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Abstract: Thyme is a colloquial term for number of aromatic species belonging to the genus Thymus
L., known for their expressed biological activities and therefore used worldwide for seasoning and
in folk medicine. In the present paper, the content of the total polyphenols (TP), total flavonoids
(TF), and antioxidant capacity were assessed in the extracts of four traditionally used thyme species.
Moreover, a comprehensive metabolomic study of thyme bioactive compounds was performed, and
the obtained data were processed using multivariate statistical tests. The results clearly demonstrated
the positive correlation between the content of the TP, TF, and antioxidant activity, and TF was more
significant than TP. The findings revealed that four selected thyme species contained 528 secondary
metabolites, including 289 flavonoids and 146 phenolic acids. Thymus marschallianus had a higher con-
centration of active ingredients, which improve its antioxidant capacity. Differentially accumulated
metabolites were formed by complex pathways such as flavonoid, flavone, flavonol, isoflavonoid, and
anthocyanin biosynthesis. Correlation analysis showed that 59 metabolites (including 28 flavonoids,
18 phenolic acids, and 7 terpenoid compounds) were significantly correlated with obtained values of
the antioxidant capacity. The results suggested that selected thyme species exhibit a great diversity
in antioxidant-related components, whereas flavonoids may be responsible for the high antioxidant
capacity of all studied thyme species. The present study greatly expands our understanding of the
complex phytochemical profiles and related applications of selected medicinal plants.

Keywords: Thymus; extract; phenolic acids; flavonoids; antioxidant activity; metabolites

1. Introduction

Thymus L. is among the most important genera of medicinal plants of the Lamiaceae
family, comprising over 200 species native to Europe, Asia, and North Africa [1,2]. Plants
of the genus Thymus are traditionally used in foods and folk medicine and have been
researched since ancient times. Studies on thyme species’ phytochemistry have revealed
that their secondary metabolites, such as flavonoids, phenolic acids, terpenoids, lignin,
and coumarins, are significant sources for treating digestive, circulatory, nervous respira-
tory, and other disorders [3–5]. In addition, polyphenols and flavonoids have excellent
antioxidant, antibacterial, and anticancer functions [6,7], and have been extensively used
in the food industry for our daily diet [8]. Former studies have found that reactive oxy-
gen species (ROS) are related to various diseases such as atherosclerosis, cardiovascular
diseases, diabetes mellitus, cancer, and so on [9,10]. Additionally, epidemiological studies
have confirmed that the incidence of oxidative-stress-related conditions is lowered by
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the consumption of fruits and vegetables rich in compounds possessing high antioxidant
activity [11,12]; thus, we would like to investigate the potential of these four thyme species
in the health industry. Considering their long period of use in human history, it is important
to further explore the valuable components of medicinal thyme species, originating from
and distributed across different regions.

In European Pharmacopoeia 8.0, Thymus vulgaris L [13]. and Thymus serpyllum [14]
were quoted as being thymi herba and wild thyme, respectively, exhibiting strong health-
related effects. In Chinese Pharmacopoeia and Xinjiang Medicinal Flora, Thymus quinquecostatus
Celak [15], and Thymus marschallianus Willd [16] are listed as the sources of medicinal
plants. Considering the growth form, two prominent growth types of the thymi herba
raw material (Thymus vulgaris) were mainly targeted: the erect-type and the creeping-type.
Erect-type thyme is taller and easier to harvest, and is widely cultivated in Europe and
the United States for pharmaceutical, food, and cosmetic applications, according to the
US Pharmacopoeia and European Pharmacopoeia [17]. Creeping-type thyme is known to
enhance microbiological properties and known for preventing the soil erosion thanks to
the extremely robust and developed roots [18]. Given the previous work of our research
group on thyme species [19,20], we found a different evolutionary background relating to
their natural geographical distribution. For this reason, the similarities and differences in
the components of erect-type and creeping-type thyme species and the differences in their
pharmacological functions have aroused our interest.

