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Abstract: Ganoderma lucidum has long been used as a multi-purpose plant and functional food. The
pharmacological properties of G. lucidum are primarily attributed to its polysaccharides and triter-
penoids. Ganoderic and lucidenic acids are the two major triterpenoids groups in G. lucidum. Despite
the discovery of 22 types of lucidenic acids, research on lucidenic acids is significantly less extensive
compared to that on ganoderic acid. To the best of our knowledge, for the first time, in this review,
we aimed to summarize the sources, contents, chemical structures, and pharmacological effects, in-
cluding anti-cancer, anti-inflammatory, antioxidant, anti-viral, neuroprotective, anti-hyperlipidemic,
anti-hypercholesterolemic, and anti-diabetic properties, of lucidenic acids. Studies on lucidenic
acids are still preliminary and have several limitations. Therefore, more in-depth studies with op-
timal designs are essential for the development of lucidenic acids as medicines, functional foods,
and nutraceuticals.
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1. Introduction

Natural products are valuable sources of biologically active substances, which may
serve as promising lead compounds for new drug development. Triterpenoids are one
of the largest classes of natural products. Many triterpenoids possess substantial phar-
macological activity and are, therefore, of interest to medicinal chemists. Triterpenoids
are usually classified into the following three groups: acyclic, tetracyclic and pentacyclic,
in which tetracyclic triterpenoids can be further divided into dammarane, cucurbitane,
cycloartane, protostane, and lanostane types. Dammarane-type triterpenoids are mainly
distributed in Araliaceae, Cucurbitaceae, Scrophulariaceae, and Rhamnaceae. Cucurbitane-type
triterpenoids are mainly found in Cucurbitaceae; cycloartane-type triterpenoids are abun-
dant in Leguminosae, Passifloraceae, and Ranunculaceae. Protostane-type triterpenoids are
mainly isolated from the Alismataceae family, and lanostane-type triterpenoids are from
fungi [1]. The tetracyclic ring system in these triterpenoids plays a critical role in their
biological activities, including their anticancer [2] and antidiabetic effects [1]. Side-chain
modifications of tetracyclic ring systems can affect their pharmacological properties [3,4].

Ganoderma lucidum is a mushroom that has been used for many years as a medicinal
and functional food in Far East countries to promote health and longevity. The most well-
known properties of G. lucidum are its immunomodulatory and anti-cancer activities, which
are attributed to its polysaccharides and triterpenoids [5]. Over 380 triterpenoids have been
isolated from Ganoderma using phytochemical methods [6]. Among these triterpenoids,
ganoderic acids are the most widely studied and reported. Ganoderic acids A and B were
isolated from the fruiting bodies of G. lucidum for the first time in 1982 [7]. Ganoderic acids
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are C30 lanostane compounds (Figure 1). In addition to their anti-cancer and anti-diabetic
effects, their anti-viral, hepatoprotective, antiplatelet, antioxidant, hypocholesterolemia,
and antihistamine properties have also been reported.
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Figure 1. Chemical structures of ganoderic acid A and lucidenic acid A.

Lucidenic acids, which have a C27 lanostane skeleton (Figure 1), are the second major
group of triterpenoids found in the Ganoderma species [8]. Although some biological activi-
ties of lucidenic acids have been reported [9–16], studies that investigate their mechanisms
of action and potential applications remain inadequate and preliminary. To the best of our
knowledge, for the first time, in this review, we aimed to summarize the sources, contents,
structures, and pharmacological activities of lucidenic acids. The findings of this review
may be beneficial for the development of lucidenic acids as medicine, functional foods, and
nutraceuticals.

2. Sources and Contents

Apart from G. lucidum, lucidenic acids have also been found in other Ganoderma
species, such as G. sinense [17], G. curtisii [18], G. colossum [19], G. sessile [20], G. tsugae [21],
G. applanatum [22], G. austral [23], G. subresinosum [23], and G. hainanense [24]. Furthermore,
lucidenic acids are found in non-Ganoderma species [25], such as Amauroderma rugosum [26],
Homalium zeylanicum [27], and potato leaves [28].

Lucidenic acids were discovered in 1984, when lucidenic acids A, B, and C were
first isolated from G. lucidum [29]. The types and amounts of lucidenic acids in various
species are listed in Table 1. G. lucidum is rich in lucidenic acids A, D2, and E2. The amount
of lucidenic acid A in ethanol extract of G. lucidum fruiting bodies is 2.8 mg/g [26,30]. The
amounts of lucidenic acids D2 and E2 range from 1.538 mg/g to 2.227 mg/g and 2.246 mg/g
to 3.306 mg/g in grain alcohol extracts of G. lucidum fruiting bodies, respectively [31]. In
addition to fruiting bodies, lucidenic acids can be found in other parts of G. lucidum, such
as mycelia and spores [32]. The lucidenic acid content in fruiting bodies is higher than that
in spores [33].

