
Citation: Arshad, N.; Parveen, U.;

Channar, P.A.; Saeed, A.; Saeed, W.S.;

Perveen, F.; Javed, A.; Ismail, H.; Mir,

M.I.; Ahmed, A.; et al. Investigation

of Newly Synthesized

Bis-Acyl-Thiourea Derivatives of

4-Nitrobenzene-1,2-Diamine for

Their DNA Binding, Urease

Inhibition, and Anti-Brain-Tumor

Activities. Molecules 2023, 28, 2707.

https://doi.org/10.3390/

molecules28062707

Academic Editor: H. P. Vasantha

Rupasinghe

Received: 13 February 2023

Revised: 13 March 2023

Accepted: 13 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Investigation of Newly Synthesized Bis-Acyl-Thiourea
Derivatives of 4-Nitrobenzene-1,2-Diamine for Their DNA
Binding, Urease Inhibition, and Anti-Brain-Tumor Activities
Nasima Arshad 1,*, Uzma Parveen 1, Pervaiz Ali Channar 2, Aamer Saeed 3, Waseem Sharaf Saeed 4 ,
Fouzia Perveen 5, Aneela Javed 6, Hammad Ismail 7 , Muhammad Ismail Mir 1 , Atteeque Ahmed 3, Basit Azad 5

and Ishaq Khan 8

1 Department of Chemistry, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan;
uzmarajpoot123@gmail.com (U.P.); overlord.scorpion6@gmail.com (M.I.M.)

2 Department of Basic Sciences and Humanities, Dawood University of Engineering and Technology,
Karachi 74800, Pakistan; pervaiz.ali@duet.edu.pk

3 Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; asaeed@qau.edu.pk (A.S.);
aahmed@chem.qau.edu.pk (A.A.)

4 Restorative Dental Sciences Department, College of Dentistry, King Saud University,
Riyadh 11545, Saudi Arabia; wsaeed@ksu.edu.sa

5 School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and
Technology (NUST), Islamabad 44000, Pakistan; fouzia@sines.nust.edu.pk (F.P.);
basitazad50@gmail.com (B.A.)

6 Healthcare Biotechnology Atta-ur-Rehman School of Applied Biosciences, National University of Sciences
and Technology (NUST), Islamabad 44000, Pakistan; javedaneela19@asab.nust.edu.pk

7 Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat 50700, Pakistan;
hammad.ismail@uog.edu.pk

8 Texas A&M Health Science Center, Joe H. Reynolds Medical Build, College Station, TX 77843, USA;
isaackhan1@tamu.edu

* Correspondence: nasimaa2006@yahoo.com or nasima.arshad@aiou.edu.pk

Abstract: Bis-acyl-thiourea derivatives, namely N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl)) bis
(carbonothioyl))bis(2,4-dichlorobenzamide) (UP-1), N,N’-(((4-nitro-1,2-phenylene) bis(azanediyl))bis
(carbonothioyl))diheptanamide (UP-2), and N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbono-
thioyl)) dibutannamide (UP-3), were synthesized in two steps. The structural characterization of
the derivatives was carried out by FTIR, 1H-NMR, and 13C-NMR, and then their DNA binding,
anti-urease, and anticancer activities were explored. Both theoretical and experimental results, as
obtained by density functional theory, molecular docking, UV-visible spectroscopy, fluorescence (Flu-
)spectroscopy, cyclic voltammetry (CV), and viscometry, pointed towards compounds’ interactions
with DNA. However, the values of binding constant (Kb), binding site size (n), and negative Gibbs free
energy change (∆G) (as evaluated by docking, UV-vis, Flu-, and CV) indicated that all the derivatives
exhibited binding interactions with the DNA in the order UP-3 > UP-2 > UP-1. The experimental
findings from spectral and electrochemical analysis complemented each other and supported the
theoretical analysis. The lower diffusion coefficient (Do) values, as obtained from CV responses of
each compound after DNA addition at various scan rates, further confirmed the formation of a bulky
compound–DNA complex that caused slow diffusion. The mixed binding mode of interaction as seen
in docking was further verified by changes in DNA viscosity with varying compound concentrations.
All compounds showed strong anti-urease activity, whereas UP-1 was found to have comparatively
better inhibitory efficiency, with an IC50 value of 1.55 ± 0.0288 µM. The dose-dependent cytotoxicity
of the synthesized derivatives against glioblastoma MG-U87 cells (a human brain cancer cell line)
followed by HEK-293 cells (a normal human embryonic kidney cell line) indicated that UP-1 and
UP-3 have greater cytotoxicity against both cancerous and healthy cell lines at 400 µM. However,
dose-dependent responses of UP-2 showed cytotoxicity against cancerous cells, while it showed no
cytotoxicity on the healthy cell line at a low concentration range of 40–120 µM.
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1. Introduction