Metabolomics is used for the study of small molecular metabolites of samples under
certain physiological conditions, which is important for an assessment of their pharma-
ceutical effects and related drug quality control [21,22]. Most of the previous studies on
thyme species were focused on the analyses of their essential oils [3,23], whereas recent
studies revealed the importance of other secondary metabolites for pharmacological ac-
tivities [24]. Some researchers focused on the quantity and qualitative analyses of several
already known main compounds [15,16], where the global metabolic profiles of the species
were missing. Due to the high separation power of the liquid chromatography and the
great sensitivity of mass spectrometry (LC-MS), mass spectrometry with ultra-high phase
liquid chromatography (UPLC) has become an increasingly popular approach for the quali-
tative and quantitative evaluation of plant secondary metabolites [25]. A widely targeted
metabolomic method combines the advantages of targeted and nontargeted metabolite
detection technologies with a high sensitivity, high qualitative accuracy, high throughput,
great repeatability, and availability of comprehensive databases [26].

In this work, the four medicinal species of the genus Thymus (T. serpyllum, T. vulgaris,
T. quinquecostatus, and T. marschallianus) were examined for their total polyphenol and total
flavonoid concentrations, as well as their antioxidant activities. Furthermore, the secondary
metabolites of the samples were profiled using a widely targeted metabolomics method.
The goal of our work was to enrich the existing knowledge on the chemical profiles of
different thyme species, and to address their future uses related to antioxidant activity and
biological effects.

2. Results and Discussion
2.1. Total Polyphenol and Flavonoid Content

The content of the total polyphenols (TP) and total flavonoid (TF) was determined
from thyme ethanolic extracts. The TP contents were 49.80 ± 0.10, 64.4 ± 2.10, 64.78 ± 0.20,
and 64.50 ± 0.31 mg gallic acid equivalent/g of plant dry weight (mg GAE/g DW) in
T. serpyllum (TS), T. vulgaris (TV), T. quinquecostatus (TQ), T. marschallianus (TM), respectively
(Table 1). Additionally, the content of TF in TS was the lowest and significantly different
from that in TV, TQ, and TM. The TF contents were 182.0 ± 0.24, 217.4 ± 1.18, 225.3 ± 1.20,
and 279.0 ± 0.56 mg rutin equivalent (RU)/g of plant dry weight (mg RU/g DW) in TS,
TV, TQ, and TM, respectively, and there are significant differences between the four thyme
ethanol extracts (Table 1). These values prove that the erect-stem species have better activity
than that the creeping-type thyme from the same place of origin (Europe: erect-stems
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species TV > creeping-stems species TS; East: erect-stems species TM > creeping-stems
species TQ). This result was consistent with a previous study on cauliflower [27].

Table 1. The TP and TF content in ethanolic extracts of surveyed thyme species.

Species TP
(mg GAE/g DW)

TF
(mg RU/g DW)

T. serpyllum 49.80 ± 0.10 b 182.0 ± 0.24 d
T. vulgaris 64.4 ± 2.10 a 217.4 ± 1.18 c

T. quinquecostatus 64.78 ± 0.20 a 225.3 ± 1.20 b
T. marschallianus 64.50 ± 0.31 a 279.0 ± 0.56 a

p-value p < 0.01 p < 0.01
Note: TP: total polyphenols; TF: total flavonoid; GAE: gallic acid equivalent; QE: quercetin equivalent; DW: dry
weight. Values are expressed as the mean ± SD. p-value: probability values obtained via one-way ANOVA;
Different letters in the same line represent statistically different results (p ≤ 0.05) according to LSD.

