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Abstract: Phenazines are a large group of heterocyclic nitrogen-containing compounds with demon-
strated insecticidal, antimicrobial, antiparasitic, and anticancer activities. These natural compounds
are synthesized by several microorganisms originating from diverse habitats, including marine and
terrestrial sources. The most well-studied producers belong to the Pseudomonas genus, which has
been extensively investigated over the years for its ability to synthesize phenazines. This review is
focused on the research performed on pseudomonads’ phenazines in recent years. Their biosynthetic
pathways, mechanism of regulation, production processes, bioactivities, and applications are revised
in this manuscript.
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1. Introduction

Phenazines are a large group of heterocyclic, colored, and nitrogen-containing com-
pounds of biological and chemical origin with great stability in natural environments.
These natural compounds were first referred to in 1859 by Fordos [1,2], who observed
a blue–green pigment responsible for the coloration of the “blue pus” associated with
severe wounds resulting from surgical procedures. This pigment was named pyocyanin
(1, Table 1) and 65 years later it was identified as a phenazine derivative [3,4]. Since then,
over 150 natural phenazine derivatives and more than 6000 synthetic derivatives with
wide-ranging bioactivities have been reported [5,6].

The position and type of functional groups in the phenazines’ molecules dictate
their chemical, physical, and biological properties that encompass antibiotic, antifungal,
insecticidal, antitumor, antimalarial, and antiparasitic activities. This wide bioactivity
spectrum is conferred by the high redox activity of phenazine molecules and their ability to
reduce molecular oxygen to reactive oxygen species (ROS) [2,7].

Phenazine-producing bacteria are found all over nature in association with plant
and animal hosts that live in terrestrial, freshwater, and marine habitats, presenting an
important role in bacterial physiological processes, namely, in biofilm formation and in
iron reduction. These metabolites play an important role in the ecosystems in which their
producers and hosts live, such as in the survival and persistence of rhizobacteria [7,8].

The Pseudomonas genus, which is well-known for its ability to produce multiple
secondary metabolites, includes producers of almost one-third of all known phenazines.
Among them, 1-hydroxyphenazine (2, Table 1), 2-hydroxyphenazine (3, Table 1), phenazine-
1-carboxylic acid (4, Table 1), and phenazine-1-carboxamide (5, Table 1) are the most
common derivatives [9]. Phenazine-1,6-dicarboxylic acid (PDC) and PCA act as “core”
phenazines that strain-specific genes convert to a different type of phenazine. These
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phenazines can suffer other natural modifications and be converted into different deriva-
tives [7,9]. Hence, depending on the strain and the environment, PDC and PCA can be
converted into several different phenazines (Table 1).

Table 1. Different phenazine derivatives associated with their producing bacterial strain.

Compound Phenazine Derivative Bacterial Strain Reference

1 Pyocyanin (PYO) Pseudomonas aeruginosa [10]

2 1-hydroxyphenazine
(1-OH-PHZ) Pseudomonas aeruginosa [10]

3 2-hydroxyphenazine
(2-OH-PHZ) Pseudomonas chlororaphis [11]

4 phenazine-1-carboxylic acid
(PCA) Pseudomonas chlororaphis [11]

5 phenazine-1-carboxamide
(PCN)

Pseudomonas aeruginosa;
Pseudomonas chlororaphis [11,12]

Natural bacterial phenazines are highly studied because of their importance in in-
teractions with other microorganisms, and also due to their beneficial interactions with
plants and animals. Thus, besides the increase in production yields, its isolation from
cultivation broths and characterization are being studied. This aims to achieve efficient
strategies to recover the product, as well as to elucidate the structure and function to find
suitable applications. This review will bring together numerous key aspects of phenazines,
focusing on those produced by Pseudomonas spp., ranging from the biological origin of the
producing strains and the properties of these versatile secondary metabolites to their uses
as biocontrol agents in agriculture and human health.

2. Phenazine-Producing Strains

Phenazines are produced by diverse bacteria mainly from Pseudomonas spp. and
Streptomyces spp., but other bacteria have also been reported, isolated from terrestrial
and marine environments, namely, Actinomycetes spp., Vibrio spp., Burkholderia spp., and
Brevibacterium spp., among others [5,13,14].

