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Abstract: Sialyllactose is an acidic oligosaccharide that has an immune-protective effect against
pathogens and contributes to developing the immune system and intestinal microbes. In this study,
a method for the determination of 3′-sialyllactose by high-performance liquid chromatography
tandem mass spectrometry was established. The sample was treated with 0.1% formic acid methanol
solution, and the gradient elution was performed with 0.05% formic acid water and 0.1% formic acid
acetonitrile. The hydrophilic liquid chromatographic column was used for separation. The results
showed that the linearity was good in the concentration range of 1~160 µg/L. The limit of detection
(LOD) and the limit of quantification (LOQ) of the method were 0.3 µg/kg and 1.0 µg/kg, the recovery
range was 91.6%~98.4%, and the relative standard deviation (RSD) was 1.5%~2.2%. This method is
fast and sensitive. In addition, the 3′-sialyllactose content in edible bird’s nest products produced by
different processes was studied. It was found that within the tested range, 3′-sialyllactose in edible
bird’s nest products increased with the intensity of stewing and increased with the addition of sugar.
In short, the results provided a new method for detecting the nutritional value of edible bird’s nests,
as well as a new direction for improving the nutritional value of edible bird’s nest products.

Keywords: 3′-sialyllactose; high-performance liquid chromatography-tandem mass spectrometry;
edible bird’s nest

1. Introduction

The edible bird’s nest is mainly produced in Southeast Asia and has rich nutritional
and medicinal value. Edible bird’s nest is a natural food made from the saliva of the
swifts of Aerodromus and Collasalia. The main consumer group is Asians. It is believed to
improve overall health. As early as the Tang Dynasty, edible bird’s nest was considered
a high-end health product and status symbol. Modern studies have shown that the main
nutritional components of edible bird’s nest contain protein (62%~63%), carbohydrate
(25.62%~27.26%), sialic acid (10%), and trace elements (including calcium, magnesium,
sodium, and potassium) [1,2]. The composition of natural bird’s nests may vary due to the
influence of season, foraging, species, environmental factors, and geographical location,
such as nitrite, total arsenic, and lead. However, numerous studies have shown that there
was no significant difference in the content of sialic acid in the edible bird’s nests of Malaysia
and Indonesia (p > 0.05), which showed that the content of sialic acid in edible bird’s nests
was relatively stable.

Sialic acid, as one of the most valuable components in the edible bird’s nest, usually
exists as oligosaccharides, glycolipids, or glycoproteins in the edible bird’s nest [3]. Sialyl-
lactose is a form of sialic acid storage, which is formed by the connection between sialic
acid and lactose through glycosidic bonds. The reduced end of sialyllactose is a lactose
group, which connects with a sialic acid residue through α-2, 3 or α-2, 6 bonds at the
non-reducing end of lactose residues, forming two existing forms of 3′-sialyllactose and
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6′-sialyllactose [4]. Among them, 3′-sialyllactose can act on the gut–brain axis, regulate
brain metabolism, relieve nervous tension caused by stimulation, and act as a specific
pathogen and toxin binding site, significantly reducing the adhesion of harmful substances
and endothelial cells and improving human immunity. Moreover, it has the functions of
antibacterial, anti-inflammation, protecting the infant intestine, promoting infant brain
maturation, and improving learning ability [5–8]. In contrast, 6′-sialyllactose does not have
these biological functions. In recent years, more and more attention has been paid to the
efficacy of 3′-sialyllactose, which can be prepared by artificial synthesis. The main methods
include chemical synthesis and biological synthesis. Among them, the chemical synthesis
method mainly takes sialic acid as the donor and binds to the oligosaccharide receptor
regioselective or stereoselective. Due to the electronic and spatial blocking effects, it is
difficult to form glycosidic bonds between the two, resulting in low production efficiency
and high reaction requirements. Enzymatic synthesis needs to consider the selection of
enzymes, as well as the separation and purification. Both methods have certain difficulties
in batch production. It can be seen that obtaining sialyllactose from natural food is the
simplest way at present.