Thiourea, an organosulfur compound, and urea have structural similarity with the
exception that the –O atom is replaced by an –S atom. It is considered a very impor-
tant reagent in organic synthesis. Thiourea and its derivatives are chemically versatile
and biologically active compounds and possess a broad window of applications in med-
ical chemistry such as antimicrobial agents, antibacterial agents [1–3], influenza virus
inhibitors [4], anti-epileptic medications [5], anti-HIV medications [6,7], pesticides [8,9],
and antioxidants [10,11]. Bioactive thioureas bear nitrogen as a hydrogen-binding area, sul-
fur as a complementary binding area, and substituents as auxiliary binding areas [12]. The
sulfur- and nitrogen-containing core structure has an ability to develop hydrogen acceptor
and hydrogen doner sites in the active pocket of various enzymes. Although thiourea and
related sulfur- and nitrogen-containing compounds have limited selectivity for different
targets and act like PAINS (pan-assay interference compounds), this is not true for all cases.
Various thiourea-based pharmacophores selectively inhibit serval enzymes such as urease
and glucosidase, and they act as antileishmanial agents. Thioureas also act as precursors for
synthesis of various complexes and metal complexes [13]. The long-chain alkyl portion has
an important role in adjusting lipophilic character in the molecule. Instead of acting as a
lipophilic tuning portion, it has disadvantages due to its chain behavior. We can introduce a
globular portion in the molecule for the purpose, such as adamantane [14]. The nitro group
in the molecule has static charges and binds with DNA and other intracellular sites. The
structures of some biologically active thiourea derivatives are provided in Figure 1 [15–20].
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Bis-thioureas are compounds bearing two thiourea units. Such moieties are prone to
notable pharmacological activities. Both symmetrical and unsymmetrical bis-thioureas have
been employed in many therapeutics. For example, at nanomolar concentrations, phenyl-
bis phenylthiourea (Figure 2a) exhibited cytotoxicity toward several cancerous cell lines [21],
a polyamine analog of alkylated bis-thiourea (Figure 2b) exhibited antitumor activity by
serving as a lysine-specific demethylase inhibitor [22], arylalkylpolyamino (bis)thiourea
isosteres displayed antimalarial activity (Figure 2c) against Plasmodium falciparum [23],
and a novel bis-thiourea derivative bearing an alkyl chain length (n = 10), (Figure 2d),
showed marvelous anti-bacterial activity against E. coli ATCC 25922 [24]. These clinical and
biological activities motivated us to synthesize nitro-phenylene derivatives of symmetrical
bis-thioureas (UP-1–3) and to further study them for DNA binding, urease inhibition, and
anticancer potentials.
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Figure 2. Compounds containing bis-thiourea nucleus: (a) phenyl-bis phenylthiourea, (b) a
polyamine analog of alkylated bis-thiourea, (c) arylalkylpolyamino (bis)thiourea isosteres, (d) a
novel bis-thiourea derivative.

2. Results and Discussion
2.1. Chemistry of the Synthesized Bis-Thioureas

Three bis-thiourea derivatives were synthesized according to the synthetic pathway
depicted in Scheme 1, which also displays the complete structures of the synthesized
derivatives. Suitably substituted acid chlorides were converted to corresponding acyl
isothiocyanate by addition of KSCN in acetone and then in situ followed by addition of
an equimolar amount of 4-nitrobenzene-1,2-diamine to afford solid products which were
recrystallized from ethanol to afford acyl thioureas (3a-c/UP1–UP3) in excellent yields
(73–89%) and high purity.
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The FTIR and NMR (1H-, 13C-) spectrum of each compound is provided in Figures S1–S9
in the supplementary material. The FTIR spectral data revealed characteristic N-H stretching
ranging from 3479 to 3187 and 3381 to 3030 cm−1, respectively, whereas carbonyl and
thiocarbonyl stretching appeared in the range 1650–1695 cm−1 and 1240–1300 cm−1, re-
spectively. In the case of UP-1, N-H stretching was found at 3479 cm−1 and 3381 cm−1,
a C=O peak was found at 1697 cm−1, and a C=S peak was found at 1309 cm−1. In the
1H-NMR spectrum, two singlets integrating 1H each appeared in the range of 12.67–12.08
and 12.42–11.57, respectively. Alkyl protons appeared in an alkyl envelop in the range
of 2.50–0.8 ppm. The 13C-NMR spectrum further affirmed the structural assignment by
exhibiting the characteristic signals for the thioamide and amide carbons at 181.5 and
166.9 ppm, respectively, besides the aromatic or aliphatic, carbonyl, and thiocarbonyl
carbons. Alkyl carbon signals appeared in the range of 36.12–14.40 ppm.