Among all phenazine producers, Pseudomonas is the most studied genus at the metabolic
and genomic level for that secondary metabolite production, especially fluorescent Pseu-
domonas [5,11,12]. A diverse phenazine production is observed for each strain, depending
on the biosynthetic capabilities for phenazine derivatization, but those isolated from Pseu-
domonas spp. are mostly simple hydroxyl and carboxyl structures [15]. P. chlororaphis
has been reported to produce phenazine-1-carboxylic acid (PCA), 2-hydroxyphenazine-1-
carboxylic acid (2-OH-PCA) (Figure 1), 2-hydroxyphenazine (2-OH-PHZ) (Figure 2), and
phenazine-1-carboxamide (PCN) [16,17]. For instance, P. choloraphis HT66 and PCL1391
produces PCN, while P. chlororaphis GP72 produces PCA, 2-OH-PHZ like P. chlororaphis
30-84 which is also reported for 2-OH-PCA production [11,18–22]. P. aeruginosa can pro-
duce pyocyanin (PYO), PCA, PCN, 1-hydroxyphenazine (1-OH-PHZ), and Aeruginosin A
and B [5,23]. Examples of these are P. aeruginosa PA1201 and M18 which produces PCA,
like strain LV which, additionally, produces PCN, and P. aeruginosa JY21 which produces
PYO [23–28]. P. fluorescens, strains fp-5 and 2-79, produce only PCA [11,29,30].

Phenazine production by wild-type strains present low yields to be used in large-scale
applications, namely, as a biopesticide in agriculture. To improve phenazine production,
based on genetic knowledge, recombinant engineered microorganisms are being developed
and investigated as potential cell factories, as well as for growth medium optimization [31].
In fact, Peng et al. [12] achieved a PCN production above 9 g/L by engineering a P.
chlororaphis HT66 strain. Zhou et al. [31] reported a PCA production of 6.4 g/L with an
engineered Pseudomonas sp. M18 and Jin et al. (2015) have achieved 9.8 g/L of PCA with
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a P. aeruginosa PA1201 engineered strain (named PA-IV), while the production with the
wild-type bacteria was reported to be only 180 mg/L (Table 2).
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Figure 2. Phenazine production on a bioreactor cultivation of Pseudomonas chlororaphis subsp. auranti-
aca DSM 19603.

Regarding media optimization, P. chlororaphis GP72 was engineered to utilize the
glycerol pathway. The two genes, glpF and glpK, from the glycerol metabolism pathway
were overexpressed in GP72ANO separately and after were co-expressed, resulting in a
production improvement from 729.4 mg/L to 993.4 mg/L. To enhance the glycerol use, the
shunt pathway was blocked, resulting in 1493.3 mg/L PCA production [32].

Li et al. [33] tested different strategies to enhance PCN production, namely, the knock-
ing out of negative regulatory factors, the enhancement of the shikimate pathway by
gene overexpression and gene knocking, and by using fed-batch cultivation. Finally, an
engineered strain of P. chlororaphis achieved 11.45 g/L PCN.
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Table 2. Phenazine production by Pseudomonas sp., including phenazine type and the amount produced.

Strain Name Strain Characteristics Phenazine
Type

Phenazine Production
(mg/L) Reference

Pseudomonas aeruginosa JY21 Wild type PYO 311.1 [28]

Pseudomonas aeruginosa LV Wild type PCA 112.89
[27]PCN 177.31

Pseudomonas aeruginosa PA1201 Wild type PCA 180 [24]

Pseudomonas aeruginosa PA-IV

Delete phzS, phzM, phzH, pabB/C,
trpE, and pchA; overexpression
of aroG and phzC1; engineering

the promoters of PCA
biosynthetic gene clusters and

the efflux pump, etc.

PCA 9882 [24]

Pseudomonas spp. MCC 3145 Wild type PYO 313.94 [34]
Pseudomonas sp. M18 Wild type PCA 48.0 [35]

Pseudomonas sp. M18 G gacA deficient PCA 2597 [33]

Pseudomonas sp. M18 GQ gacA deficient; overexpression of
phz gene cluster PCA 6365 [33]

Pseudomonas chlororaphis HT66 Wild type PCN 424.87 [12]

Pseudomonas chlororaphis HT66 P3∆lon Point mutations in 138 genes;
deletion of lon gene PCN 9174 [12]

Pseudomonas chlororaphis GP72 Wild type PCA 22.0
[20]2-OH-PHZ 4.5

Pseudomonas chlororaphis GP72AN Inactivation of rpeA gene PCA 432/NR
[20,36]2-OH-PHZ 170/258

Pseudomonas fluorescens 2-79 Wild type PCA 1010 [37]

3. Phenazines Biosynthesis
3.1. Metabolic Pathways

Phenazine biosynthesis is derived from the shikimate pathway, which is also known
for the production of the amino acids: phenylalanine, tyrosine, and tryptophan in mi-
croorganisms [38–40]. From this pathway, the branch point for phenazine production is
chorismic acid, giving rise to the basic phenazine structure.