However, in the current research, although the importance of sialyllactose has been
recognized by researchers, there is no mature detection method for sialyllactose in edible
bird’s nests. Due to the lack of strong chromophores in sialyllactose and the low sensi-
tivity of UV detectors, some methods rely on UV detectors, such as high-performance
liquid chromatography (HPLC) [9,10], high performance anion exchange chromatography
(HPAEC) [11,12], porous graphitized carbon chromatography (PGC) [13,14], and capillary
electrophoresis (CE) [15,16]. Generally, it is necessary to derivate lactose sialylate so that
the derivative has a certain ultraviolet absorption peak before it can be detected normally.
Such methods have complicated conditions and high conditions for sample preparation
and are not suitable for detecting sialyllactose [17–21].

Compared with common detectors, when mass spectrometry is used as a detector, it
can conduct qualitative and quantitative analysis of samples faster and more accurately
according to the relative molecular weight and sub-ion information and the mass spectrum
corresponding to sub-ion. At present, liquid chromatography–mass spectrometry has been
applied to the detection of sialyllactose. However, it is mainly applied to determining dairy
products or endogenous sialyllactose. It has not been applied to the detection of sialyllactose
in edible bird’s nests. Therefore, referring to the existing determination methods, liquid
chromatography–mass spectrometry can potentially solve the problem that sialyllactose
in edible bird’s nests cannot be completely, qualitatively, and quantitatively separated in
liquid phase detection.

According to the current report [22,23], the pretreatment of dairy products generally
adopts the reduction method; that is, the sample is centrifuged to remove fat and protein,
then reduced with NaBH4, eluted by graphite carbon column, dried in a vacuum, finally dis-
solved in deionized water, and detected by liquid chromatography–mass spectrometry. This
treatment method is complex, and the elution process is time-consuming. Jang et al. [19]
used high-performance liquid chromatography–mass spectrometry to determine the con-
tent of salivary lactose in rat plasma, optimized the pretreatment process, selected methanol
for protein precipitation in rat plasma samples, completely evaporated the methanol ex-
tract with a vacuum concentrator, and re-dissolved with a solution containing 10 mM
ammonium acetate (pH 4.5) and acetonitrile (40:60, v/v). It was shown that although the
determination of sialyllactose was carried out by HPLC-MS, different sample matrices led
to great differences in the detection methods, including sample pretreatment, equipment
conditions, and method optimization results. As shown in Table 1, the differences in the
determination of sialyllactose by high-performance liquid chromatography–mass spectrom-
etry were described in terms of sample type, pretreatment method, LOD, RSD, and rate of
recovery. Compared with other literature methods, this research method used 0.1% formic
acid and methanol for protein precipitation, vacuum concentration, and drying, and finally
dissolved the samples in deionized water for detection by liquid chromatography–mass
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spectrometry. This method only used methanol for alcohol precipitation and formic acid to
adjust the pH value of the sample and did not use other highly toxic chemicals, which is
more friendly to the environment and is easier to operate with good precision and accuracy.

Table 1. Comparison of liquid chromatography–mass spectrometry methods for 3′-sialyllactose.

NO. Sample Type Pretreatment Method LOD
(µg/kg)

RSD
(%)

Rate of Recovery
(%) Reference

1 Breast milk

After centrifugation and alcohol
precipitation, human milk was reduced

with NaBH4, washed by graphite carbon
column, and then dried in vacuum for

detection.

8.3 / 60~100 [21]

2 Breast milk

The sample was refrigerated to remove the
lipid layer, reduced with NaBH4,

incubated in 65 °C water bath for 90 min,
and then purified and extracted by

non-porous graphized carbon solid-phase
extraction.

/ <10 91.2~101.8 [22]

3 Milk

Cow milk was degreased by centrifugation
and tested after deproteinization by

methanol, acetonitrile, and
ultrafiltration membrane.