2.2. Antioxidant Activity

In the study, the antioxidant activity of thyme ethanolic extracts was detected using
three methods: 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability (DPPH) free-
radical clearance rate, ferric reducing antioxidant power (FRAP), and 2,2′-Azinobis-(3-
ethylbenzthiazoline-6-sulphonate (ABTS) antioxidant power. The FRAP and ABTS an-
tioxidant power of extracts were expressed using the trolox equivalent (TE) (Table 2).
The DPPH free-radical scavenging process yielded values of 76.3 ± 0.87, 74.2 ± 0.22,
74.8 ± 0.32, and 80.7 ± 0.65 of free radical clearance rate in TS, TV, TQ, and TM, re-
spectively (Table 2). Additionally, the best DPPH scavenging property was shown for TM
(80.7 ± 0.65%). The results of the FRAP test resulted in values of 152.33 ± 1.63,
165.00 ± 1.74, 160.67 ± 1.32, and 187.67 ± 1.65 µmol TE/g DW in TS, TV, TQ, and TM, re-
spectively (Table 2). The antioxidant activity of ethanolic extract from TM was the strongest
in the FRAP test, which was consistent with the results of DPPH. However, the results of
FRAP showed that the worst activity was from TS ethanolic extracts, while the results of
DPPH were from TV ethanolic extracts. The results of the ABTS test resulted in the values
of 1.41 ± 0.21, 1.50 ± 0.03, 1.62 ± 0.16, and 1.54 ± 0.02 mmol TE/g DW in TS, TV, TQ, and
TM, respectively (Table 2). The best antioxidant activity detected via ABTS is from TM
ethanolic extracts. These results shown that the four thyme extracts had high antioxidant
activity. However, the same extracts had a different contribution to DPPH, FRAP, and
ABTS activity. For DPPH, small molecules may have a better chance to access the radical
with a subsequently higher TAC value [28]. The ethanolic extracts of four thyme species
contain different compounds and the same compounds have different contents. Therefore,
it was challenging to compare the antioxidant potency of the four surveyed thyme species
upon the results obtained from different antioxidant capacity methods. We used a suitable
alternative (antioxidant potency composite, APC) to comprehensively evaluate the antioxi-
dant activity of thyme ethanolic extracts according to previous studies [29,30]. The results
showed the APC index of DPPH, FRAP, and ABTS were 87.6%, 90.8%, 92.8%, and 98.4%
in TS, TV, TQ, and TM, respectively, following same pattern for the content of TF. These
results suggest that the antioxidant activity of thyme ethanolic extracts may be related to
the content of flavonoids.

Furthermore, the correlations between the content of TP, TF, and the APC index were
analyzed. For antioxidant activity (APC), the results showed the Pearson correlation
coefficient was 0.99 for TF, which was significant at the level of p ≤ 0.01. However, the
Pearson correlation coefficient was 0.70 for TP, which was significant at the level of p ≤ 0.05
(Figure 1). The results illustrate that TF play a more pivotal role in the antioxidant activity
of thyme ethanolic extracts. It was also shown that the TP content was highly related to the
TF content (p ≤ 0.01). This result may be due to the biosynthesis relations of flavonoids
and phenolic acids in plants, where many flavonoids occur in downstream biosynthesis
pathways of phenolic acids [31,32].
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Table 2. The antioxidant activity of ethanolic extracts of four surveyed thyme species.

Species DPPH
(% Inhibition)

FRAP
(µmol TE/g

DW)

ABTS
(mmol TE/g

DW)

APC
(% Inhibition)

T. serpyllum 76.3 ± 0.87 b 152.33 ± 1.63 d 1.41 ± 0.21 d 87.6.0 ± 6.67 b
T. vulgaris 74.2 ± 0.22 dc 165.00 ± 1.74 b 1.50 ± 0.03 c 90.8 ± 2.54 b

T. quinquecostatus 74.8 ± 0.32 c 160.67 ± 1.32 c 1.62 ± 0.16 a 92.8 ± 7.20 b
T. marschallianus 80.7 ± 0.65 a 187.67 ± 1.65 a 1.54 ± 0.02 b 98.4 ± 2.83 a

p value p < 0.01 p < 0.01 p < 0.01 p < 0.168
Note: DPPH: 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability; FRAP: ferric reducing antioxidant power;
ABTS: 2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate; APC: antioxidant potency composite index. Values are
expressed as the mean ± SD. p-value: probability values obtained from one-way ANOVA; Different letters in the
same line represent statistically different results (p ≤ 0.05) according to LSD.
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Figure 1. Pearson correlation plot of contents of TP and TF and APC. The content of total polyphenols
(TP), total flavonoids (TF) and the antioxidant potency composite index (APC) of DPPH, FRAP,
and ABTS were analyzed using Pearson correlation. Asterisk (*) indicates significant differences
(* p < 0.05, ** p < 0.01).