The shikimate pathway (Figure 3) starts with the condensation of erythrose-4-phosphate
(E4P) and phosphoenolpyruvate (PEP) to form D-arabino-heptulosonate-1-phosphate (DAHP),
catalyzed by the enzyme PhzC, phospho-2-dehydro-3-deoxyheptonate aldolase [38,40]. DAHP
is then converted into chorismate, the precursor of phenazines. The following step is the con-
version of chorismate into 2-amino-4-deoxyhorismic acid (ADIC) by PhzE (anthranilate/para-
aminobenzoate synthase). Subsequently, ADIC is hydrolyzed to pyruvate and trans-2,3-
dihydro-3-hydroxyanthranlic acid (DHHA) by PhzD, an isochorismate hydrolase. DHHA is
then converted to 6-amino-5-oxo-cyclohex-2-ene-1-carboxylic acid (AOCHC) by PhzF [40,41].
The next step is the formation of the phenazine tricycle, catalyzed by enzymes PhzB/A lead-
ing to hexahydrophenazine-1,6-dicarboxylic acid (HHPDC) [42–44]. This molecule suffers
oxidative decarboxylation, giving rise to tetrahydrophenazine-1,6-carboxylic acid (THPCA).
THPCA is transformed into 5,10-dihydrophenazine-1-carboxylix acid (DHPCA), catalyzed by
PhzG (pyridoxamine 5′-phosphate oxidase) [42–45]. DHPCA is finally converted into PCA,
by spontaneous oxidation by air. Figure 3 illustrates the biosynthetic pathway of Pseudomonas
genus phenazines.

The production of strain-specific phenazines is carried out by enzymes encoded by
genes like phzH, phzM, phzO, and phzS, which usually flank the core gene cluster [24,46].
The production of these phenazines is coupled with the biosynthesis of the core molecule
PCA. However, the modifications are thought to occur in DHPCA, instead of PCA, due
to its higher reactivity [45]. The enzyme PhzM is a phenazine-specific methyltransferase
and is reported to catalyze the formation of 5-methylphenazine-1-carboxylate (5MPCA)
that is then converted to PYO by PhzS, a flavin-containing monooxygenase [23,46]. These
two enzymes are required to obtain PYO and the genes that encode them are reported to be
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present in P. aeruginosa PAO1, for instance [23]. However, when only PhzS is present the
phenazine derivative produced is 1-OH-PHZ [23]. PhzH, an asparagine synthase, is the
enzyme involved in the conversion of DHPCA into PCN, resulting in a large accumulation
of PCN compared with the amount of PCA detected [17,23,47,48]. This enzyme is found in
P. chlororaphis PCL1391, P. chlororaphis HT66, and P. aeruginosa PAO1 [49,50]. The production
of 2-OH-PCA is mediated by PhzO, a phenazine hydroxylase and afterward, a part of
it suffers a spontaneous decarboxylation to form 2-OH-PHZ [20,46,47]. In this process,
PhzO is believed to suffer substrate inhibition leading to a low yield of 2-OH-PCA and
2-OH-PHZ [51]. Such a modification pathway is reported for P. chlororaphis 30-84 and
PCL1391 [46].
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d-arabino-heptulosonate 7-phosphate; ADIC: 2-amino-2-deoxyisochorismate; DHHA: trans 2,3-
dihydro-3-hydroxyanthranilic acid; AOCHC: 6-amino-5-oxocyclohex-2-ene-1-carboxylic acid; HH-
PDC: hexahydro-phenazine-1,6-dicarboxylate; PHZ: phenazines; PDC: phenazine-1,6-dicarboxylic
acid; PCA: 4 phenazine-1-carboxylic acid; 1-OH-PHZ: 2 1-hydroxy-phenazine; PCN: 5 phenazine-1-
carboxamide; 2-OH-PHZ: 3 2-hydroxy-phenazine; 5-MPCA: 5-methylphenazine 1-carboxylato; PYO:
1 pyocianin.
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Phenazine-producing Pseudomonas spp. are reported to produce mainly PCA and PCA
derivatives, while phenazine-1,6-dicarbooxylic acid (PDC) is typically produced by Strepto-
myces spp. [34,52]. The exception is Pseudomonas aeruginosa strain HRW.1-S3, which was reported
to produce PDC when growing in the presence of crude oil as the sole carbon source [52].

In Pseudomonas spp. the gene cluster phzABCDEFG is responsible for converting the
chorismate into PCA and it is highly conserved in all phenazine-producing pseudomon-
ads [5,34,53]. Recent studies suggest that the PCA production by Pseudomonas is related to
the presence of the phzA gene (that presents high homology with the phzB gene), whose
presence is restricted to this type of phenazine producer, and the expression level of phzG
gene [44,45]. Guo et al. [44] reported a significant PDC production by a P. chlororaphis
HT66 phzA-disrupted mutant alongside PCA production. Later, Guo et al. [45] reported a
spontaneous PDC synthesis by a P. chlororaphis GP72AN without the phzG gene.

3.2. Biological Regulation

In Pseudomonas spp., phenazine gene expression and consequent phenazine produc-
tion is under the control of a two-component system, namely, the quorum-sensing (QS)
mechanism and a small RNA (sRNAs) system [54–57].