Table 1. The sources, molecule formulae, and amounts of lucidenic acids.

Serial
Number

Lucidenic
Acid Type

Molecular
Formula Species Extraction Method Amount References

1 Lucidenic
acid A

C27H38O6

Ganoderma lucidum
(fruiting bodies) 100% Ethanol 2.8 mg/g dry weight [30]

Ganoderma lucidum
(fruiting bodies) 95% Ethanol 1.53–1.74 mg/g dry

weight [34]

Ganoderma lucidum
(fruiting bodies)

45% Grain alcohol and
chloroform

1.226–2.497 mg/g in
lyophilized sample [29,31,35]

Ganoderma lucidum
(fruiting bodies)

Water (soaked in 100%
ethanol overnight prior

to extraction)
0.4 mg/g dry weight [36]
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Table 1. Cont.

Serial
Number

Lucidenic
Acid Type

Molecular
Formula Species Extraction Method Amount References

1 Lucidenic
acid A

C27H38O6

Ganoderma lucidum
(fruiting bodies) Water 51 µg/g dry weight [26]

Ganoderma lucidum
(spores) Methanol * [14]

Ganoderma lucidum
(spores)

Supercritical fluid
carbon dioxide 0.3 mg/g in extract [37]

Wall-removed
Ganoderma lucidum

(spores)

Water, alcohol, or
a combination of the two 0.05% [38]

Ganoderma hainanense
(fruiting bodies) 95% Ethanol * [6,24]

Ganoderma sinense
(fruiting bodies) 95% Ethanol * [17]

Ganoderma curtisii
(fruiting bodies) Methanol * [18]

Ganoderma colossum
(fruiting bodies) 100% Ethanol 16 µg/mL in extract [19]

Ganoderma sessile
(fruiting bodies) 80% Ethanol * [20]

Amauroderma rugosum
(fruiting bodies) Water 15.69 µg/g dry

weight [26]

Homalium zeylanicum
(barks) 70% Hydro-alcohol * [27]

2 Lucidenic
acid B

C27H38O7

Ganoderma lucidum
(fruiting bodies) Chloroform * [6,35,39]

Ganoderma lucidum
(spores) Methanol * [14]

Ganoderma lucidum
(spores)

Supercritical fluid carbon
dioxide

72 ± 0.95 µg/g in
extract [37]

3 Lucidenic
acid C

C27H40O7

Ganoderma lucidum
(fruiting bodies) Chloroform * [6,35,39]

Ganoderma lucidum
(spores) Methanol * [14]

Ganoderma colossum
(fruiting bodies) 100% Ethanol 6.7 µg/mL in extract [19]

Ganoderma sessile
(fruiting bodies) 80% Ethanol * [20]

Ganoderma tsugae
(fruiting bodies) 95% Ethanol * [21]

4 Lucidenic
acid D1 C27H34O7

Ganoderma lucidum
(fruiting bodies) Chloroform * [6,35]

5 Lucidenic
acid D2

C29H38O8

Ganoderma lucidum
(fruiting bodies)

45% Grain alcohol and
chloroform

1.538–2.227 mg/g in
lyophilized sample [31,35,40]

Ganoderma lucidum
(spores) Methanol * [14]

Ganoderma sinense
(fruiting bodies) Chloroform * [6,9]

Potato leaf Methanol: Water (4:1, v/v) * [28]

6 Lucidenic
acid E1 C27H38O7

Ganoderma lucidum
(fruiting bodies) Chloroform * [35]
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Table 1. Cont.

Serial
Number

Lucidenic
Acid Type

Molecular
Formula Species Extraction Method Amount References

7 Lucidenic
acid E2

C29H40O8

Ganoderma lucidum
(fruiting bodies) Methanol

0.319–1.766 mg/g dry
weight (wild

samples); 0.258–0.481
mg/g dry weight

(cultivated samples)

[23,39,40]

Ganoderma lucidum
(fruiting bodies) 45% Grain alcohol 2.246–3.306 mg/g in

lyophilized sample [31]

Ganoderma lucidum
(spores) Methanol * [14]

Ganoderma australe
(fruiting bodies) Methanol 121.65 ± 4.50 µg/g

dry weight [23,39,40]

Ganoderma colossum
(fruiting bodies) Methanol 201.92 ± 2.45 µg/g

dry weight [23,39,40]