2.3. Profiling of Secondary Metabolites

Based on the results of the contents of TP and TF and related antioxidant activity,
the range of secondary metabolites was analyzed. The multi-reaction monitoring peak
graph exhibited all compounds that were detected in each sample (Figure S1), and we
evaluated targeted substances by extracting ion chromatograms (XICs) and EPI for each Q1
(m/z ± 0.2 Da); accurate (m/z) mass spectra, and the XIC and EPI spectrum of acacetin-7-O-
glucuronide are shown in Figures S2 and S3. The profiles of metabolites detected in the
four selected thyme species are presented in Figure 2, Supplementary Table S1. The classifi-
cation of secondary metabolites of different thyme species was analyzed using principal
component analysis (PCA). The first PC axis and the secondary PC axis explained 80.6%
of the overall variance (Figure 2A). Chinese thyme—TQ and TM—was clearly separated
from TV according to PC1 (47.9%), and from TS according to PC2 (32.7%). In conclusion,
the metabolic variation between TQ, TM, TV, and TS were obviously high, whereas TQ
and TM showed presence of the similar metabolites (Figures 2A and S4 and Table S2).
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Temperature, precipitation, and soil characteristics varied a lot between different habi-
tats, affecting the types and quantity of secondary metabolites [32–35], in addition to the
species-specific metabolomic profile. The high connection and differences between species
were depicted from the heat map between samples (Figure 2B). Figure 2C showed that
528 secondary metabolites were identified by widely targeted metabolomics, referring to
289 flavonoids, 146 phenolic acids, 40 terpenoids, 20 lignin and coumarin compounds, 13 al-
kaloids, 6 quinones, and 10 other compounds. Detailed information on the metabolomic
profiles is shown in Table S1. Moreover, 462, 411, 469, and 472 compounds were detected in
TQ, TS, TM, and TV, respectively, and eight types were used to categorize all metabolites
(Figure 2C). The main secondary metabolites in thyme are flavonoids and phenolic acids,
which make up more than 80% of all identified compounds (Figure 2C). Furthermore, the
TQ, TM, and TV exhibited more numerous and higher contents of some active substances
compared with TS (Figure 2B,C). Concerning evaluated antioxidant capacity (Table 2), it
could be suggested that the quantity and the content of metabolites strongly affect antioxi-
dant activity. Only a few metabolites were exclusively found in a single studied species (in
TS 2, in TM 4, in TV 10, and in TQ 18 species-related compounds), while 342 molecules were
shared between four surveyed thyme species as shown in a Venn diagram, demonstrating
a significant genus-dependent commonality in metabolic composition (Figure 2D). Most
of the components was shared between the different thyme species, which is in line with
an earlier study targeting metabolites in close species [36–39]. In addition, the four com-
pounds specific to TM are Genistein-7-O-Glucoside, Salvianolic acid A, Petunidin-3-O-(6′′-
O-p-Coumaroyl)glucoside and Luteolin-7-O-glucuronide-(2→1)-(2′′-Feruloyl)glucuronide.
These four compounds, which have a strong antioxidant activity [40–42], may be the reason
why the antioxidant activity of TM is stronger than that of other species.

2.4. Difference Analysis of Secondary Metabolites

Differentially accumulated metabolites (DAMs) were analyzed with a fold change (FC)
of ≥2 and OPLS-DA VIP value of ≥1. Figure 3A displays the number of chemicals that
were up- or down-regulated after pairwise sample comparison. The group TQ_VS_TM had
the fewest DAMs, with just 302 metabolites (166 upregulated and 136 downregulated). The
most DAMs were found in the group TQ_VS_TV, accounting for 356 (151 upregulated and
205 downregulated). Moreover, TS compared with TQ, TM, or TV, had a higher number of
the downregulated DAMs than the other group. This result was consistent with the number
of metabolites identified in the four thyme ethanolic extracts, showing that the minimum
quantity of secondary metabolites was identified in TS. A total of 164 DAMS was shared
between the four analyzed thyme species (TQ, TM, TV and TS), and the unique DAMs of
TQ_VS_TS, TS_VS_TV, and TS_VS_TM were 53, 49, and 32, respectively (Figure 3B).

From the PLS-DA loading plot (Figure 4), we identified the main compounds of
metabolites that differentiate the four thyme species, a total of 92 significant metabolites
were selected on the basis of VIP values (VIP > 0.85).