5.0 <5 90~100 [23]

4 Rat plasma

Methanol was selected for protein
precipitation in rat plasma samples. The
methanol extract was totally evaporated

with a vacuum concentrator and
reconstituted with the solution comprising

10 mM ammonium acetate (pH 4.5) and
acetonitrile (40:60, v/v).

/ <5 88.6~94.7 [19]

5 Edible bird’s nest

Bird’s nest samples were precipitated with
0.1% formic acid and methanol, and then

dissolved in ultrapure water after vacuum
concentration.

0.3 <5 91.6~98.4 This
experiment

This study used ultra-high-performance liquid chromatography–mass spectrometry to
establish a detection method for 3′-sialyllactose. The method is sensitive, simple in sample
preparation, does not require complex pretreatment, and is not affected by complex matrices.
3′-sialyllactose contents of edible bird’s nests were accurately determined. Currently, the
product forms of edible bird’s nests mainly include dry-edible bird’s nests and ready-to-eat
edible bird’s nest products. The dry-edible bird’s nest requires consumers to stew it in
water at 100 ◦C for 30 min and then cool it to room temperature according to the household
stewing method. The ready-to-eat edible bird’s nest products are processed by businesses
through a number of types of edible bird’s nest processing technology, which solved the
problem of the bird’s nest being ready to eat and added sugar to adjust the taste of the
products. In order to investigate the difference in the content of 3′-sialyllactose in edible
bird’s nest products under different heat treatment conditions and the effect of sugar on
the content of 3′-sialyllactose, and to explore the effect of heat treatment intensity on the
nutritional value of edible bird’s nest products, the corresponding factors were investigated
based on this research method.

2. Results and Discussion
2.1. Condition Optimization
2.1.1. Selection of Ions for Mass Spectrometry

The 3′-sialyllactose standard solution (1 mg/L) was used to test and optimize the mass
spectrometry conditions. After entering the ion source, the standard solution was scanned
by positive ion and negative ion, respectively, and the responses of [M + Na]+, [M + H]+,
and [M−H]− molecular ion peaks were compared. As shown in Figure 1, there was almost
no response of the [M + H]+ peak, and there was no significant difference between the
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response value of the [M + Na]+ peak and the [M − H]− peak. However, in the cleavage of
second-order mass spectrometry, it was discovered that the response of [M−H]− fragment
ion peak (270,000) was greater than that of [M + Na]+ fragment ion peak (140,000). When
adding edible bird’s nest samples, there was no corresponding ion interference.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 1. The responses of [M + Na]+ and [M − H]− molecular ion peaks and fragment ion peaks. (A): 
[M + H]+ molecular ion peaks; (B): [M + Na]+ molecular ion peak; (C): [M − H]− molecular ion peak; 
(D): [M + Na]+ fragment ion peak; (E): [M − H]− fragment ion peak. 

Therefore, in order to improve the sensitivity of the method, in this study, the [M − 
H]− peak was selected as the parent ion. It was bombarded with certain energy (CE) to 
obtain the corresponding ion fragments. Finally, two fragment ions with strong signals 
were selected, forming two pairs of monitoring ions with the parent ion. The optimized 
MRM ion pairs and mass spectrometry conditions were shown in Figure 2 and Table 2. 

  

Figure 1. The responses of [M + Na]+ and [M − H]− molecular ion peaks and fragment ion peaks.
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peak; (D): [M + Na]+ fragment ion peak; (E): [M − H]− fragment ion peak.
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Therefore, in order to improve the sensitivity of the method, in this study, the
[M − H]− peak was selected as the parent ion. It was bombarded with certain energy
(CE) to obtain the corresponding ion fragments. Finally, two fragment ions with strong
signals were selected, forming two pairs of monitoring ions with the parent ion. The
optimized MRM ion pairs and mass spectrometry conditions were shown in Figure 2
and Table 2.
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Figure 2. Product-ion scan spectra of 3′-sialyllactose.