2.2. In Silico Investigations
2.2.1. DFT Studies

DFT/GGA:PBE was used to model and optimize structures of UP-1, UP-2, and UP-3
and to detect geometrical and electrical characteristics. The optimized structures of all the
derivatives with symmetrical charge distribution and their mapping molecular electrostatic
potential (MESP) surfaces mapped between −0.836 esu and 0.836 esu are illustrated in
Figure 3. It is perceptible from Figure 3 that negative potenial is confined to –O, –Cl,
and –S atoms, which intimates elecron transfer from these atoms. The –O, –Cl, and –S
centers contribute as nucleophilic regions, whereas –C, –N and, –H atoms contribute as
electrophilic regions, as indicated by red and blue color, respectively. Furthermore, the
chemical transition was anticipated by frontier molecular orbital analysis (FMOs) [25,26].
The HOMO and LUMO orbitals are shown in Figure 3, and the their EHOMO and ELUMO
∆E values are provided in Table 1. The EHOMO and ELUMO values offer an idea of the
nature of an electron-accepting or electron-donating compound, and, thus, a compound is
deemed to be more electron accepting when the value of its ELUMO decreases and more
electron-donating when value of its EHOMO increases. The computed values showed that



Molecules 2023, 28, 2707 5 of 20

the electron transfer in UP-3 is more viable as compared to UP-1 and UP-2 due to a smaller
HOMO–LUMO gap; hence, UP-3 could be said to have highest reactivity amongst the
investigated compounds.
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(mid), and HOMO and LUMO (bottom) of the compounds (a) UP-1, (b) UP-2, and (c) UP-3 at the
GGA:PBE/DZ level of theory.

The global indices/chemical descriptors such as ionization potential (I), electron
affinity (A), softness (S), hardness (η), chemical potential (µ), and electronegativity (χ)
were determined based on the HOMO and LUMO energy values by using the equations
{(I = −EHOMO), (A = −ELUMO), (η = I − A/2), (µ = −(I + A)/2), (S = 1/2η), and
(χ = (I + A)/2)}, and the results are presented in Table 1. The hardness was considered as
the reactivity indicator. The greater hardness and lower softness of UP-1 as compared to
UP-2 then UP-3 indicated that the deformation resistance of the electron cloud of the com-
pound had increased, thus slightly decreasing reactivity. Most negative chemical potentials
showed low interaction, and the data revealed that UP-3 had greater interaction, as it had
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greater value of chemical potential. Additionally, the softness of the compound UP-3 was
found to be higher, which led to its higher interaction.

Table 1. DFT and molecular docking data of compounds for DNA and urease enzyme binding.

DFT Molecular Docking

Compounds
Electronic Descriptors Compound—DNA Compound—Urease

EHOMO/(eV) ELUMO/(eV) ∆E/(eV) Kb/M−1 ∆G/kJ mol−1 Kb/M−1 ∆G/kJ mol−1

UP-1 −6.36 −4.96 1.40 1.48 × 102 −12.39 6.73 × 105 −33.25
UP-2 −5.42 −4.75 0.67 4.33 × 103 −20.76 3.71 × 104 −26.07
UP-3 −5.51 −4.96 0.55 5.23 × 103 −21.21 5.56 × 103 −21.37

Chemical descriptors calculated based on frontier orbital analysis

Compounds I/(eV) A/(eV) η/(eV) µ/(eV) χ/(eV) S/(eV)

UP-1 6.36 4.96 0.70 −0.7 5.66 0.71
UP-2 5.42 4.75 0.33 −0.33 5.08 1.51
UP-3 5.51 4.96 0.27 −0.27 5.23 1.85

2.2.2. Molecular Docking—DNA Binding and Anti-Urease Activity

The molecular mechanism between ligand–DNA and ligand–urease interactions could
be simulated and interpreted by using a molecular docking approach. The compounds’
conformation (for UP-1–3) with minimum free energies and docked poses are given in
Figures 4 and 5, respectively, for their binding with DNA and urease. The binding free
energy (∆G) and binding constant “Kb” values evaluated for UP-1–3–DNA and for UP-1–3–
urease interactions are provided in Table 1.