The phenolic acid discriminating TQ, TS, TM, and TV by VIP 1 were as follows
(Figure 4A): benzoylmalic acid, cryptochlorogenic acid, salvianolic acid A, 5′-Glucosyl-
oxyjasmanic acid, salicylic acid O-glycoside, 1-O-Salicyl-D-glucose, tormentic Acid, thymol,
carvacrol, chlorogenic acid, salvianolic acid K, 6-O-Caffeoyl-D-glucose, neochlorogenic
acid, sagerinic acid, caffeic acid, trihydroxycinnamoylquinic acid, and chlorogenic acid
methyl ester.

The landmark differential flavonoids of four thyme species by VIP 1 were present
as follows (Figure 4B): luteolin-7-O-glucuronide-(2→1)-glucuronide, luteolin-7-O-rutinoside,
luteolin-7-O-neohesperidoside, luteolin-7-O-glucoside, apigenin-7-O-rutinoside, apigenin-7-O-
(6′′-p-Coumaryl)glucoside, kaempferol-3,7-di-O-glucoside, kaempferol-3-O- neohesperidoside,
kaempferol-3-O-rutinoside, kaempferol-3-O-galactoside, kaempferol-3-O-sambubioside,
kaempferol-7-O-glucoside, eupatorin, eupatilin, eriodictyol-7-O-glucoside, eriodictyol-7-O-
rutinoside, maringenin, butin, naringenin chalcone, chrysosplenol D, tenaxin I, skullcap
flavone II, diosmetin-7-O-glucuronide, and cyanidin-3-O-(6′′-O-p-Coumaroyl)glucoside.



Molecules 2023, 28, 2582 6 of 15Molecules 2023, 28, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 2. Overview of metabolites analysis detected in four thyme species. TQ: T. quinquecostatus, 
TS: T. serpyllum, TM: T. marschallianus, TV: T. vulgaris. (A) PCA analysis of the metabolites of TQ, 
TS, TM, and TV. (B) Cluster heatmap of metabolite content in different samples. (C) Distribution of 
substances in different thyme material. (D) Venn diagram of metabolite distribution in different 
thyme species. 

2.4. Difference Analysis of Secondary Metabolites 
Differentially accumulated metabolites (DAMs) were analyzed with a fold change 

(FC) of ≥2 and OPLS-DA VIP value of ≥ 1. Figure 3A displays the number of chemicals 
that were up- or down-regulated after pairwise sample comparison. The group 
TQ_VS_TM had the fewest DAMs, with just 302 metabolites (166 upregulated and 136 
downregulated). The most DAMs were found in the group TQ_VS_TV, accounting for 356 
(151 upregulated and 205 downregulated). Moreover, TS compared with TQ, TM, or TV, 
had a higher number of the downregulated DAMs than the other group. This result was 
consistent with the number of metabolites identified in the four thyme ethanolic extracts, 
showing that the minimum quantity of secondary metabolites was identified in TS. A total 
of 164 DAMS was shared between the four analyzed thyme species (TQ, TM, TV and TS), 
and the unique DAMs of TQ_VS_TS, TS_VS_TV, and TS_VS_TM were 53, 49, and 32, re-
spectively (Figure 3B). 

Figure 2. Overview of metabolites analysis detected in four thyme species. TQ: T. quinquecostatus, TS:
T. serpyllum, TM: T. marschallianus, TV: T. vulgaris. (A) PCA analysis of the metabolites of TQ, TS, TM,
and TV. (B) Cluster heatmap of metabolite content in different samples. (C) Distribution of substances
in different thyme material. (D) Venn diagram of metabolite distribution in different thyme species.

Molecules 2023, 28, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. Differentially accumulated metabolites (DAMs) analysis. TQ: T. quinquecostatus, TS: T. ser-
pyllum, TM: T. marschallianus, TV: T. vulgaris. (A) Bar graph of number of upregulated and down-
regulated DAMs through pairwise comparisons. (B) Venn graph for DAMs from the pairwise com-
parisons of TS and three other materials (TV, TQ, TM). 

From the PLS-DA loading plot (Figure 4), we identified the main compounds of me-
tabolites that differentiate the four thyme species, a total of 92 significant metabolites were 
selected on the basis of VIP values (VIP > 0.85). 

The phenolic acid discriminating TQ, TS, TM, and TV by VIP 1 were as follows (Fig-
ure 4A): benzoylmalic acid, cryptochlorogenic acid, salvianolic acid A, 5′-Glucosyloxyjas-
manic acid, salicylic acid O-glycoside, 1-O-Salicyl-D-glucose, tormentic Acid, thymol, car-
vacrol, chlorogenic acid, salvianolic acid K, 6-O-Caffeoyl-D-glucose, neochlorogenic acid, 
sagerinic acid, caffeic acid, trihydroxycinnamoylquinic acid, and chlorogenic acid methyl 
ester. 