Table 2. Multi-reaction monitoring ion pairs and mass spectrometry conditions.

Analyte Precursor Ion Product Ion Dwell Time, ms Collision Energy Interface Voltage, kV

3′-sialyllactose 632.15
290.15 * 197 28 −1.5
142.10 197 40 −1.5

* is a quantitative ion.

2.1.2. Chromatographic Condition Optimization

In this study, the C18, C18-AQ, and HILIC columns were compared. In the retention
effect, HILIC column (2.66 min) > C18-AQ (1.56 min) > C18 (1.15 min), i.e., the HILIC
column was better than other reversed-p27hase columns in sialyllactose separation. At
the same time, the initial proportion of the mobile phase was further investigated, and the
chromatographic separation effect was optimized. The result showed that when the initial
mobile phase ratio was adjusted to 90% (mobile phase B), the poor peak shape, cross peak,
or micro-tailing phenomenon could be effectively solved (as Figure 3). This is because
sialyllactose is a highly polar compound, and the general reversed-phase column cannot
retain it very well [24,25]. In conclusion, when the HILIC chromatographic column was
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used as the separation column, the test and analysis time was 5 min, the running time was
13 min, the retention time was 2.66 ± 0.05 min, the peak shape was sharp and symmetrical,
and there was no tailing phenomenon, which was the optimal separation condition.

Molecules 2023, 28, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. Effect of initial ratio of different mobile phases on chromatographic peak pattern. (A): C18 
column; (B): C18-AQ column; (C–E): Chromatograms of HILIC columns with different initial mobile 
phase ratios of 75%, 83%, and 90%, respectively. 

2.2. Method Verification 
2.2.1. Detection Limit, Quantitative Limit, and Linear Range of the Method 

For preparing a series of 3’-sialyllactose standard solutions of 0~160 μg/L, 0 mL, 0.01 
mL, 0.02 mL, 0.04 mL, 0.08 mL, 0.10 mL, and 0.16 mL of 1 mg/L standard solution were 
taken, respectively, and diluted to 1 mL. An amount of 0.10 mL 10 μg/L standard solution 
was taken and diluted to 1 mL. The standard curve regression equation was obtained. It 
is shown in Figure 4 that when the sample concentration range was 1~160 μg/L, the curve 
fitting of sample concentration and peak area was R2 = 0.9994, which showed that there 
was a good positive linear correlation. By reducing the concentration of the standard in 
the blank sample step by step, the detection limit (LOD) and quantitative limit (LOQ) of 
the method were determined. In the result, the target concentration corresponding to sig-
nal-to-noise ratio S/N ≥ 3 and S/N ≥ 10 were used as the detection limit and quantitative 
limit of this method. The LOD was 0.3 μg/kg, and the LOQ was 1.0 μg/kg. 
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column; (B): C18-AQ column; (C–E): Chromatograms of HILIC columns with different initial mobile
phase ratios of 75%, 83%, and 90%, respectively.

2.2. Method Verification
2.2.1. Detection Limit, Quantitative Limit, and Linear Range of the Method

For preparing a series of 3′-sialyllactose standard solutions of 0~160 µg/L, 0 mL,
0.01 mL, 0.02 mL, 0.04 mL, 0.08 mL, 0.10 mL, and 0.16 mL of 1 mg/L standard solution were
taken, respectively, and diluted to 1 mL. An amount of 0.10 mL 10 µg/L standard solution
was taken and diluted to 1 mL. The standard curve regression equation was obtained. It is
shown in Figure 4 that when the sample concentration range was 1~160 µg/L, the curve
fitting of sample concentration and peak area was R2 = 0.9994, which showed that there
was a good positive linear correlation. By reducing the concentration of the standard in the
blank sample step by step, the detection limit (LOD) and quantitative limit (LOQ) of the
method were determined. In the result, the target concentration corresponding to signal-to-
noise ratio S/N ≥ 3 and S/N ≥ 10 were used as the detection limit and quantitative limit
of this method. The LOD was 0.3 µg/kg, and the LOQ was 1.0 µg/kg.
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Figure 4. 3′-sialyllactose concentration and peak area curve.