8 Lucidenic
acid F

C27H36O6

Ganoderma lucidum
(fruiting bodies) Ether * [6,39–41]

Ganoderma lucidum
(spores) Methanol * [14]

Ganoderma curtisii
(fruiting bodies) Methanol * [18]

Potato leaf Methanol: water (4:1, v/v) * [28]

metabolites of rice Methanol: water (4:1, v/v) * [25]

9 Lucidenic
acid G

C27H40O7

Ganoderma lucidum
(fruiting bodies) Ethanol * [6,42]

Ganoderma lucidum
(spores) Methanol * [14]

10 Lucidenic
acid H C27H40O7

Ganoderma lucidum
(fruiting bodies)

Ethanol and crystallized
from fraction

CHCl3-MeOH, 9:1
* [43,44]

11 Lucidenic
acid I

C27H38O7

Ganoderma lucidum
(fruiting bodies)

Ethanol and crystallized
from fraction

CHCl3-MeOH, 9:1
* [6,44]

Ganoderma lucidum
(spores) Methanol * [14]

12
Lucidenic

acid J
C27H38O8

Ganoderma lucidum
(fruiting bodies)

Ethanol and crystallized
from fraction

CHCl3-MeOH, 9:1
* [6,44]

Ganoderma lucidum
(spores) Methanol * [14]

13 Lucidenic
acid K

C27H40O7

Ganoderma lucidum
(fruiting bodies) 100% Ethanol * [6,44]

Ganoderma lucidum
(spores) Methanol * [14]

14 Lucidenic
acid L C27H38O7

Ganoderma lucidum
(fruiting bodies) 100% Ethanol * [6,44]

15 Lucidenic
acid M

C27H42O6

Ganoderma lucidum
(fruiting bodies) 100% Ethanol * [6,44]

Ganoderma lucidum
(spores) Methanol * [14]
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Table 1. Cont.

Serial
Number

Lucidenic
Acid Type

Molecular
Formula Species Extraction Method Amount References

16

Lucidenic
acid N

(lucidenic
acid SP1,

LM1)

C27H40O6

Ganoderma lucidum
(fruiting bodies) Methanol

257.80–884.05 µg/g
dry weight

(wild samples);
52.53–139.08 µg/g

dry weight
(cultivated samples)

[23,39,45–47]

Ganoderma lucidum
(fruiting bodies) 45% Grain alcohol 0.866–2.004 mg/g in

lyophilized sample [31]

Ganoderma lucidum
(spores) Methanol * [14]

Ganoderma lucidum
(spores)

Supercritical fluid carbon
dioxide

161 ± 2.21 µg/g
in extract [37]

Ganoderma lucidum
(mycelia) 96% Ethanol 0.23–0.33 mg/g

dry weight [48]

Ganoderma curtisii
(fruiting bodies) Methanol * [18]

Ganoderma sessile
(fruiting bodies) 80% Ethanol * [20]

Ganoderma tsugae
(fruiting bodies) 95% Ethanol * [21]

Ganoderma
subresinosum

(fruiting bodies)
Methanol 57.50 ± 0.65 µg/g

dry weight [23,39,45–47]

Ganoderma colossum
(fruiting bodies) Methanol 207.73 ± 2.05 µg/g

dry weight [23,39,45–47]

Ganoderma australe
(fruiting bodies) Methanol 63.13 ± 1.45 µg/g

dry weight [23,39,45–47]

Ganoderma hainanense
(fruiting bodies) 95% Ethanol * [24]

17 Lucidenic
acid O C27H40O7

Ganoderma lucidum
(fruiting bodies) Acetone * [6,49]

18 Lucidenic
acid P

C29H42O8

Ganoderma lucidum
(fruiting bodies) Methanol * [6,50]

Ganoderma lucidum
(spores) Methanol * [14]

19
Lucidenic

acid Q
C27H40O6

Ganoderma lucidum
(fruiting bodies) Ethyl acetate * [43]

Ganoderma lucidum
(spores) Methanol * [14]

20 Lucidenic
acid R C29H40O9

Ganoderma lucidum
(fruiting bodies) 80% Ethanol * [51]

* Not specified in the literature.

3. Chemical Structures of Lucidenic Acids

Lucidenic acids contain a tetracyclic lanostane skeleton and side chain of a carboxyl
group. Lucidenic acids A, B, C, D1, D2, E1, E2, F, K, L, M, N, P and Q share the same
chemical structure with the keto, hydroxyl, or acetoxy groups at C3, C7, C12, and C15
(Table 2).
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Table 2. Chemical structures of lucidenic acids A, B, C, D1, D2, E1, E2, F, K, L, M, N, P and Q.