The molecular docking analysis revealed interaction of all the compounds with DNA
by a mixed mode including partial intercalation and groove binding. The LigPlots indicated
2D interactions of all compounds with DNA, as shown in Figure 4. For UP-1 and UP-2, the
ligands showed two hydrogen (H-) bonding interactions. The –S atom of UP-1 developed
one H-bonding interaction with the DNA base pair (DCA3), and its –O atom showed
an H-bonding interaction with the DNA base pair (DGA4). Moreover, DNA base pairs
(DGB22) exhibited two H-bonding interactions with the –O atom and –S atom of UP-2.
The ligand UP-3 was found to be more potent, as five interactions were observed in three
different ways. The H-bonding interactions of the –S atom of the ligand was observed
with DNA base pair (DGB16), and the NH group of the ligand showed two H-bonding
interactions with DNA base pair (DGB16). The carbonyl group of the ligand showed two
H-bonding interactions with DNA base pair (DCA11). The Kb and ∆G values are provided
in Table 1, and the values revealed comparatively stronger and spontaneous binding of
UP-3 with the DNA. The molecular docking results further verified greater reactivity of
UP-3, as is obvious from DFT, which gives it a higher binding constant than UP-1 and UP-2.

The urease enzyme also displayed 2D interactions with all the three compounds, as
shown in Figure 5 (LigPlots). For UP-1, the –S group showed two H-bonding interactions:
one with residue PheC1565 and the other with residue LysC1443 of the urease. In the case of
UP-2, only one H-bonding interaction was detected between the “N-H” group of the ligand
(UP-2) and enzyme residue ValC1471. For UP-3, the –S atom of the ligand showed one
H-bonding interaction with the TyrC1473 residue of enzyme. The binding data, displayed
in Table 1, pointed to stronger binding of UP-1 compared to the other compounds with
urease enzyme with comparatively higher Kb and more negative ∆G values.
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2.3. DNA Binding—Experimental Investigations
2.3.1. Spectral UV-Visible and Fluorescence Studies

Before performing the titration experiments, absorption and emission spectra of each
compound (UP-1-3) were determined for a 2 × 10−5 M solution using a UV-visible and
fluorescence spectrophotometer, respectively. The ε (molar extinction coefficient) value
of each compound was determined by measuring the absorbance spectrum at increasing
concentrations and then plotting absorbance vs. concentration to get the slope that repre-
sented the ε value at 1 cm path length in Beer’s equation (A = εcl) (see Figure S10 in the
Supplementary Materials). The obtained values of 75,100, 127,000, and 11,900 M−1 cm−1

for UP-1, UP-2, and UP-3, respectively, revealed that the operative transitions within the
compounds were π-π* transitions.

Absorption spectral responses of each compound after DNA titrations are given in
Figure 6a–c. In the presence of DNA, the spectral responses of UP-1 and UP-3 showed
a hypochromic effect on the compound’s peak in 350–420 nm and 300–430 nm ranges,
respectively, while for UP-2, a hyperchromic effect was noted in the 260 –300 nm range. The
observed hypo- and hyperchromicity was generally associated with the structural changes
in the DNA that arise due to the conformational variation and destruction in the double
helix, respectively, in the presence [27]. The literature has also reported that such effects
along with wavelength shifts (blue/or red) are indicative of compound–DNA interactions
that could most probably occur through intercalation [28–30]. The presence of an isosbestic
point indicated the establishment of an equilibrium between the intercalated complex and
free compound and that no other species are present [29].
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The emission spectra of UP-1, UP-2, and UP-3 were recorded in the range of 388–396 nm
at the excitation wavelength of 368 nm, 315–400 nm at the excitation wavelength of 290 nm,
and 300–380 nm at the excitation wavelength of 280 nm, respectively (see Figure S11 in the
Supplementary Material). The spectral responses of each compound after DNA titrations
are given in Figure 6d–f, which show enhancement in the peak intensity of UP-1 and
quenching in the peak intensities for UP-2 and UP-3 upon DNA additions. Such spectral
variations have been reported for the binding interactions and formation of compound–
DNA adducts that were presumably linked via the intercalative binding mode [31,32].

The extent of binding interactions was further evaluated by using absorbance and
emission intensity data of spectral responses of the derivative itself and in the presence of
DNA in the following equations [31,32].