2.2.2. Precision and Accuracy of the Method

The edible bird’s nest sample was measured in parallel three times. The average value
was 112.5 µg/kg, which was used as the background value of the sample. Then, 0.10 mL,
0.20 mL, and 0.40 mL of intermediate standard solutions with a concentration of 1 mg/L
were taken and added to the edible bird’s nest samples, respectively, i.e., the additional
amounts were 50 µg/kg, 100 µg/kg, and 200 µg/kg, respectively. Then, pretreatment and
determination (as described in Section 3.2) were carried out, and their concentrations were
within the concentration range of the standard curve.

Through the addition recovery test, the accuracy and precision of the method were
investigated. The results were shown in Table 3. The results showed that the average recov-
ery range of 3′-sialyllactose was 91.6%~98.4%, and the relative standard deviation (RSD)
was 1.5%~2.2%. According to the standard of China (GB/T 27417-2017) [26], the accuracy
and precision of the method determined by the test meeting the relevant requirements, i.e.,
the method is reliable.

Table 3. Recovery rate and relative standard deviation of 3′-sialyllactose in edible bird’s nest.

Analyte Add Scalar Quantity, µg/kg Recovery Rate, % RSD, %

3′-sialyllactose
50 91.6 2.0
100 96.8 1.5
200 98.4 2.2

2.3. Effect of Heat Treatment Intensity on 3′-Sialyllactose Content of Edible Bird’s Nest Products
2.3.1. Effect of Heat Treatment Temperature on 3′-Sialyllactose of Edible Bird’s
Nest Product

The effect of heat treatment (stewing) temperature (90 ◦C, 95 ◦C, 100 ◦C, 115 ◦C, 121 ◦C,
128 ◦C) on the 3′-sialyllactose content of the edible bird’s nest product was investigated. The
sample preparation is referred to in Section 3.3.1. The content of 3′-sialyllactose at different
heat treatment temperatures is shown in Figure 5. The result showed that with the increased
heat treatment temperature, the content of 3′-sialyllactose in edible bird’s nest product
increased. When the temperature was lower than 95 ◦C, the content of 3′-sialyllactose



Molecules 2023, 28, 1703 8 of 14

was very low, but when the temperature was higher than 100 ◦C, 3′-sialyllactose increased
significantly (p < 0.05). Therefore, it was indicated that within the tested range, the increased
stewing temperature in the production of edible bird’s nest products was beneficial to the
transformation and formation of 3′-sialyllactose.
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2.3.2. Effect of Heat Treatment Time on 3′-Sialyllactose of Edible bird’s Nest Products

The effect of heat treatment (stewing) time (0 min, 10 min, 15 min, 20 min, 30 min,
40 min) on the 3′-sialyllactose content of the edible bird’s nest product was investigated.
The sample preparation is referred to in Section 3.3.2. The content of 3′-sialyllactose at
different heat treatment times is shown in Figure 6. The result showed that with the
extended heat treatment time, the content of 3′-sialyllactose in edible bird’s nest products
increased. When the heat treatment time was 15~30 min, the content of 3′-sialyllactose was
relatively stable, and the range was 7.35~9.60 mg/kg. With the extension of heat treatment
time, the 3′-sialyllactose content in edible bird’s nest products increased continuously.
Therefore, it was indicated that within the tested range, the increased stewing time in
the production of edible bird’s nest products was beneficial to the transformation and
formation of 3′-sialyllactose.
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In summary, the heat treatment intensity (temperature and time) could affect the change
of 3′-sialyllactose. Within the tested range, the stronger the heat treatment intensity, the higher
the 3′-sialyllactose content. According to Yagi [27], most of the sialic acid in edible bird’s

nests is bound by Sialic acid α−2,3 or α−2,6→ Gal
β−1,3 or β−1,4→ GlcNAC→ polysaccharide chain

to protein. Therefore, it was speculated that the increase in heat treatment intensity accelerated

the hydrolysis of Gal
β−1,3 or β−1,4→ GlcNAC and promoted the transformation and formation

of 3′-sialyllactose.