Basic
Chemical
Structure
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Lucidenic
Acid Type R1 R2 R3 R4 References

Lucidenic
acid A R1 = O R2 = -OH R3 = O R4 = H [29]

Lucidenic
acid B R1 = O R2 = -OH R3 = O R4 = -OH [29]

Lucidenic
acid C R1 = -OH R2 = -OH R3 = O R4 = -OH [29]

Lucidenic
acid D1 R1 = O R2 = O R3 = O R4 = O [35]

Lucidenic
acid D2 R1 = O R2 = O R3 = O R4 = OCOCH3 [40]

Lucidenic
acid E1 R1 = O R2 = -OH R3 = O R2 = -OH [35]

Lucidenic
acid E2 R1 = -OH R2 = O R3 = O R4 = OCOCH3 [40]

Lucidenic
acid F R1 = O R2 = O R3 = O R4 = H [40]

Lucidenic
acid K R1 = O R2 = O R3 = O R4 = -OH [44]

Lucidenic
acid L R1 = -OH R2 = O R3 = O R4 = -OH [44]

Lucidenic
acid M R1 = -OH R2 = -OH R3 = -OH R4 = H [44]

Lucidenic
acid N R1 = -OH R2 = -OH R3 = O R4 = H [46]

Lucidenic
acid P R1 = -OH R2 = -OH R3 = O R4 = OCOCH3 [50]

Lucidenic
acid Q R1 = O R2 = -OH R3 = -OH R4 = H [43]

Lucidenic acids G, H, I, J, O and R have structures similar to those of the aforemen-
tioned lucidenic acids, except that they have a hydroxyl substitute at C27 (Table 3). In
addition, the lucidenic acid O has a distinctive carbon–carbon double-bond between C20
and C21.
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Table 3. Chemical structures of lucidenic acids G, H, I, J, O and R.

Basic
Chemical
Structure
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Lucidenic
Acid Type R1 R2 R3 R4 References

Lucidenic
acid G R1 = O R2 = -OH R3 = -OH R4 = H [42]

Lucidenic
acid H R1 = OH R2 = -OH R3 = O R4 = H [44]

Lucidenic
acid I R1 = -OH R2 = O R4 = O R4 = H [44]

Lucidenic
acid J R1 = -OH R2 = O R3 = O R4 = -H [44]

Lucidenic
acid O R1 = -OH R2 = -OH R3 = -OH R4 = -OH [49]

Lucidenic
acid R R1 = -OH R2 = O R3 = O R4 = OCOCH3 [51]

The type of functional group at C3 in lanostane, number of hydroxyl groups, and type
of side chain are crucial for the biological activities of triterpenoids [6,52]. For instance,
the hydroxyl group at C3 is associated with α-glucosidase inhibitory activity [53]. More-
over, an increase in the number of hydroxyl groups leads to a decrease in cytotoxicity in
triterpenoids [52].

4. Potential Pharmacological Effects of Lucidenic Acids

Lucidenic acids have potential anti-cancer, anti-inflammatory, anti-oxidant, anti-viral,
anti-obesity, anti-diabetic, neuroprotective, and immunomodulatory properties (Table 4).
The details are elaborated below.

Table 4. Potential pharmacological effects of lucidenic acids and derivatives.

Lucidenic Acids and Derivatives Potential Pharmacological
Effects References

Lucidenic acid A Anti-cancer [11,46,54–59]
Anti-inflammatory [27,50,60]

Anti-viral [50,60–62]
Neuroprotective [15]

Anti-hyperlipidemic [63]
Treatment of frostbite [64]
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Table 4. Cont.

Lucidenic Acids and Derivatives Potential Pharmacological
Effects References

Lucidenic acid B Anti-cancer [11,55,57,58]
Anti-inflammatory [65]

Antioxidant [16]
Anti-viral [62]

Lucidenic acid C Anti-cancer [11,43,55–58]
Anti-viral [50,60,62]

Lucidenic acid D1 Anti-cancer [12,66]
Anti-inflammatory [65]

Lucidenic acid D2 Anti-inflammatory [60,65]
Anti-viral [50,60]

Lucidenic acid E1 Anti-inflammatory [65]

Lucidenic acid E2 Anti-cancer [59]
Anti-inflammation [60]

Anti-hypercholesterolemia [67]
Anti-hyperglycemic [16]

Anti-viral [50,60]

Lucidenic acid F Anti-viral [50,60]

Lucidenic acid H Treatment of frostbite [64]