In QS, bacteria release small molecules or peptide signals into the environment, which
can then interact with bacteria of the same strain and activate the expression of genes under
the control of this mechanism (Figure 4). Molecules with diverse structures have been
associated with this behaviour, but acyl homoserine lactones (AHLs) are the most relevant
for phenazine expression. Monitoring the number of compounds that are QS regulated, it
becomes clear that they arise when a minimum cell concentration is reached. Therefore,
those signals enable bacteria to sense their own population size and delay the expression of
some genes until a specific cell density is achieved [54,55,58].
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The most studied and best characterized QS mechanism regulates phenazine pro-
duction mediated by N-acyl-L-homoserine lactones (AHL), as found in P. chlororaphis
strains [12,59]. The genes phzI encodes for AHL-syntase, and phzR encodes for AHL-
receptor, which precede the operon phz. The enzyme PhzI is responsible for producing the
AHLs that accumulate in the external medium and, when it reaches a threshold level, binds
to PhzR activating the transcription of the phz operon [50,59].
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The sRNA signalling is controlled by GacS sensor kinase which is highly important
since it gives bacteria the potential to directly understand the environmental signs and
then modulate the activities of regulatory mechanisms or control phz expression. This
occurs when environmental conditions change and the phosphorylation status of the sensor
protein is altered through the binding of a small molecule or other environmental signals
that activate conformational changes and affects the activity [7,56,57].

The two-component system most studied is the GacS/GacA where the membrane-bound
protein GacS is regulated by GacA, a cytoplasmic regulatory protein, promoting the expression
of small non-coding RNAs (e.g., RsmZ). These RNAs bind to translational repressors preventing
the repression of the core biosynthetic genes phz in bacteria such as P. chlororaphis [60,61].
However, the regulation can be different among Pseudomonas spp. [61,62]. RpeA/RpeB is
another two-component system found in P. chlororaphis, in which RpeA negatively regulates
the phzR expression by negative regulation of pip and RpeB has the opposite effect [61]. Pip is
an activator of phenazine production in P. chlororaphis that is also regulated by the GacS/GacA
system [61,63]. P. chlororaphis is divided into four subspecies, Morohoshi et al. [63] investigated
the relation between phenazine production and quorum sensing in the two subspecies that
had not been studied yet, namely P. chlororaphis subsp. chlororaphis and piscium. It was found
that the disruption of the phzI caused no production of phenazine-1-carboxylic acid (PCA)
and phenazine-1-carboxamide (PCN). On the other hand, PCA and PCN production were
not affected by the disruption of CsaR-CsaI, a second quorum-sensing system identified in
P. chlororaphis subsp. aureofaciens 30-84. Moreover, Morohoshi et al. [63], showed that the
PhzI/PhzR quorum-sensing system plays an important role in the production of phenazine
derivatives in both strains.

4. Phenazine Production

Phenazine production is growth associated with and affected by environmental factors
including temperature, culture medium composition, oxygen availability, and pH value [6,22].
In view of this, the improvement of fermentative conditions is being studied to understand
and enhance phenazine production. However, different strains have different nutritional
needs depending on their environment [26,30]. So, strategies such as the application of
statistical methods for growth medium optimization, use of different feeding strategies, or
evaluation at a genetic level, and factors that are associated with phenazine production are
being studied to improve their biosynthesis [22,24,64,65]. Rij et al. [22] showed that PCN
production by P. chlororaphis PCL 1391 is induced by some carbon sources, such as glucose,
glycerol, and L-pyroglutamic acid. Similarly, other authors found glucose to be the best carbon
source for phenazine production by engineered strains of Pseudomonas sp. M18 (M18G) and
P. fluorescens 2-79, or glycerol for P. fluorescens fp-5, Pseudomonas spp. MCC3145, and the
engineered strain P. chlororaphis P3∆lon [12,64,66,67]. Ethanol complemented with glucose
was found to be the best carbon source for PCA production by the Pseudomonas sp. M18G
and M18GQ strains [28,31]. Regarding nitrogen sources, ammonium ions and amino acids
are reported to have a stimulatory effect on phenazine production, with peptone, tryptone,
soybean meal, and corn steep liquor being the most significant [12,22,26,29,31,64]. Yuan
et al. [65], using a surface response methodology, found the ideal concentrations of glucose
and soytone to increase the PCA production by Pseudomonas sp. M18Q, the qscR-chromosomal
inactivated mutant, from 750 mg/L to 1240 mg/L. Similarly, Peng et al. [12] improved the
PCN production of the P. choloraphis P3∆lon mutant nearly three-fold to 9174 mg/L in an
optimized medium, in which glycerol, tryptone, and soy peptone were identified as the most
significant factors. For the genetically engineered Pseudomonas sp. M18G (a gac-inactivated
mutant), the best results for PCA production were found with soybean meal complemented
with soy peptone as a nitrogen source and ethanol complemented with glucose as a carbon
source, having achieved 1.98 g/L, near a three-fold increase from the basal medium [26].