2.4. Effect of Sugar on 3′-Sialyllactose of Edible Bird’s Nest Producst

At present, ready-to-eat edible bird’s nest products on the market can be divided
into two categories: sugar-added and no-sugar-added. In addition, the sugar content is
basically in the range of 0~10%. During the research process, it was found that the content
of sugar would affect the detection of sialyllactose, so it was listed as an investigation
factor. This study investigated the effect of sugar content (0%, 2%, 4%, 6%, 10%) on the
3′-sialyllactose content of the edible bird’s nest product. The sample preparation is referred
to in 3.4. The content of 3′-sialyllactose at different sugar contents is shown in Figure 7. The
result showed that with the increased sugar content, the content of 3′-sialyllactose in edible
bird’s nest products increased. Under the same conditions, the content of 3′-sialyllactose in
the sugar-added samples was four times higher than that in the unsugar-added sample.
When the amount of added sugar was more than 4%, 3′-sialyllactose reached a relative
balance. Therefore, the result indicated that sugar within a certain concentration range
could promote the transformation and formation of 3′-sialyllactose.
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The oligosaccharide content change caused by adding sugar during processing has
not yet been explained. From this study, it was speculated that monocrystal rock sugar
(used in this study) could be hydrolyzed into glucose and fructose [28–31], in which the
glucose could be dehydrated and condensed with galactose sialate by heat treatment to
form 3′-sialyllactose. In sum, it showed that adding sugar (monocrystal rock sugar) could
increase the nutritional value of edible bird’s nest products within the tested range.

2.5. Application Examples of the Detection Method

In order to investigate the 3′-sialyllactose content in actual edible bird’s nest products,
the method established in this study was used to determine the 3′-sialyllactose content
of nine kinds of products sold in the market. The sample types were dry-edible bird’s
nests, bottle-packed ready-to-eat edible bird’s nest products, and bowl-packed ready-to-eat
edible bird’s nest products. Each sample was measured twice, and the average value was
taken, as shown in Table 4. Among them, sample 1 was a dry-edible bird’s nest, and the
stewing conditions was 100 ◦C in water for 30 min and then colling to room temperature,
simulating the method of home stewing. In addition, all samples were treated according to
3.2.1 before detection.
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Table 4. Comparison of 3′-sialyllactose content in different edible bird’s nest products (n = 2, p < 0.05).

NO. Type Batch Number Net Content, g 3′-Sialyllactose Content, µg/kg

1 Sample-1 202,209,189 70 6.60 ± 0.46 f

2 Sample-2 20,221,207 45 73.84 ± 6.60 e

3 Sample-3 UL16090 70 175.94 ± 6.26 d

4 Sample-4 20,221,205 110 226.19 ± 4.36 c

5 Sample-5 UK26041 138 261.34 ± 5.34 b

6 Sample-6 UK04143 180 331.29 ± 6.91 a

7 Sample-7 20,221,208 50 113.02 ± 5.31 d

8 Sample-8 VK08154 70 166.14 ± 4.21 d

9 Sample-9 XPVJ1608 100 305.22 ± 4.71 a

The same letter means no significant difference at the 0.05 level, while different letters mean significant difference
at the 0.05 level. The average value of the largest group is labeled as (a), and the groups with significant differences
increase alphabetically according to the average size.