Lucidenic acid I Immunomodulatory [14]

Lucidenic acid L Anti-inflammation [65]

Lucidenic acid N Anti-cancer [11,46,55–59]
Anti-viral [62]

Neuroprotective [15]
Anti-hyperlipidemic [68,69]

Lucidenic acid O Anti-viral [49]

Lucidenic acid P Anti-inflammatory [60]
Anti-viral [50,60]

Lucidenic acid Q Anti-hyperglycemic [16]

Lucidenic acid R Anti-inflammatory [51]

Methyl lucidenate A, Anti-viral [50,60]

Methyl lucidenic E2 Neuroprotective [15]
Anti-hyperlipidemic [69]

Anti-viral [50,60]
Immunomodulatory [14]

Methyl lucidenate F Anti-hyperlipidemic [69]

Butyl lucidenate N Anti-hyperlipidemic [70]

20(21)-Dehydrolucidenic acid N Ant-viral [9]
Immunomodulatory [14]

20-Hydroxylucidenic acid N Anti-viral [9,50,60]

Methyl lucidenate Q Anti-viral [50,60]

4.1. Anti-Cancer Effect

The most widely studied pharmacological effect of lucidenic acids is their anti-cancer
effect. Lucidenic acids can induce cytotoxicity in different cancer cell lines, including
prostate cancer [54], leukemia [11,55,56], liver cancer [71], and lung cancer cells [43].
Lucidenic acid A decreased the viability of PC-3 prostatic cancer cells with an IC50 of
35.0 ± 4.1 µM [54]. Additionally, lucidenic acid A decreased the viability of HL-60 leukemia
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cells with an IC50 of 61 µM [57] and 142 µM [55] after incubation for 72 and 24 h, respectively.
Furthermore, treatment with lucidenic acid A for 72 h induced cytotoxic effects in COLO205
colon cancer, HCT-116 colon cancer, and HepG2 hepatoma cells, with IC50 values of 154,
428, and 183 µM, respectively [57]. Both lucidenic acids A and N exhibited cytotoxicity
against KB epidermal carcinoma and P388 leukemia cells [46,57]. Lucidenic acid B induced
cytotoxicity in COLO205, HepG2, HL-60, and HT-29 cancer cells [57]. Among these cells,
HL-60 and HepG2 cell lines were the most sensitive to lucidenic acid B, with an IC50 of 45.0
and 112 µM, respectively [57]. Lucidenic acid C also induced cytotoxic effects in COLO205,
HepG2, and HL-60 cancer cell lines, but was not as potent as lucidenic acids A and B [57].
Lucidenic acid N also exhibited cytotoxic effects against COLO205, HepG2, and HL-60
cells, with an IC50 of 486, 230, and 64.5 µM, respectively [57].

The mechanism of the cytotoxic action of lucidenic acids has rarely been studied;
however, lucidenic acid B has been demonstrated to induce cancer cell apoptosis via the
activation of caspase-9 and caspase-3, followed by PARP cleavage [11,55]. The cytotoxic
effects of lucidenic acids are also related to G1 phase cell cycle arrest [11,56]. Moreover,
eukaryotic DNA polymerases can be inhibited by lucidenic acid O [49].

Apart from their direct cytotoxic effects, lucidenic acids also possess anti-proliferative
properties. Lucidenic acid C exhibited moderate inhibitory activity against A549 human
lung adenocarcinoma cell proliferation, with an IC50 between 52.6 and 84.7 µM [43]. The
potential ability of lucidenic acid D to inhibit HepG2 cell proliferation has also been
demonstrated based on the chemometric analysis of the spectrum–effect relationship of
Ganoderma extracts [66].

In addition to their cytotoxic and anti-proliferative effects, lucidenic acids can inhibit
cancer cell invasion, implying that they may have a potential anti-metastatic effect. For
instance, 24 h incubation with 50 µM of lucidenic acids A, B, C, and N inhibited HepG2
cell invasion without affecting cell viability [58]. The mechanism of action of this anti-
invasive effect remains unknown, but it may be associated with the inhibition of matrix
metallopeptidase 9 (MMP-9). Lucidenic acid B has been reported to reverse phorbol
myristate acetate-induced MMP-9 activity in a dose-response manner [12]. This effect
is related to the suppression of both MAPK/ERK1/2 phosphorylation and IκBα protein
activation while enhancing the expression of IκBα protein, leading to a decrease in NF-κB
DNA-binding activity [12].