The landmark differential flavonoids of four thyme species by VIP 1 were present as 
follows (Figure 4B): luteolin-7-O-glucuronide-(2→1)-glucuronide, luteolin-7-O-rutino-
side, luteolin-7-O-neohesperidoside, luteolin-7-O-glucoside, apigenin-7-O-rutinoside, 
apigenin-7-O-(6″-p-Coumaryl)glucoside, kaempferol-3,7-di-O-glucoside, kaempferol-3-
O-neohesperidoside, kaempferol-3-O-rutinoside, kaempferol-3-O-galactoside, 
kaempferol-3-O-sambubioside, kaempferol-7-O-glucoside, eupatorin, eupatilin, eriodic-
tyol-7-O-glucoside, eriodictyol-7-O-rutinoside, maringenin, butin, naringenin chalcone, 
chrysosplenol D, tenaxin I, skullcap flavone II, diosmetin-7-O-glucuronide, and cyanidin-
3-O-(6″-O-p-Coumaroyl)glucoside. 

Figure 3. Differentially accumulated metabolites (DAMs) analysis. TQ: T. quinquecostatus, TS:
T. serpyllum, TM: T. marschallianus, TV: T. vulgaris. (A) Bar graph of number of upregulated and
downregulated DAMs through pairwise comparisons. (B) Venn graph for DAMs from the pairwise
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To study the metabolite pathway information in the selected thyme species, we per-
formed KEGG enrichment analysis and variable importance analysis in projection of
the DAMS of TS, comparing these parameters in TV, TQ, and TM. The top 20 DAM
enrichment pathways are displayed in Figure 5A,C,E. The biosynthesis of flavonoids,
flavones, flavonols, isoflavonoids, and anthocyanins was greatly enriched in the DAMs.
Flavonoids, flavones, flavonols, isoflavonoids, and anthocyanins have strong antioxidant
activity [43–45]. These findings might explain why TV, TQ, and TM had some higher
levels of TP and TF, as well as better antioxidant activity. Figure 5B,D,F also showed
that flavonoids are the major VIP constituents in three comparison groups. These results
illustrate that flavonoids play a vital role in antioxidant activity. This coincides with
the previous studies [45–47]. In addition, it was found that seven DAMS (Diosmetin-7-
O-galactoside, 6-C-MethylKaempferol-3-glucoside, 5,2′-Dihydroxy-7,8-dimethoxyflavone
glycosides, Luteolin-7-O-glucoside (Cynaroside), Salvianolic acid I, Quercetin-3-O-
(4′′-O-glucosyl) rhamnoside, Delphinidin-3-O-(6′′-O-p-coumaroyl) glucoside) were
common to all groups, suggesting that they may act as important antioxidant molecules
(Figure S4 and Table S2).

2.5. Correlation Analysis of Secondary Metabolites and Antioxidant Capacity

The relationship between antioxidant capacity and 528 secondary metabolites was
examined to study an impact of the secondary metabolites on values of antioxidant capacity
and the results are shown in Figure 6. According to the performed correlation analysis,
59 metabolites were significantly correlated (p < 0.05) with APC. Among them, 31 metabo-
lites, including 14 flavonoids, 10 phenolic acids, 2 anthocyanins, 1 flavanol, and 1 isoflavone,
had a statistically positive correlation with APC (Figure 6 and Table S3). In addition,
flavonoids were the most abundant substances in the secondary metabolites identified in
the four thyme ethanolic extracts (Figure 2C). In the correlation analysis, Acacetin-7-O-
glucuronide, 5,7,4′-Trihydroxyisoflavone-7-O-galactoside-rhamnose, 3′,4′,5,6,7-Pentameth-
oxyflavanone, Wogonin-7-O-Glucuronide, and Apigenin-7-O-(2′′-feruloyl) glucuronide
showed strongly positive correlations at a level of p ≤ 0.01 with APC. Previous studies
have also shown that flavonoids have a strong antioxidant activity [43–47]. For example,
Huang et al. found Wogon-in-7-O-Glucuronide alleviates colitis by improving the intestinal
epithelial barrier function via the MLCK/pMLC2 pathway [48]. These results indicate
that the strong antioxidant activity of thyme ethanolic extract may due to the flavonoids.
Moreover, our results indicate that some terpenoids and other components of thyme,
in addition to flavonoids and phenolic acids, are also significant antioxidants (Figure 6,
Table S3).

