conditions, 
simple method. 

Large gel porosity, 
low encapsulation 
efficiency. 

      Blackberry 
fruits (Rubus spp.) 

[147] 

Phase separation 
(coacervation)  

10–800 

Ambient temperature, 
protection against 
oxidation and 
volatility, and the 
adapted release of 
active compounds. 

High cost, complex, 
use of toxic chemicals, 
difficult to control 
particle size, and very 
sensitive to pH as well 
as ionic strength. 

      Blue 
barberry (Berberis 
integerrima Bunge) 

[165] 

      Commercial 
palm oil 

[166] 

      Fresh 
spinach (Spinacia 
oleracea) 

[167] 

Liposome 
entrapment 

0.1–1 

Can encapsulate 
aqueous or liposoluble 
material. Increased 
adsorption and 
bioavailability. Non-
toxic and non-
immunogenic. 

Mainly used at the 
laboratory scale, 
unstable, expensive, 
and low encapsulation 
efficiency. 

      Black carrot [168] 
      Annatto 
seeds (A-750-WS) 

[169] 

      Leaves of 
Chimonanthus 
salicifolius S.Y.Hu 

[170] 

 

 Anthocyanins;  carotenoids; and  chlorophylls. 

5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Camellia sinensis var. assamica [146]
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Table 5. Cont.

Encapsulation
Method

Particle
Size
(µm)

Advantages Disadvantages Vegetable Source Reference

Fluidized bed 20–200

Low cost, specific capsule size
distribution, low product
porosity, and smooth as well as
uniform drying method.

Drying sticky material is
quite difficult. There is a
possibility of fine product
loss; chances of electrostatic
build-up may be high.
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efficiency. 

      Black carrot [168] 
      Annatto 
seeds (A-750-WS) 

[169] 

      Leaves of 
Chimonanthus 
salicifolius S.Y.Hu 

[170] 

 

 Anthocyanins;  carotenoids; and  chlorophylls. 

5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Blackberry (Rubus
fruticosus L.) residue

[160]
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 Anthocyanins;  carotenoids; and  chlorophylls. 

5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Carrot (Daucus carota L.) [161]
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 Anthocyanins;  carotenoids; and  chlorophylls. 

5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Turkey berries (Solanum
torvum Swartz)

[162]

Emulsion
polymerization

0.1–3 Micro–nanocapsules with a
narrow size distribution.

Difficult to control the capsule
formation (polymerization).
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 Anthocyanins;  carotenoids; and  chlorophylls. 

5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Blueberry (Vaccinium
augustifolium Ait.) pomace

[151]
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 Anthocyanins;  carotenoids; and  chlorophylls. 

5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Ripe red bell peppers
(Capsicum annum L.)

[152]

Ionic gelation -

Low cost and does not require
advanced equipment, high
temperatures, and organic
solvents.

Laboratory scale: capsules
have a high porosity that
favors intensive bursting.
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 Anthocyanins;  carotenoids; and  chlorophylls. 

5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Hibiscus (Hibiscus
sabdariffa L.)

[163]
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 Anthocyanins;  carotenoids; and  chlorophylls. 

5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Stinging nettle (Urtica
urens L.)

[164]

Thermal gelation - Uses gentle conditions, simple
method.

Large gel porosity,
low encapsulation efficiency.
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 Anthocyanins;  carotenoids; and  chlorophylls. 

5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Blackberry fruits (Rubus spp.) [147]

Phase separation
(coacervation)
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protection against oxidation
and volatility, and the adapted
release of active compounds.

High cost, complex, use of
toxic chemicals, difficult to
control particle size, and very
sensitive to pH as well as
ionic strength.
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 Anthocyanins;  carotenoids; and  chlorophylls. 

5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Blue barberry (Berberis
integerrima Bunge)

[165]
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5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 
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5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 
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Liposome
entrapment

0.1–1

Can encapsulate aqueous or
liposoluble material. Increased
adsorption and bioavailability.
Non-toxic and
non-immunogenic.