Another promising property of lucidenic acids is that certain lucidenic acids, such
as lucidenic acids A, E, and N, may potentiate the anti-cancer effect of doxorubicin [59].
This synergistic effect may be beneficial, as it may lower the dosage required, and hence
reduce the adverse drug reactions, such as cardiotoxicity, of doxorubicin. Lucidenic acids
are considered to be safe because their cytotoxic and antiproliferative effects are specific
to cancer cells. A study showed that lucidenic acid killed 50% of HL-60 leukemia cells at
concentrations ranging from 19.3 to 64.5 µM and had no significant effect on the viability of
normal peripheral blood lymphocytes [11].

The target binding sites of lucidenic acids in cancer cells remain unidentified. Com-
putational molecular docking models have demonstrated promising binding energies of
lucidenic acids for the Mdm2 receptor (predicted hydrogen bonding with Val93, Ile19,
Gln24, Gln18 and His96) and zinc finger 439 protein (predicted hydrogen bonding with at
Ser86), suggesting that they may be the target sites of lucidenic acids in breast cancer [72,73].
Mdm2 is a potent inhibitor of the p53 family of transcription factors and tumor suppressors.
The function of the zinc finger 439 protein remains unknown, but it is suggested to be
involved in the regulation of gene transcription. Moreover, lucidenic acids may act as
potential quadruplex stabilizing ligands and promising inhibitors of Bcl-2 [74,75], which is
a well-known apoptosis suppressor.

4.2. Anti-Inflammatory Effect

Inflammation is involved in infectious diseases and chronic disorders, such as arthritis,
inflammatory bowel disease, and dermatitis. The anti-inflammatory functions of lucidenic
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acids have been demonstrated by a previous study, which reported that G. lucidum extracts
containing lucidenic acids B, D1, D2, E1, and L attenuated lipopolysaccharide-induced
pro-inflammatory cytokine and nitric oxide release and increased the expression levels of
inducible nitric oxide synthase and cyclo-oxygenase-2 in RAW264.7 cells [65]. Similarly, lu-
cidenic acid R suppressed 20% of nitric oxide production in lipopolysaccharide-stimulated
RAW264.7 cells [51]. Moreover, an in vitro study using a protein denaturation assay demon-
strated that lucidenic acid A inhibited inflammation, with an IC50 of 13 µg/mL [27].

In vivo anti-inflammatory effects of lucidenic acids have also been reported. In
a mouse model of 12-O-tetradecanoylphorbol-13-acetate-induced ear skin inflammation,
the tropical treatment of lucidenic acids A, D2, E2, and P inhibited skin inflammation with
ID50 values of 0.07, 0.11, 0.11, and 0.29 mg/ear, respectively [60].

4.3. Antioxidant Effect

The thiobarbituric acid reactive substances assay has demonstrated that G. lucidum
extract can suppress oxidative stress in rat liver mitochondria [16]. Among the different
fractions of G. lucidum extract, the fraction with ganoderic acids A, B, C, and D, lucidenic
acid B, and ganodermanontriol as major components had the highest protective effect
against lipid peroxidation [16]. Nevertheless, further studies are required to confirm the
antioxidant effect of lucidenic acids.

4.4. Anti-Viral Effect

The Epstein–Barr virus is a key risk factor for many malignant diseases, such as
nasopharyngeal carcinoma and Burkitt lymphoma. Notably, lucidenic acid A, C, D2,
E2, F, and P, methyl lucidenate A, methyl lucidenate E2, methyl lucidenate Q, and 20-
hydroxylucidenic acid N inhibited the activation of the Epstein–Barr virus early antigen
in Raji cells [50,60]. Human angiotensin-converting enzyme (hACE2) is the key receptor
for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into target
cells [76]. While the efficacy of anti-viral medications decreased with the appearance of
new SARS-CoV-2 variants [10], blocking hACE2 may be an effective method to prevent
SARS-CoV-2 infection [10]. The molecular docking results showed that lucidenic acid A has
good binding stability to hACE2 (interaction with the amino acid residues Gln96, Asn33
and Lys26) [61]. In vitro fluorescence resonance energy transfer tests also demonstrated
that lucidenic acid A inhibited hACE2 with an IC50 of 2 µmol/mL [61]. This suggests that
lucidenic acids may be useful for the prevention or treatment of COVID-19.

In addition, molecular docking has demonstrated that lucidenic acids A, B, C, and N
can bind to matrix metalloproteinase, so their effects on inhibiting the invasion of hepatitis
B virus have been proposed [62]. Moreover, lucidenic acids may have potential effects on
the human immunodeficiency virus (HIV). Lucidenic acid O has been reported to inhibit
HIV reverse transcriptase with an IC50 of 67 µM [49]. Moreover, 20-hydroxylucidenic acid
N and 20(21)-dehydrolucidenic acid N, which are derivatives of lucidenic acids, exhibited
anti-HIV-1 protease activity [9].