From the results of the correlation analysis, the acacetin, apigenin, wogonin, and
luteolin were the main active flavonoid aglycones, which are derived from the shikimic
acid pathway and phenylpropanoid metabolism [49]. The structural characteristics for
the antioxidant activity of typical flavonoids were discussed. The first is the catechol
structure of the B ring [50], followed by the conjugated structure of the 2,3-double bond
and the 4-oxygen functional group [51]. The presence of the 3-OH group and the 5-OH
group contributes to forming a stable flavonoid structure [52]. These functional groups can
exert antioxidant activity through hydrogen bond binding and electron transfer. Moreover,
they can exert the antioxidant activity through metal chelation, and can also enhance
electron transfer through delocalized electrons. The number, location, and degree of
hydroxyl groups determine the antioxidant activity. The excellent antioxidant activity of
quercetin [53] and other substances is closely related to their molecular structure. In thyme,
the identification of 528 secondary metabolites provides a basis for the better understanding
of antioxidant activity.

In addition, different antioxidant indexes of thyme were evaluated, and the principles
of different antioxidant activity detection methods were different. The DPPH, ABTS, and
FRAP used in this study were evaluated through the electron transfer method, and the
antioxidant activity was evaluated through the detection of the value of the weakened
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color under the absorbance. In the detection of the total flavonoids, the Folin–Ciocalteu
method has better affinity for flavonoids and flavonols, and the binding of flavanones and
isoflavone is not stable, which deserves further attention in subsequent studies [54].
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3. Materials and Methods
3.1. Plant Materials

The four thyme species were obtained from the aromatic nursery plant germplasm of
the China National Botanical Garden, situated at 39◦48′ N 116◦28′ E, located at the Institute
of Botany of the Chinese Academy of Science, Beijing, China. Detailed information on the
plant material is provided in Figure 7, more detailed morphological information of the four
species is listed in Table S4.

3.2. Sample Preparation

The whole aboveground parts of the plants in the blooming period were harvested and
put in liquid nitrogen immediately, then placed in a freeze-drying machine (Scienntz-100F)
for vacuum freeze-drying for 72 h, and then ground to a powder using a grinder (MM 400,
Retsch) for 30 Hz and 1.5 min. A total of 100 mg powder of each specie was weighed and
dissolved in 1.2 mL of 70% methanol extract, vortexed 6 times in total for the extraction
process, lasting 30 s each time with an interval of 30 min. The samples were placed in a
refrigerator overnight at 4 ◦C, and then centrifuged at 12,000 rpm for 10 min, while the
supernatants were sucked out and collected. The samples were filtered using a 0.22 µm
membrane and kept in brown vials for further metabolite and antioxidant activity analysis.

3.3. Determination of Total Polyphenols and Total Flavonoids

The total polyphenols content was evaluated with the Folin–Ciocalteu method [54],
with some modifications. In terms of mg gallic acid equivalents (GAE) per gram of
dry weight, the data were presented using a standard curve using the equation
y = 1.0407x + 0.0234, R2 = 0.999). The total flavonoid content was assessed with some
modification of the assessment used in reference [55]. Absorbance was measured at
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430 nm. The results were expressed as mg rutin equivalents (RU)/g of DW, calibration
curve (y = 1.6277x − 0.0049, R2 = 0.999).
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Figure 7. The material tested in the present study, and the morphological comparison between
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(6); blade cross section (7); cross section of stem (8); lateral view of stem (9).