As shown in Table 5, there were differences in 3′-sialyllactose content in different
styles of edible bird’s nest products. The average content of ready-to-eat edible bird’s
nest products (183.5 µg/kg) was higher than the home-stewing dry-edible bird’s nest
(6.60 µg/kg); that is, the detected amount of 3′-sialyllactose of ready-to-eat edible bird’s
nest products was over 30 times that of 100 ◦C home-stewing dry-edible bird’s nest. Among
them, ready-to-eat edible bird’s nest products were processed by merchants with a certain
heat treatment intensity, stronger than home-stewing dry-edible bird’s nest, which might
be the main reason for their higher 3′-sialyllactose content. Therefore, it was indicated that
higher heat treatment intensity could improve the nutritional value of edible bird’s nest
products to a certain extent.

Table 5. Mass spectrometric parameters.

Parameters Gas Flow
(L·min−1)

Heating Gas
Flow Rate
(L·min−1)

Drying Gas
Flow Rate
(L·min−1)

Interface
Temperature

(◦C)

DL
Temperature

(◦C)

Heating
Block

Temperature
(◦C)

CID Gas
(kPa)

Numerical value 3 10 10 300 250 400 270

3. Materials and Methods
3.1. Materials

Edible bird’s nest (made from house nest in Indonesia, Apodidiae) was provided by
Xiamen Yan Palace Seelong Food Co., Ltd. Edible bird’s nest products (Sample-1, Sample-2,
Sample-3, Sample-4, Sample-5, Sample-6, Sample-7, Sample-8, Sample-9, made from house
nest in Indonesia, Apodidiae) were commercially available edible bird’s nest products. 3′-
Sialyllactose (purity 99%) was provided by Xiamen University. Methanol and formic acid
were used for chromatographic purity, provided by TEDIA. Other reagents used were of
analytical grade and above.

3.2. Optimization of Determination Methods and Conditions
3.2.1. Pretreatment Condition

After homogenization, 2.00 g (±0.1 g) of the uniform sample (edible bird’s nest) was
mixed with 0.1% formic acid methanol solution to fix the volume to 10 mL. After reacting
for 10 min, the sample was centrifuged by 10,000 r/min for 10 min. The 5 mL of the
separated supernatant was placed in a nitrogen blow tube to be nearly dried. Subsequently,
the volume was fixed by deionized water to 5 mL and was filtered through a 0.22 µm filter.
Finally, the filtrate was tested by HPLC-MS/MS (SHIMADAZU, LC-30AD/LCMS-8050).
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3.2.2. Liquid Chromatographic Conditions

The chromatographic column was the Diol-HILIC-120 column (100 mm × 2.1 mm,
1.9 µm). Mobile phase A was 0.05% formic acid aqueous solution; mobile phase B was
0.1% formic acid acetonitrile. The flow rate was 0.3 mL/min. The column temperature was
40 ◦C. The injection volume was 5 µL.

For gradient elution, the mobile phase B was controlled as 90% 0 min, 90% 1 min,
90%~35% 1.1 min, 35% 7.0 min, 35%~60% 7.1 min, 60%~90% 10.0 min, and 90% 13.0 min.

3.2.3. Mass Spectrometry Condition

The negative ion scanning of the electrospray ionization (ESI) source was selected,
determined to be [M − H]− as the precursor ion. The specific mass spectrum parameters
were shown in Table 5, and the quantitative and qualitative ions and collision energy were
shown in Table 2.

3.2.4. Condition Optimization

In the pretreatment condition (as described in Section 3.2.1), the sample was precipi-
tated by methanol and alcohol, the isoelectric point of the sample was adjusted with formic
acid, and the macromolecular protein was removed by combining nitrogen blowing and
concentration to achieve the purpose of sample purification. This process does not require
using highly toxic chemical reagents, which is more environmentally friendly and safer.

In liquid chromatography (as described in Section 3.2.2), column types (C18, C18-AQ,
and HILIC columns), mobile phase pH values, and initial proportions of mobile phase B
(75%, 83%, 90%) were compared. The result showed that the optimal condition was optimal
for the HILIC column, acidic mobile phase, and 90% initial proportion of mobile phase B.