Ao

A− Ao
=

εG
εH−G − εG

+
εG

εH−G − εG

1
Kb[DNA]

(1)

log
F− Fo

F
= log Kb + n log[DNA] (2)

Plots of Ao/A − Ao vs. 1/[DNA] and log [F − Fo/Fo] vs. log [DNA] are shown in
Figure 7, where intercept to slope ratio (Equation (1)) and antilog of intercept (Equation (2)),
respectively, were used to find the values of binding constant “Kb”. Binding site size (n)
of the complex (compound–DNA) was estimated as the slope value in Equation (2). The
Gibbs free energy change (∆G) value was obtained by using the “Kb” value in the Equation.
∆G = −RTln Kb (Van ’t Hoff equation). The evaluated binding parameters are given in
Table 2. The ∆G values and binding order range (Kb; 103–105) reflected spontaneous
and substantial binding of all the bis-thiourea derivatives with DNA [33,34]. The greater
binding site sizes (n > 1) exhibited intercalation along with the availability of additional
sites for developing other reversible interactions, i.e., electrostatic or groove binding (see
Table 2) [31–33].
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Table 2. Parametric findings for compound–DNA interaction from spectral and electrochemical
analyses.

Compound–DNA Binding Parameters UV/Visible Flu- CV

UP-1–DNA
kb/M−1 1.24 × 103 2.19 × 103 1.47 × 104

−∆G/kJ mol−1 −18.274 −19.824 −24.73
n ——- 1.11 1.19

UP-2–DNA
kb/M−1 4.90 × 103 2.04 × 104 3.31 × 104

−∆G/kJ mol−1 −21.952 −25.525 −26.82
n ——- 1.23 2.09

UP-3–DNA
kb/M−1 3.42 × 104 2.14 × 105 8.69 × 104

−∆G/kJ mol−1 −27.739 −31.633 −29.32
n ——- 1.31 4.35

2.3.2. Electrochemical CV Studies

A 0.1 V/s scan rate was used to record the cyclic voltammograms (CV) for the three
bis-thiourea derivatives individually and for each compound–DNA adduct. Individual
scanning of the compounds showed a reduction peak with quasi reversibility for UP-1
(∆Ep = 0.33 V) and irreversibility for UP-2 (Epc = −0.815 V) and UP-3 (Epc = −0.750).
However, during compound–DNA adduct formation while increasing DNA concentrations,
all the derivatives showed an irreversible nature. The shifting of quasi reversibility to
irreversibility could be related to the oxidizing groups (i.e., oxygen of C=O and sulfur of
C=S) of UP-1 that interacted with DNA, as also verified by molecular docking. Therefore,
its oxidation peak disappeared after the addition of DNA. The reduction peak current of
UP-1, UP-2, and UP-3 significantly dropped down to 50%, 53%, and 70%, respectively,
along with a positive shift (less negative potential) in E 1

2
for UP-1 and in Epc for UP-2

and UP-3 (see Figure 8a–c). These observations revealed the fact that all the synthesized
bis-thiourea derivatives interacted with the DNA, preferably via intercalation [35]. The
compound–DNA adduct was also assured by calculating the diffusion coefficient (Do) of
the derivatives alone and after DNA addition using linear dependency of peak current
with scan rate in the Randles–Sevcik equation {Ip = 2.99 × 105 n(αnα)1/2 A0C0

*D0
1/2υ

1
2 }

(see Figure S12 in the Supplementary Material). The Do values (cm2 s−1) of UP-1, UP-2, and
UP-3 decreased from 6.55 × 10−9, 1.79 × 10−8, and 4.48 × 10−9 to 2.32 × 10−9, 3.05 × 10−9,
and 1.12 × 10−9, respectively, after DNA addition, which further confirmed the formation
of massive compound–DNA complexes.

Using Equations (3) and (4) [36], Kb and n were evaluated, and the plots are provided
as d–f and g–i, respectively, in Figure 8.

I2
p =

1
Kb[DNA]

(
I2
Po
− I2

P

)
+ I2

Po
− [DNA] (3)

I − IDNA
IDNA

=
Kb[DNA]

2n
(4)

The binding parameters’ values are provided in Table 2, and the trends in the values
complemented the results obtained from spectral findings.
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2.3.3. Viscosity Studies

The binding modes of interaction were additionally verified by monitoring the changes
in DNA viscosity in the presence of increasing compound concentration. Graphs were
plotted between relative specific viscosities against compound–DNA concentration ratios
in Figure 9. Generally, the viscosity of the DNA solution is enhanced by increasing the
concentrations of the compound [31]. This could be attributed to DNA base pairs stretch-
ing due to the accommodation of the intercalating structure of the compound, and the
size enlargement resulted in the enhancement of DNA viscosity [31,37,38]. The viscosity
measurements in the present work revealed that initially, DNA viscosity increased as the
compound concentration increased, but after certain additions, no further rise in DNA vis-
cosity was observed. Such changes in the DNA viscosity confirmed that all the derivatives
adopted a mixed binding mode for their interactions with DNA [31,37], which most likely
could be partial intercalation and groove binding as pridicted during docking studies.