4.5. Neuroprotective Effect

Neurodegenerative diseases have become prevalent, owing to the aging population,
affecting more than 55 million people worldwide [77]. G. lucidum extract that contains
lucidenic acids exhibited neuroprotective effects [13]. Lucidenic acids A and N and methyl
lucidenic E2 inhibited acetylcholinesterase with IC50 values of 24.04 ± 3.46, 25.91 ± 0.89,
and 17.14 ± 2.88 µM, respectively [15]. Furthermore, another study reported that lucidenic
acid A inhibited acetylcholinesterase, with an IC50 of 54.5 µM [78]. In addition, lucidenic
acid N inhibited butyrylcholinesterase activity, with an IC50 of 188.36 ± 3.05 µM [15].
Cholinergic neurotransmitters decline in the brains of patients with Alzheimer’s disease.
The inhibition of cholinesterase by lucidenic acid may increase acetylcholine levels in the
central nervous system, thus enhancing cholinergic transmission [79].
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4.6. Anti-Hyperlipidemic Effect

Lucidenic acids have the potential to treat hyperlipidemia. Lucidenic acid N at
a concentration of 80 µM reduced triglyceride accumulation in 3T3-L1 preadipocytes by
approximately 30% [68]. Lucidenic acid N, methyl lucidenate E2, and methyl lucidenate
F have been reported to inhibit adipocyte differentiation [69]. Butyl lucidenate N, a luci-
denic acid derivative, inhibited adipogenesis in 3T3-L1 cells by downregulating the gene
expression of sterol regulatory element-binding protein-1c, fatty acid synthase, and acetyl-
CoA carboxylase [70]. Furthermore, lucidenic aid A has been proposed as a component
that is associated with the anti-hyperlipidemic effect of Fu-Ling-Pi, a traditional Chinese
medicine [63].

4.7. Anti-Hypercholesterolemic Effect

β-Hydroxyβ-methylglutaryl-CoA (HMG-CoA) reductase inhibitors are commonly
used as lipid-lowering medications. They can reduce cholesterol biosynthesis and regulate
lipid metabolism, thus preventing the incidence of mortality in coronary patients [80].
The results of virtual screening and in silico profiling have demonstrated the poten-
tial of lucidenic acids to interact with HMG-CoA reductase [67]. Additionally, another
study has shown that lucidenic acid E can inhibit HMG-CoA reductase, with an IC50 of
42.9 ± 0.9 µM [43].

4.8. Anti-Hyperglycemic Effect

A study reported that lucidenic acids E, H, and Q had promising anti-hyperglycemic
properties [43]. Among these, lucidenic acids E and Q inhibited α-glucosidase, with an IC50
of 32.5 and 60.1 µM, respectively [43]. They could also inhibit maltase, with an IC50 of 16.9
and 51 µM, respectively [43]. Moreover, lucidenic acid Q showed inhibitory activity against
sucrase in rats, with an IC50 of 69.1 µM [43]. PTP1B inhibitors are promising therapeutic
agents for diabetes [81]. Lucidenic acids H and E exhibited inhibitory activity against PTP1B
within a concentration range of 7.6–41.9 µM [43]. In addition, lucidenic acid Q inhibited
aldose reductase, which may be useful for the prevention of diabetic complications, such as
neuropathy [43].

4.9. Other Pharmacological Effects

Apart from the aforementioned pharmacological effects, lucidenic acid I, methyl luci-
denate E2, and dehydrolucidenic acid N have immunomodulatory activities that enhance
recovery from neutropenia, macrophage formation, and macrophage phagocytosis [14]. In
addition, a study has demonstrated that a G. lucidum nanogel, which contains 6.3% lucidenic
acid A and 7.3% lucidenic acid H, is effective for the topical treatment of frostbite [64].

5. Conclusions

This review summarizes the sources, contents, chemical structures, and pharmaco-
logical effects of lucidenic acids. Lucidenic acids are a group of tetracyclic triterpenoids
that possess anti-cancer, anti-inflammatory, antioxidant, anti-viral, anti-hyperlipidemic,
anti-hyperglycemic, neuroprotective, and immunomodulatory properties. Previous studies
on lucidenic acids are preliminary and have several limitations. Therefore, further stud-
ies are warranted for the development of lucidenic acids as medicines, functional foods,
and nutraceuticals.