Mainly used at the laboratory
scale, unstable, expensive,
and low encapsulation
efficiency.
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5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 
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5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 
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5. Application of Colorant Formulations in Food 
Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 

Leaves of Chimonanthus
salicifolius S.Y.Hu

[170]
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Essential in the food industry, food colors are able to produce effects such as the 

desire for the consumption or even the rejection of a foodstuff, and are also indicators of 
good or poor food quality, significantly affecting the acceptance of consumers and playing 
a vital role in the market of a product. Whether from a synthetic or natural origin, their 
intended functional application is to improve the appearance of foods and beverages, or 
to restore the color loss caused by food processing and transformation. Used in certain 
concentrations, these additives cannot impart food flavor, and their use in the food 
industry is mainly in confectionery, bakery, beverages, dairy products, and meat 
[171,172]. 

Despite the many advantages of synthetic colors, the discovery of some side effects 
and toxicity problems, as well as the active growth of the natural, organic, and sustainable 
food markets, have led to a greater demand for natural coloring agents, with several 
already approved for use by regulatory authorities. Anthocyanins, chlorophylls, and 
carotenoids are some examples of natural colors that are currently used, identified 
according to the numbering system used by the Codex Alimentarius Commission, with 
the codes E163, E140–E141, and E160a to E161b, respectively [171]. 

As far as color formulations of anthocyanins (E163) are concerned, they have been 
used in a wide variety of products, with their main application being in soft drinks (low 
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented 
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–
175]. They are generally employed at quantum satis, except in breakfast cereals, where 
only a maximum amount of 200 mg/l or mg/kg is allowed, depending on the case [176]; 
however, restrictions on the use of anthocyanins in some food products vary between 
countries, with the US generally being the most restrictive country on the use of coloring 
additives [177]. 

Due mainly to their difficult stabilization, among the different existing chlorophylls 
only two are used in the food industry as colorants: chlorophylls a and b (E140); however, 
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct 
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll 
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is 
produced via the saponification of the natural extract, having a slightly higher stability 
than chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a 
higher stability as well as solubility than the aforementioned ones and are not considered 
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5. Application of Colorant Formulations in Food

Essential in the food industry, food colors are able to produce effects such as the desire
for the consumption or even the rejection of a foodstuff, and are also indicators of good
or poor food quality, significantly affecting the acceptance of consumers and playing a
vital role in the market of a product. Whether from a synthetic or natural origin, their
intended functional application is to improve the appearance of foods and beverages, or
to restore the color loss caused by food processing and transformation. Used in certain
concentrations, these additives cannot impart food flavor, and their use in the food industry
is mainly in confectionery, bakery, beverages, dairy products, and meat [171,172].

Despite the many advantages of synthetic colors, the discovery of some side effects
and toxicity problems, as well as the active growth of the natural, organic, and sustainable
food markets, have led to a greater demand for natural coloring agents, with several already
approved for use by regulatory authorities. Anthocyanins, chlorophylls, and carotenoids
are some examples of natural colors that are currently used, identified according to the
numbering system used by the Codex Alimentarius Commission, with the codes E163,
E140–E141, and E160a to E161b, respectively [171].

As far as color formulations of anthocyanins (E163) are concerned, they have been
used in a wide variety of products, with their main application being in soft drinks (low
pH), confectionery, fruit preparations, dairy products, such as cream cheese, fermented
milk, and milkshakes, and in solid food matrices, such as pancakes and omelettes [173–175].
They are generally employed at quantum satis, except in breakfast cereals, where only a
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maximum amount of 200 mg/L or mg/kg is allowed, depending on the case [176]; however,
restrictions on the use of anthocyanins in some food products vary between countries, with
the US generally being the most restrictive country on the use of coloring additives [177].

Due mainly to their difficult stabilization, among the different existing chlorophylls
only two are used in the food industry as colorants: chlorophylls a and b (E140); however,
more stable copper complexes are also allowed (E141) [171]. The E140 dye includes direct
derivatives of chlorophyll, E140i being the direct fat-soluble originator of chlorophyll
obtained from plant extraction, whereas E140ii (chlorophyllin) is water-soluble and is
produced via the saponification of the natural extract, having a slightly higher stability than
chlorophyll [43]. Copper chlorophyll complexes (E140), on the other hand, have a higher
stability as well as solubility than the aforementioned ones and are not considered harmful
to health, since the copper ions are not released in the digestive tract. In the food industry,
commercial formulations of colorants based on chlorophylls, chlorophyllin, and copper
complexes are used in beverages, jams and jellies, candies, chewing gums, dairy products,
confectionery, soup concentrates, spreads, and canned as well as pickled vegetables [178].
Still, the US FDA only authorizes the use of copper chlorophyllin as a natural green food
colorant, which can only be used to color dry citrus-fruit-based drink mixes [43].