Temperature is also an important factor for phenazine production, and some enzymes
involved in the phenazine production process are temperature dependent. That is the case of
PhzM, which in P. aeruginosa PAO1 is expressed at higher levels at 37 ◦C, and in Pseudomonas sp.
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M18 at 28 ◦C, meaning that, depending on the temperature, the ratio between PCA and PYO
will be different [23]. Similar results were achieved by Bedoya et al. [27] for the production
of PCA and PCN by P. aeruginosa LV, where at 28 ◦C is possible to achieve a higher PCN
production, than at 32 ◦C, favoring PCA production. On the other hand, a considerable
decrease in PCN production was observed when the temperature decreased from 21 ºC to
16 ◦C. Moreover, acidic pH was found to negatively affect phenazine production, having
observed a dramatic decrease in PCN synthesis when the pH was changed from 7 to 6 [23].
Similarly, the pH value was found to be a significant factor for PYO production by P. aeruginosa
JY21 in Abo-Zaid et al. [28], being 8.2 as the best value for their process. Cui et al. [30] optimized
the pH to 7.2 in a 1 L bioreactor, leading to an increase in AHLs that resulted in a higher PCN
production (8.58 ± 0.25 g/L) by Pseudomonas chlororaphis H5∆fleQ∆relA.

Nutrients such as oxygen, ferric iron, phosphate, sulphate, and magnesium were
also reported to be significant in phenazine production [22,27,28,64]. Low concentrations
of ferric iron, phosphate, and sulphate, as well as high magnesium and oxygen levels
(above 1%), were found to reduce PCN levels in P. chlororaphis PCL1391 [22]. Jin et al. [64]
reported that the downregulation of proteins involved in phosphate transport could result
in an increase in PCN production, as well as the upregulation of proteins involved in iron
homeostasis. The presence of ferric iron is also reported to enhance the conversion of PCA
or DHPCA to 2-OH-PHZ since the reaction is Fe3+ dependent [51].

Operational strategies have been also studied to increase phenazine production. A
fed-batch strategy was reported by Jin et al. [24] and Li et al. [33] for PCA production by
the engineered Pseudomonas sp. M18G and P. aeruginosa PA-IV, respectively. Li et al. [33]
found that glucose fed in a pulse manner to keep the concentration above the inhibitory
level favored higher cellular growth. A different strategy was followed by Huang et al. [20]
that added exogenous PCA (400 µg/mL) to the cultivation of the engineered P. chlororaphis
GP72AN and favored PCA and 2-OH-PHZ production. Yue et al. [36] tried a two-stage
cultivation strategy involving the use of the reducing agent DTT (Dithiothreitol), to create
reducing conditions in the medium favoring a higher production of PCA. Posteriorly,
they fed the system with the electron acceptors K3[Fe(CN)6] and H2O2 to generate an
oxidative environment allowing the activity of PhzO to convert PCA into 2-OH-PHZ. This
strategy was found to improve phenazine production, since phenazines are involved in
ROS production that can be harmful to the producer itself, affecting phenazine yields.
Aloui et al. [67] reported the improvement of co-production of medium-chain-length
polyhydroxyalkanoates (mcl-PHA) and extracellular phenazines through a high cell density
cultivation of Pseudomonas chlororaphis subsp. aurantiaca (DSM 19603) in a membrane
bioreactor using crude glycerol as a feedstock.

5. Extraction and Purification of Phenazines

The most commonly reported method for extraction of phenazines involves the use of
organic solvents applied in a cell-free supernatant that can suffer a previous acidification
step. Organic solvents such as ethyl acetate, dichloromethane, chloroform, methylene
dichloride, toluene, or diethyl ether are the most reported for this step of the purification
process. Then, the organic phase where phenazines are dissolved can be evaporated and
the dry solids dissolved in acetonitrile or methanol [19,20,22,23,27,29,32,52,68–70]. Some
authors, after solvent utilization, include a chromatography step with silica gel to enhance
the purification [29,71–74]. However, the use of organic solvents produces hazardous
wastes requiring precautions for safe handling [75].

Rane et al. [76] reported a prior step in PCA extraction, the use of a XAD-4 resin
column to remove impurities followed by the extraction of the phenazine compound with
chloroform from the acidified solution followed by crystallization.

The separation and purification are mostly reported by thin layer chromatography
(TLC) and preparative high-performance liquid chromatography (HPLC) which have good
separation resolutions [68,71,75–77]. However, other techniques are being studied, such as
capillary electrophoresis, free flow electrophoresis, and the use of microporous adsorbent
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resins as alternatives to reduce the price, the use of organic solvents and the time required
for the separation [68,70,78–80]. Liu et al. [78] applied capillary zone electrophoresis to
separate and quantify PCA and 2-OH-PHZ from the culture broth of P. chlororaphis GP72,
after an extraction step, offering a rapid and sensitive detection. Free flow electrophoresis
for low-concentration PCA purification from Pseudomonas sp. M18 cultivation broth was
reported by Shao et al. [70]. This method, which requires a previous step for phenazine ex-
traction, offers the advantages of a continuous process, a lower cost due to the consumption
of the mobile phase, and high product recovery. Bilal et al. [68] reported the separation and
purification of PCA from the cultivation broth of the engineered P. chlororaphis GP72AN
with microporous adsorbent resins using methanol as a desorbing agent. This strategy is
presented as a simple and efficient process that can be used for a scale-up process. Zhou
et al. [81] developed electrochemical sensors based on laser-induced graphene for real-time
monitoring of P. aeruginosa phenazines.