In the mass spectrometry condition (as described in Section 3.2.3), the ESI source for
positive and negative ion scanning was compared. The result showed that the [M − H]−,
the parent ion, was optimal.

3.3. Effect of Heat Treatment Intensity on 3′-Sialyllactose Content in Edible Bird’s Nest
3.3.1. Preparation of Samples with Different Heat Treatment Temperatures

The edible bird’s nest (dried) was crushed and weighed (1.00 g) in a 45 mL glass
container. The sugar content was adjusted to 4%. Subsequently, the sample was heated
to 90 ◦C within 6 min, kept for 30 min, and finally cooled to room temperature within 15
min. Similarly, samples with different heat treatment temperatures of 95 ◦C, 100 ◦C, 115 ◦C,
120 ◦C, and 128 ◦C were prepared.

3.3.2. Preparation of Samples with Different Heat Treatment Times

The edible bird’s nest (dried) was crushed and weighed (1.00 g) in a 45 mL glass
container. The sugar content was adjusted to 4%. Subsequently, the sample was heated to
121 ◦C within 6 min, kept for 10 min, and finally cooled to room temperature within 15 min.
Similarly, samples with different heat treatment times of 0 min, 15 min, 20 min, 30 min, and
40 min were prepared.

3.4. Preparation of Samples with Different Sugar Contents

The edible bird’s nest (dried) was crushed and weighed (1.00 g) in a 45 mL glass
container. The sugar (monocrystal rock sugar) content was adjusted to 2%. Subsequently,
the sample was heated to 121 ◦C within 6 min, kept for 30 min, and finally cooled to room
temperature within 15 min. Similarly, samples with different sugar contents of 4%, 6%, and
10% were prepared.

3.5. Method Validation

According to the Chinese standard (GB/T 27417-2017) [26], the LC–MS/MS procedure
for quantifying 3′-sialyllactose was validated in terms of linearity, sensitivity, RSD, recovery,
residue, etc.
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3.6. Statistical Analysis

Results were expressed as mean ± standard deviations of triplicate analyses for
each sample. The statistical analyses were performed using SPSS (version 23.0, SPSS Inc.,
Chicago, IL, USA). A comparison of the means was ascertained by Tukey’s test at a 5%
level of significance using a one-way analysis of variance (ANOVA).

4. Conclusions

In this study, a high-performance liquid chromatography tandem mass spectrometry
method was established for determining 3′-sialyllactose of edible bird’s nest. This method
had the advantages of high sensitivity, good linear relationship, low detection limit, high
precision, and accuracy. Compared with the existing methods, this method used methanol
to pretreat the sample, which was simpler for sample preparation, and eliminated the
possible interference caused by other reagents. It was suitable for the rapid detection of
3′-sialyllactose in edible bird’s nests and their products. Furthermore, the effects of the heat
treatment process and sugar content on the 3′-sialyllactose content of the edible bird’s nest
product were investigated. The results showed that within the tested range, the content of
3′-sialyllactose in edible bird’s nest products increased with the increase of heat treatment
strength. When the heat treatment temperature was above 121 ◦C, the heat treatment
time was above 30 min, and the sugar addition was 4%, it was more conducive to the
formation of 3′-sialyllactose. In addition, the method established in this study was used to
determine and analyze the 3′-sialyllactose content of edible bird’s nest products sold in the
market. Compared with the 100 ◦C home-stewing dry-edible bird’s nest, the 3′-sialyllactose
content in ready-to-eat edible bird’s nest products was higher, which is consistent with
the conclusion that stronger heat treatment intensity can improve the nutritional value of
edible bird’s nests. In short, this study provided a new method for detecting the nutritional
value of edible bird’s nests, as well as a new direction for improving the nutritional value
of edible bird’s nest products.
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