2.4. Anti-Urease Activity Studies

Newly synthesized derivatives were tested for their ability to inhibit urease enzyme
at three different concentrations, and results of percentage inhibition are presented in
Figure 10. The IC50 values were evaluated as mean (n = 3) ± standard deviation (SD). The
percentage inhibition of all the compounds at 100 µM was evaluated to be 77.83%, 72.81%,
and 69.83% for UP-1, UP-2, and UP-3, respectively. The reported literature validated that a
compound with an IC50 < 1 µM has potent activity; compounds with values in the ranges
1–20 µM, 20–100 µM, and 100–200 µM have strong, moderate, and low activity, respec-
tively; and compounds with an IC50 >200 µM have no activity [39]. The results of IC50
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indicated strong activity of all the compounds against the urease enzyme. However, the
highest activity was shown by compound UP-1, with an IC50 value of 1.55 ± 0.0288 µM, fol-
lowed by compounds UP-2 and UP-3, with the values 1.66 ± 0.0179 and 1.69 ± 0.0162 µM,
respectively. Moreover, thiourea, which was used as a positive control, revealed promi-
nent enzyme inhibition activity, with a percentage inhibition of 90.91% at 100 µM and an
IC50 value of 0.97 ± 0.0371 µM. Additionally, all the compounds showed concentration-
dependent activity. The graphs for the calculation of IC50 values are provided as Figure S13
in the Supplementary Material.
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2.5. Cytotoxicity Studies against Brain Tumor and Normal Cell Lines

Cytotoxicity activities of the derivatives were evaluated by using MG-U87 and HEK-
293 cell lines, and concentration-dependent comparison graphs are provided in Figure 11.
The results obtained from MTT analysis on the MG-U87 cell line indicated the average
percent cytotoxicities for all concentrations (40, 80, 120, 200, and 400 µM) of compound
UP-1, which were 27.8%, 36.5%, 40.1%, 43.7%, and 52.9%, and the cytotoxicity values for
HEK-293 cells were 21.8%, 44.5%, 52.9%, 59.2%, and 69.9%, respectively. Cytotoxicity results
indicated that HEK-293 cells did not show any tolerance to the increasing concentration
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of UP-1, and UP-1 was more cytotoxic to the normal cells. Greater cytotoxicity to healthy
cells showed that UP-1 could not have significant anticancer potential against MG-U87
even at its highest concentration of 400 µM, as cytotoxic activity of this compound was
much greater against healthy cells at the same concentration. Overall, the trend of percent
cytotoxicity increased with increases in compound’s concentration for both the cancereous
and healthy cell line, where, for latter, this compound showed greater cytotocity.
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and HEK-293 cells. Solvent control; PBS with 10% DMSO. Positive reference control; doxorubicin HCl.

No cytotoxic effect was found on HEK-293 in the presence of first three concentrations
of UP-2, while the last two concentrations showed 24.1% and 27.1% cytotoxicity, respec-
tively. However, UP-2 showed concentration-dependant cytotoxicity for MG-U87, and
the values were found to be 10.9%, 12.2%, 29.4%, 39.2%, and 43.09%, respectively, for the
concentrations ranging from 40 to 400 µM. The percent cytotoxicty values of UP-3 were
found to be 17.31%, 37.4%, 44.3%, 60.7%, and 60.9% and 17.18%, 18.56%, 37.0%, 41.14%,
and 56.9% for HEK-293 and MG-U87 cell lines, respectively.

These results indicated that compounds UP-1 and UP-3, at all concentrations, are toxic
to both healthy (HEK-293) and cancereous (MG-U87) cell lines. However, no cytotoxicity
of UP-2 at low concentrations (40–120 µM) and comparitively low cytotoxicity at 200 to
400 µM showed a promising impact of UP-2 on healthy cells. However, percent cytotoxicity
of UP-2 for MG-U87 was found to be comparitively less (43.09%) than that evaluated for UP-
1 (52.9%) and UP-3 (56.9%) at highest selected concentration of 400 µM. Using GraphPad
PrismV8, the IC50 values for UP-1, UP-2, and UP-3 for MG-U87 and HEK-293 cell lines
were found to be 2.496 ± 0.0324 µM, 2.664 ± 0.1298 µM, and 2.459 ± 0.0656 µM as well as
2.096 ± 0.0487 µM, 2.856 ± 0.2027 µM, and 2.220 ± 0.0707 µM, respectively. The graphs for
the calculation of IC50 values are provided as Figure S14 in the Supplementary Material.