6. Phenazine Characterization

In recent years, different techniques to characterize phenazines have been studied
taking into consideration the properties of phenazines, namely, their fluorescent properties,
redox activity, and light adsorption properties.

TLC, HPLC, and UV-visible spectroscopy have been used by several authors to detect and
characterize phenazines [13,20,32,69,72,76,79]. Further, structural characterization and identifi-
cation of phenazines are performed, after extraction, separation, and purification, using mass
spectroscopy (MS, liquid, or gas), nuclear magnetic resonance (NMR, 1H and 13C) (Figure 5),
and Fourier Transform Infra-Red spectroscopy (FTIR) (Figure 6) [69,72–74,76,78].

Kern and Newman [82] reported the use of HPLC to separate the different phenazines,
namely, PYO, PCA, and 1-hydroxyphenazine (1-OH-PHZ), which were then quantified
by UV absorption. PCA and PCN were detected by Peng et al. [12] using HPLC with a
C18-WR reversed-phase column at 254 nm. The retention times for PCA and PCN were
approximately 9.523 and 17.217 min, respectively. Simionato et al. [83] purified and identi-
fied PCA produced by P. aeruginosa LV strains by extracting it with dichloromethane. Then,
the purity degree of the extracted phenazine was determined using reversed-phase HPLC
semi-preparative and the structure was confirmed by NMR and electrospray ionization
mass spectroscopy.

PCA and 1-hydroxyphenazine were extracted and purified from a cultivation su-
pernatant of P. aeruginosa JAAKPA using TLC and column chromatography. Then, the
sample was subjected to gas chromatography–mass spectrometry (GC-MS), FTIR (Fourier
Transform Infra-Red spectroscopy), and NMR were then identified [78]. Further, LC-MS
was used by Yu et al. [18] to identify different phenazines (e.g., PCA, PCN) produced by
P. chlororaphis 30-84 (Figure 5). Jasim et al. [69] identified a PCA produced by an endo-
phytic P. aeruginosa isolated from Zingiber officinale. Firstly, they extracted the compound
and then it was purified by TLC being obtained from 7 different fractions, then the pres-
ence of compounds was measured by UV scan. Further bioactivity was tested and the
fraction that showed activity against Pythyum myriotylum was subjected to LC-MS (Light
Scattering–Mass Spectroscopy) to identify the compound (Figure S1).

Extracellular metabolites were extracted using ethyl acetate and a UV spectrum was
recorded to quantify phenazines. Further, the compound was purified using silica-gel
column chromatography. The purified compound was characterized and identified using
different techniques, namely, FTIR, NMR, and mass spectroscopy (supplementary material).
IR spectra (Figure S2A) showed peaks related to the aromatic C–H stretching vibrations
(2963, 2924, and 2853 cm−1). Moreover, an amide carbonyl group was also confirmed.
The 1H NMR spectrum (Figure S2B) of the P. aeruginosa MML2212 purified compound
showed two doublets, and two protons were also displayed. Further, three aromatic protons
appeared as a multiplet in the range. The 13C NMR (Figure S2C) spectrum of the purified
compound showed the presence of a carbonyl carbon of the amide group. Finally, the
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sample was subjected to mass spectroscopy (Figure S2D); the compound was identified as
PCN (phenazine-1-carboxamide) [72].

P. aurantiaca produced secondary metabolites with antifungal activity. The metabo-
lites were identified using TLC, UV spectra, and MALDI-TOFF spectra and were re-
vealed to be PCA, 2-hydroxyphenazine (2-OH-PHZ), and N-hexanoyl homoserine lactone
(HHL) (Figure S3) [71].
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7. Properties, Applications, and Commercial Products

Phenazines present antifungal and antibacterial activities, being recognized as broad-
spectrum antibiotics. Pierson and Pierson [84] reported the ability of phenazines to elimi-
nate the disease of wheat root caused by the fungus Gaeumannomyces graminis var. graminis.

Pseudomonas phenazine species work also as biocontrol promoters of plant health, such as
Macrophomina phaseolina, Fusarium graminerum, and Rosellinia necatrix. Macrophomina phaseolina
is one of the most virulent phytopathogens that can infect more than 500 plant species, such
as soybean, chickpea, or peanut, causing dry root and stem rot, known as charcoal rot.
PCA shows a high antifungal activity against this fungus, presenting a MIC50 (Minimum
Inhibitory Concentration 50%) value of 35 µg/mL [85,86].