Among the permitted carotenoid-based coloring agents, which produce color varia-
tions from yellow, orange to red, and violet, with more or less intense shades, there are
as follows: carotenes (E160a), especially β-carotene, and annatto (E160b), containing the
carotenoids bixin and norbixin as the main constituents; paprika extract, capsanthin, and
capsorubin (E160c); lycopene (E160d); apocarotenal (E160e); lutein (E161b); and canthaxan-
thin (E161g) [171]. Of these, only β-carotene, paprika extract, capsanthin, and capsosubin
are allowed as quantum satis. Canthaxanthin, for example, has a current acceptable daily
intake of 0.03 mg/kg body weight [179]. These carotenoids are applied in the production of
butter, margarines, oils, and fats, as well as in cheese spreads, jams, creams as well as jellies,
pastries, rice, dairy products, flour, fish, soft drinks, meat products, sauces, marinades,
seasoning mixtures, and others [17,171,180].

Currently, there is a wide variety of research where natural colorants have been
incorporated into food products. For example, Obón et al. (2009) made a powdered
colorant from Opuntia (Opuntia stricta Haw.) fruit juice, which was applied in food systems,
namely yogurt and soft drink. The food products presented a vivid red–purple hue that
was very attractive to consumers, which was maintained after a month under refrigeration
(4 ◦C) [180]. In another study, the extraction of a carotenoid-rich colorant from tomato peel
was optimized and the colorant was incorporated into a spaghetti formulation that had
the highest score in sensory evaluation compared to the control and other samples [181].
Furthermore, the use of colorants in meat products is increasing. Coloring meat with
paprika oleoresin or dried plum powder not only helps in its appearance, but also decreases
oxidation processes, extending products’ shelf lives [182]. Likewise, the addition of an oily
extract of chontaduro (Bactris gasipaes Kunth) residues is an alternative measure with which
to reduce the use of nitriles in Frankfurter sausages, providing consumers with natural and
healthy products [183].

In 2020, extracts of fig peels and blackthorn fruits were incorporated as natural purple
colorants into donuts (icing) and into a typical Brazilian cake called “beijinho”, conceiving
innovative products with natural pigments as well as antioxidant and antimicrobial prop-
erties [184]. Two studies carried out in Brazil succeeded in microencapsulating carotenoid
compounds with high stability and controlling their release under specific conditions. The
first one reported the stabilization of carotenoids from palm oil with chitosan/pectin and
chitosan/xanthan by the complex coacervation method, where chitosan/xanthan micropar-
ticles showed the best potential for practical application in the food industry, especially
in yogurt preparations. In the second study, authors microencapsulated purple Brazilian
cherry juice (Eugenia uniflora L.) with high antioxidant potential, which was incorporated
into yogurt and breads, demonstrating benefits to consumers [185,186].
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6. Conclusion and Future Perspectives

In recent years, the importance of researching and increasing the use of natural col-
orants in novel and attractive food matrices has become evident. Pigments such as an-
thocyanins, carotenoids and chlorophylls not only add attractive colors to food products,
but also provide consumers with therapeutic effects, such as antioxidant, antimicrobial,
anticancer, and anti-inflammatory activities. Nevertheless, to make natural food colorants
popular in the food industry, their high cost and low stability, as well as the strict regu-
lations, standards, and lengthy toxicological evaluations by the FDA and the European
Union, are bottlenecks that must be addressed through further investigation efforts. The
recovery of pigments from food byproducts and residues by using clean technologies
seems to be an irreversible tendency and surely the best way to make their production
sustainable, although still being full of defiant aspects. Finally, future research should aim
to broaden the information on the biochemical features of natural pigments, not only for
creating strategies to solve their cost and stability issues but also to unravel their potential
as functional food ingredients and nutraceuticals.
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