The IC50 values were found to be comparatively less from our previously reported
work on isatin derivatives, where IC50 values for IST-2 and IST-4 derivatives were reported
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to be 3.07 ± 9.47 and 14.60 ± 2.49, respectively, for the HuH cancer cell line [31]. The IC50
values in the current studies were also compared with the IC50 values of thiourea derivatives
for different cancerous cell lines [40–42], which are provided in Table 3. This comparison
further indicates that the synthesized bis-thiourea derivatives in the current studies have
lower or comparable IC50 values to other reported thiourea derivatives. However, dose-
dependent cytotoxicity indicated no cytotoxicity (0%) at lower concentrations while about
37% cytotoxicity at the highest concentration of 400 µM of the compound UP-2 towards the
healthy cell line.

Table 3. Comparison of IC50 values of current acyl-bis thiourea derivatives with reported
thiourea derivatives.

Sr. No. Compounds Cell Lines IC50 (µM) References

1.
Bis-acyl-thiourea derivatives of

4-nitrobenzene-1,2-diamine, Up-1, UP-2,
UP-3

MG-U87 2.496 ± 0.0324, 2.664 ±
0.1298 2.459 ± 0.0656 Current work

2. 1,1′-(1,4-phenylene)
bis(3-(benzo[d][1,3]dioxol-5-yl)thiourea), 5

HepG2,
HCT116, and MCF7

2.38
1.54
4.52

[40]

3. Sulfur-containing thiourea and
Sulfonamide derivatives, 13, 14, 22

HuCCA-1
(HepG2, A549, and

MDA-MB-231)
T47D

14.47
(1.50–16.67)

7.10
[41]

4. N-naphthoyl thioureas MCF-7, HCT116, and
A549 >76 [42]

Since cancer therapeutics is a challenging filed, the latest literature focuses on the use
of nano-carrier-conjugated drugs for the targeted delivery of the drugs to the cancer cells
such as gold nano cages, carbon rods, chitosan nanoparticles, lipid nano carriers, as well as
natural products [43–45]. The compounds tested in vitro in the current study can be further
conjugated in nanoparticles for more efficient cancer treatments.

3. Experimental
3.1. Materials and Methods

Highly pure chemicals and reagents were used during synthesis and other experi-
mental steps. Standard approaches were used to purify and dry the solvents. The NMR
spectrum of each compound and an internal reference TMS (tetra-methyl silane) was
determined by using a deuterated solvent (DMSO). Chicken blood was used to extract
dsDNA through the Falcon protocol, which was dissolved in deionized water to carry out
compound–DNA binding experiments. The stock DNA solution was further diluted, and
its absorbance at λmax of 260 nm was measured. The DNA concentration 4.79 × 10−5 M
was obtained by using the molar extension coefficient (ε) value of 6600 cm−1 M−1 and a
path length (l) of 1 cm in Beer’s equation. The absorbance ratio at 260 nm to 280 nm was
found to be 1.87, which assured DNA purity [31,35]. For DNA binding studies, the quartz
cells and a double-walled cell containing working {glassy carbon (GC), area; 0.070 cm2},
reference {silver/silver chloride (Ag/AgCl), filling: 3.0 M KCl}, and counter (99.99% Pt wire,
diameter; 0.5 mm) electrodes were used in spectral and cyclic voltametric (CV) experiments,
respectively. These cells were kept at 37 ◦C for a few minutes using a temperature controller.
Prior to each CV experiment, the cleaning of the GC electrode surface with an alumina
slurry followed by ultrasonication for 30–50 s and flushing out of oxygen from the cell by
Ar gas (99.99%) purging for at least 6–8 min were conducted as compulsory steps.
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3.2. Instrumentations

The synthesized materials were characterized for their structures by melting point
determination by Gallen Kamp M.P. apparatus and by Excalibur FT-IR spectrometer (Bio-
Rad, Bruker, Billerica, MA, USA, FTS 300 MX), 1H-NMR (Bruker 300 MHz NMR), and
13C-NMR (75 MHz NMR channel). DNA binding studies were performed on UV-Vis
(Shimadzu1800-, TCC-240, Tokyo, Japan), fluorescence (F-7000 model FL2133-007) spec-
trophotometers, electrochemical workstation (AUTOLAB PGSTAT-302, GPES version 4.9,
Metrohm, The Netherlands), and digital viscometer (Schott Gerate automated, Mainz,
Germany, AVS 310).