Apart from antifungal activity, phenazines may also act as antibacterial agents [87].
Phenazines possess antibiotic activity against, for instance, Staphyloccoccus aureus, Escherichia
coli, and other bacteria [88,89]. D-Alanylgriseoluteic acid, a potent antimicrobial phenazine
compound, is a prime example of the antibacterial activity of these metabolites. This phenazine
exhibits a MIC50 value of 0.25 µg/mL and a MIC90 value of 0.5 µg/mL for penicillin-resistant
isolates of Streptococcus pneumoniae. Both MIC values of penicillin for these isolates were
4 µg/mL [90]. The antibiotic effect is attributed to the redox properties of phenazines and
their capacity to promote the formation of toxic reactive oxygen species (ROS).

Several authors reported PCA activity against different fungi (e.g., Fusarium oxysporum,
Penicillium expansum, Rhizoctonia solani), produced by different Pseudomonas spp. [74,91].
Pseudomonas sp., namely, P. piscium and P.aeruginosa, also produced phenzine 1HP that
has activity against fungi, such as Fusarium graminearum, Colletotrichum gloeosporioides,
Exserohilum turcicum [92–94]. Park et al. [91] reported activity against Rhizoctonia solani by
phenazine 2-OH-PHZ produced by P. aurentiaca IB5-10. Karmegham et al. [95] also reported
the antifungal activity of phenazine derivatives isolated from fluorescent pseudomonads
(FPs). PCN was detected in the isolates of FPs, showing a prominent antifungal activity
against R. solani and other tested fungal pathogens.

Antifungal activity was likewise reported against a major human pathogen fungus,
Trichophyton rubrum, which could be responsible for causing athlete’s foot, jock itch, ring-
worm, and fingernail fungus infections [5,74]. Phenazines were tested against Candida
species, which are responsible for candidiasis infections. Morales et al. [96] showed that
5-methylphenazine-1-carboxylic acid (5MPCA) produced by Pseudomonas aeruginosa has an
antibiotic effect against Candida albicans. A synergistic effect between phenazines isolated
from P. aeruginosa and azoles were observed against several species of genus Candida, and,
further, no cytotoxicity against human cell lines was observed [74].

Furthermore, it was demonstrated by different authors that phenazines possess anti-
cancer and neuroprotective activity. The anticancer ability is an outcome ensured by known
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mechanisms, such as polynucleotide interaction, topoisomerase inhibition, and radical scav-
enging [5,7,15,97]. Polynucleotide interaction occurs because the aromatic phenazine core has
structural similarity to known intercalators-metabolites capable of inhibiting DNA replication
and several studies of the interactions between phenazines and DNA/RNA have been made.
In 1971, Hollstein et al. [98] reported the study of the interaction between Pseudomonad py-
ocyanin, two other phenazines, and various polynucleotides. Kennedy et al. [99] isolated a
5MPCA produced by Pseudomonas putida, which exhibited selective cytotoxicity regarding
the cell lines of breast and lung cancer. The isolated phenazine inhibits cell viability, DNA
synthesis, induced G cell cycle arrest, and apoptosis in cancer cells.

Topoisomerases (I and II) are enzymes responsible for topological changes in the DNA
strand during cell division (translation and transcription). Proliferating cells, like cancer
cells, contain large concentrations of topoisomerases, which, therefore, serve as obvious
therapeutic targets in cancer treatment. Drugs with topoisomerase II inhibition properties
are widely used in chemotherapy, whereas topoisomerase I inhibitors have proven clinically
useful in the treatment of colon cancer. Topoisomerase inhibition has not been reported for
any of the naturally occurring phenazines but has been intensively pursued in synthetic
analogues [97,100].

Radical scavenging is probably the most important ability associated with phenazines
since it is believed that free radicals are involved in the development and progression
of a wide range of serious human diseases. Oxygen-delivered free radicals are known
to induce irreversible damage to neuronal cells in diseases like Parkinson’s disease and,
perhaps, dementia, atherosclerosis, and cerebral traumas or strokes [101]. They are also
believed to be involved in inducing carcinogenesis, aging of cells, asthma, renal failure,
rheumatoid arthritis, and inflammation [101]. Natural antioxidants like vitamins C and E
have multiple physiological functions but are insufficient in the treatment of free-radical-
induced diseases. Therefore, efficient synthetic radical scavengers or antioxidants are
needed to reduce these types of damage, including the irreversible loss of neural tissue. In
normal cells, free radicals are continuously produced by metabolic enzymatic processes in
the mitochondria as a part of energy production. Likewise, the body utilizes free radicals in
immune responses toward incoming pathogens and in the degeneration of toxins. However,
the overproduction of radicals or other dysfunctions causes the accumulation of radicals
inside the cell and, consequently, cell death. The antioxidant or radical scavenging character
of the phenazines can, therefore, be confirmed by measuring their ability to inhibit lipid
peroxidation in liver microsomes [101]. Pyocyanin isolated from P. aeruginosa demonstrated
higher scavenging activities at much lower concentrations than ascorbic acid [102].