3.4. Antioxidant Activities

The test for DPPH radical scavenging activity was modified from the relevant litera-
ture [56]. Absorbance was measured at 517 nm. DPPH values were expressed as DPPH
free radical clearance rate (%) (y = 3.0942x − 0.4082, R2 = 0.995). ABTS activity was assayed
according to related references [56] with modifications. Absorbance was measured at
734 nm. ABTS activity was measured in mmol trolox equivalents (TE) per gram of dry
weight (y = 2.59x + 0.012, R2 = 0.9997). FRAP activity was assayed according to related
references [57] with modifications. Absorbance was measured at 593 nm. FRAP activity
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was expressed as µmol TE per gram of dry weight (y = 4.23x + 0.026, R2 = 0.9996). Each
sample was assayed in triplicate. Based on three antioxidant assays results, API [29,30] was
calculated according to the following equation: API = [(sample score/best score) × 100]%.
The average values of all three tests were identified as APC.

3.5. UPLC-ESI-Q TRAP-MS/MS

The metabolite data were obtained using the UPLC-ESI-MS/MS system (UPLC, SHI-
MADZU Nexera X2; MS, Applied Biosystems 4500 Q TRAP; Agilent SB-C18 column
(1.8 µm, 2.1 mm × 100 mm). Using the gradient elute technique, the mobile phase was
composed of clean water with 0.1% formic acid (A) and acetonitrile with 0.1% formic acid
(B). The gradient program was as follows: 0–9 min, B (5–95%) increased linearly; 9–10 min,
B (95%) kept for 1 min; 10–11.10 min, B (95–5%) decreased linearly; 11.10–14 min, then B
(5%) kept for 2.9 min. The flow rate was 0.35 mL/min with column oven at 40 °C. The
injection volume was 4 µL. A triple quadrupole linear ion trap mass spectrometer was
used to acquire linear ion trap and triple quadrupole scans, and an ESI Turbo Ion-Spray
interface was installed and was operational in both positive and negative ion mode. The
metabolites data were analyzed with Analyst 1.6.3. The ESI parameters were set as follows:
turbo spray (ion-source); source temperature (550 ◦C); ion spray voltage IS positive ion
mode was set at 5500 V and ion spray voltage IS negative ion mode was set at −4500 V; ion
source gas I set at 50 psi, ion source gas II set at 60 psi, ion source curtain gas set at 25 psi;
collision-activated dissociation set at high; solutions of 10 and 100 µmol/L polypropylene
glycol solutions were utilized to complete fine-tuning and mass calibration in the QQQ
and LIT modes. According to the metabolites eluted during each phase, a particular set of
MRM transitions were monitored.

3.6. Data Analysis

Triplicate analyses of the TP content, TF content, and antioxidant capacity were
performed, and the results were represented as the mean with standard deviation (SD).
Origin was used to depict correlation analysis (p < 0.05), heatmaps, principal component
analysis (PCA) plots [58], and orthogonal partial least-squares discriminant analysis (OPLS-
DA) (version 2021). DAMs were selected with a fold change of ≥2 and variable importance
in projection value (VIP ≥ 1) from the OPLS-DA model. Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database (http://www.kegg.jp/kegg/pathway.html, accessed
on 14 October 2022) was used to annotated metabolites, and differences were considered
significant at p < 0.05.

4. Conclusions

The TP content, TF content, antioxidant capacity (APC of DPPH, FRAP and ABTS), and
widely targeted metabolomics in four traditionally used thyme species were systematically
researched for the first time. T. quinquecostatus and T. marschallianus had a higher content
of TP and TF, and showed a higher antioxidant activity, followed by the T. vulgaris and
T. serpyllum which exhibited a lower content of TP and TF, and a related antioxidant capacity.
A total of 528 secondary metabolites, including 289 flavonoids and 146 phenolic acids, was
profiled using widely targeted metabolomics. The antioxidant capacity was the strongest
in T. marschallianus. KEGG enrichment analysis and variable importance in the projection
of DAMS showed the biosynthesis of flavonoids, flavones, flavonols, isoflavonoids, and
anthocyanins was greatly enriched in the DAMs. A total of 31 identified target compounds
(including 14 flavonoids, 10 phenolic acids, 2 anthocyanins, 1 flavanol and 1 isoflavone) may
be responsible for differences in the antioxidant activity of the studied species. Flavonoid
content was rich in all thyme species, while the components varied a lot. The present
study contributed to our understanding of the Thymus metabolomics, and addresses the
meaningful bioactive potential of its species, indicating that numerous flavonoids highly
contribute to the strong antioxidant activity and biological effects of the thyme.

http://www.kegg.jp/kegg/pathway.html
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