6. Future Directions

As lucidenic acids have promising pharmacological effects and different Ganoderma
species contain different compositions of lucidenic acids, it has been proposed that the types
and levels of lucidenic acids in Ganoderma products may serve as an indicator for quality
control [82], similar to that used for ganoderic acids. Lucidenic acids and ganoderic acids
are C27 and C30 lanostane triterpenoids, respectively. Theoretically, this 3-carbon difference
may affect their physicochemical properties (e.g., stability and solubility), pharmacokinetic
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properties, and receptor binding. It is not known whether lucidenic acids are better
drug candidates when compared with ganoderic acids. However, we cannot exclude the
possibility that lucidenic acid may have certain pharmacological effects that ganoderic
acids do not have, such as the blocking effect of lucidenic acids on hACE2, which has never
been reported for ganoderic acid. Nonetheless, using lucidenic acids for the treatment
or prevention of any disease cannot be proposed yet because the research findings are
preliminary and inadequate. Therefore, further studies are required.

First, some effects of lucidenic acids were predicted using molecular docking. A typical
example is the proposed inhibitory effect of lucidenic acid on hACE2. Further in vivo and
in vitro studies are needed to verify the usefulness of lucidenic acids in the treatment of
COVID-19. Similarly, the potential anti-hyperlipidemic, anti-diabetic, and neuroprotective
effects of lucidenic acids were primarily studied using biochemical assays. Biological
studies using in vitro, ex vivo, or in vivo models should be performed. In addition, the
anti-cancer effects of lucidenic acids have been mostly demonstrated in in vitro models.
As lucidenic acids exhibit low toxicity against normal cells, in vivo studies, such as in
xenograft mouse models, should be considered in the future.

Second, the entire range of lucidenic acids should be studied to obtain a full picture
of their structure–activity relationship. For instance, many pharmacological studies have
been performed on lucidenic acids A, B, C, and N. Studies on their structures revealed
that these lucidenic acids possess a hydroxyl group at the C7 position and a keto group at
the C15 position. To confirm whether the hydroxyl and keto groups are essential for their
pharmacological effects (e.g., cytotoxicity), the other lucidenic acids should also be studied
(at least lucidenic acids E1, H, and P should be evaluated because they also contain these
two functional groups).

Third, the pharmacokinetics and bioavailability of lucidenic acids have not yet been
investigated. These data are crucial for drug development, especially for formulation
design and dosage regimens. A pharmacokinetic study in a rat model showed that the
oral bioavailability of ganoderic acid A was as low as 8.68% [83]. The bioavailability of
lucidenic acids, which have chemical structures similar to those of ganoderic acids, may
not be high. Nevertheless, even though lucidenic acids may not be easily absorbed in the
gastrointestinal tract, lucidenic acid can still be orally active if its potency is high enough.
Furthermore, the interactions between lucidenic acids and the gut microbiota should also
be taken into consideration. Recent studies have reported that ganoderic acids have the
potential to alleviate lipid metabolic disorders and diabetes mellitus, and ameliorate the
imbalance of gut microflora in hyperlipidemic and diabetic mice [84,85]. In addition, G.
lucidum extracts fermented by probiotics, such as Bifidobacterium bifidum and Lactobacillus
sakei, could be useful to enhance learning memory and cognitive function [86] and improve
immunity [87]. Probiotic fermentation of G. lucidum extracts induces structural changes
in the ganoderic acid components. Further studies are required to investigate whether
lucidenic acids can also be biotransformed into substances that will be beneficial for health.

The advantages of lucidenic acids are their versatile pharmacological effects, especially
on cancer, inflammation, neuroprotection, hyperlipidemia and hypercholesterolemia. These
diseases are common problems worldwide because of the aging population and unhealthy
lifestyle of the general population. Lucidenic acids are mainly found in edible fungi
such as G. lucidum, so they should be reasonably safe and can be tolerated by humans.
The cultivation of Ganoderma fungi can provide an adequate supply of lucidenic acids.
The associated production cost may even be lowered if lucidenic acids can be obtained
from mycelial cultures grown in large-scale fermentations. Nonetheless, the possible
disadvantages should not be neglected. For instance, the content of lucidenic acids from
Ganoderma fungi may be varied by environmental factors, so quality control is important. In
addition, different lucidenic acids may have different pharmacological effects. The isolation
of a specific type of lucidenic acid from crude extracts of Ganoderma fungi may be difficult
and costly. Lucidenic acids may have a broad spectrum of therapeutic properties but lack
specific molecular targets, which may cause unwanted side effects. Therefore, much more
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research must be conducted to develop lucidenic acids into medicines, functional food, or
nutraceuticals. It is hoped that this review can provide some insights into this research area.
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