Fungal and oomycete are common plant diseases, such as Rhizoctonia solani Kuhn and
Fusarium graminearum. These fungus pathogens cause sheath blight of rice and blight of wheat
generating huge losses during production and postharvest storage [103]. The intervention
of synthetic agrochemicals is the most effective method at present; however, the current
chemical-control agents are not fully effective at inhibiting these fungi’s activity. Further, it is
necessary to develop more effective novel agents to replace conventional agrochemicals that
introduce massive environmental pollutants and cause soil-borne diseases [104,105].

An effective method to replace agrochemicals is the development of new “green
agrochemicals”, which are active compounds contained in natural products. As it was pre-
viously mentioned, several phenazines present activity against several fungi. The most com-
mon active phenazines are PCA, PCN, 1-hydroxyphenazine (1HP), 2-hydroxyphenazine
(2HP), and 2-hydroxyphenazine-1-carboxylic acid (2HPCA), with the former being the most
common [8]. The phenazine concentrations are detected on a scale of µg/mL, however, the
concentration differs depending on the strain [106], and, usually, the concentration of PCA
is present in a higher concentration.

Despite all known phenazines with antifungal activity, PCA is the only commercialized
fungicide product with the trade name Shenqinmycin noted for its high fungicidal efficiency,
low toxicity to humans and animals, friendliness to the environment, and improvement
of crop production [103]. However, in the market, there are other products based on
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Pseudomonas strains, namely, P. chlororaphis which has been commercialized by companies
from Europe (Cedomon BioAgri AB, Uppsala, Sweden) and the USA (AtEze, Turf Science
Laboratories). Further, P. fluorescens A506 is the main component of BlightBAn A506
(Nufarm Americas Inc., Houston, TX, USA). These products have activity against fungi
such as Fusarium oxysporum, Aspergillus niger, and Botrytis cinerea [8,33,85].

As described above, phenazines can be widely used as medicine and pesticides.
However, due to the phenazine’s non-selective DNA binding, they may present toxic risks.
Hence, Ou et al. [107] studied the degradation, adsorption, and leaching behaviors of a
PCN in the agricultural soil of China. The authors found that PCN is easily degraded, has
high adsorption affinity, and low mobility in high organic matter content and clay soils,
thus, resulting in lower risks of contamination to groundwater systems. However, the
risk of contamination increases greatly in soils containing low organic matter and low clay
content leading to low adsorption affinity and moderate mobility in soils [107]. Studies like
this should be performed to provide interesting insights concerning the use of phenazines.

8. Final Remarks

This review focused on the work developed in the field of natural phenazines, in par-
ticular, Pseudomonas spp. phenazines. In recent years, the research in this area has increased
greatly, contributing to much clearer knowledge regarding the biosynthetic pathways and
the regulatory mechanisms of phenazine production by bacteria. However, more research is
needed to better understand the reason why one or another phenazine is produced.

Moreover, the natural phenazines showed exciting bioactivities, including antifungal
properties against plant pathogens but also as an anticancer agent and as an antibiotic for
human diseases caused by different pathogens. However, despite the interesting features
of phenazines, only one PCA is commercialized as a biofungicide. Such limitation could
be related to low phenazine concentrations produced by most bacterial strains. PCA is
the only phenazine produced in higher concentrations that also shows the best biocontrol
ability in comparison with the rest of the natural Pseudomonas spp. phenazines. Hence,
more research is needed in order to increase phenazine production and in discovering new
phenazines with higher production by bacteria and higher antifungal activity, since it is
of major importance to substitute the synthetic agrochemical with natural pesticides, in
order to reduce the environmental burden. Moreover, future studies should be focused on
the phenazine production process scale-up, considering all the challenges that a process
scale-up may have, namely, in the downstream process. Therefore, more studies should be
performed to optimize extraction and purification methods in order to enable the process
scale-up, but also to reduce the use of organic solvents (e.g., chloroform) and substitute
them with greener solvents, for instance, ethyl acetate or DES (Deep Euthetic Solvents).

Further, despite this review being about pseudomonad phenazines, it is known that
many other microorganisms are able to produce phenazines, thus, the research about
phenazine production by such bacteria should increase.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031368/s1, Figure S1: Mass spectrum of purified
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compound of P. aeruginosa MML2212 (A) IR spectrum; (B) 1H NMR; (C) 13C NMR and (D) Mass
spectrum; Figure S3: Quantification and identification of PCA and 2-hydroxyphenazine (2-OH-PHZ)
from P. aurantiaca PB-St2. (A) UV spectra of PCA and (B) 2-OH-PHZ; (C) Mass spectrum of “matrix
A”; (D) Mass spectrum of “matrix A” spiked with PCA, (E) Mass spectrum of “matrix A” spiked with
2-OH-PHZ.
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