3.3. Synthesis of Nitrophenylene Derivatives of Symmetrical Bis-Acyl-Thiourea

Potassium thiocyanide (5.5 mmol) solution was prepared in dry acetone (15 mL), and
substituted acid chloride (5 mmol) (1) was added dropwise under an inert environment
for 1.5 h at 70 ◦C. Milky color of solution indicated the formation of an acyl thiocyanate
intermediate (2). After cooling at room temperature, the solution of 4-nitrobenzene-1,2-
diamine (2.5 mmol) in acetone was added dropwise into it using an additional funnel under
an inert environment in 15-mints. A continuous stirring of the reaction mixture was carried
out for 9 h, and progress of the reaction was monitored on a TLC plate. As the reaction
completed, the mixture was transferred into a beaker with crushed ice. The desire product
(3) was precipitated as a yellow solid, which was then filtered, washed with cold water,
dried, and recrystallized from ethanol.

3.4. Characterization Data

N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))bis(2,4-dichlorobenzamide)—(UP-1)
Yellow solid, m.p = 257–259 ◦C, yield = 73%, Rf = 0.52 (chloroform:methanol 4:1); FT-IR

(ν cm−1): 3479 (NH), 3381 (NH), 3159,3062 (Ar-CH), 1697,1624 (C=O), 1583 (C=C), 1523
(thioamide I), 1492 (thioamide II)1 H NMR (DMSO-d6, 300 MHz,); δ (ppm): 12.08 (s, 1H,
NH), 11.57 (s, 1H, NH), 8.09 (s, 1H, Ar-H), 7.79 (d, 1H, J = 9.3Hz, Ar-H), 7.74 (s, 1H, Ar-H),
7.64 (d, 1H, J = 8.1 Hz, Ar-H), 7.59 (d, 1H, J = 8.1 Hz, Ar-H), 6.81 (d, 1H, J = 9.3 Hz, Ar-H);
13C NMR (75 MHz DMSO-d6) δ (ppm) 181.57 (C=S), 166.93 (C=O), 151.59, 136.37, 135.70,
133.72, 131.91, 131.33, 129.73, 127.79, 126.07, 125.35, 121.95, 114.50 (Ar-C) Anal. Calcd. for
C22H13Cl4N5O4S2: C, 42.80; H, 2.12; N, 11.34; S, 10.39. Found: C, 42.81; H, 2.14; N, 11.32; S,
10.37. HRMS Caled for C22H13Cl4N5O4S2+H: 616.9134. Found 616.9130.
N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))diheptanamide—UP-2

Light yellow crystalline solid, m.p = 175–176 ◦C, yield = 84%, Rf = 0.68 (n-hexane:ethyl
acetate 4:1), FT-IR (ν cm−1): 3197 (NH), 3030 (Ar-CH), 2925,2860 (CH2, CH), 1698,1621
(C=O), 1580 (C=C), 1525 (thioamide) 1H NMR (DMSO-d6, 300 MHz,); δ (ppm): 12.67 (s,
1H, NH), 12.41 (s, 1H, NH), 11.68 (s, 1H, NH), 11.67 (s, 1H, NH), 8.79 (d, 1H, J = 2.7 Hz,
Ar-H), 8.45 (d, 1H, J = 9 Hz, Ar-H), 8.21 (q, 1H, J = 2.7 Hz and J = 9.0 Hz, Ar-H), 2.51–2.41
(m, 4H), 1.58 (t, 2H, J = 6.9 Hz CH2), 1.27 (m, 12H), 0.87 (t, 6H, J = 6.3 Hz, CH3); 13C NMR
(75 MHz DMSO-d6) δ (ppm) 181.11 (C=S), 175.8 (C=O), 175.64 (C=O), 144.84, 139.96, 133.81,
126.14, 122.27, 122.10 (Ar-C), 36.22, 31.51, 28.60, 24.80, 24.75, 22.44, 14.40 (Alkyl chain C)
Anal. Calcd.for C22H33N5O4S2: C, 53.31; H, 6.71; N, 14.13; S, 12.94. Found: C, 53.34; H, 6.75;
N, 14.11; S, 12.92. HRMS Caled for C22H33N5O4S2+H: 495.1974. Found 495.1971.
N,N’-(((4-nitro-1,2-phenylene)bis(azanediyl))bis(carbonothioyl))dibutyramide—UP-3

Light yellow crystalline solid, m.p = 160–162 ◦C, yield = 89%, Rf = 0.57 (n-hexane:ethyl
acetate 4:1), FT-IR (ν cm−1): 3197 (NH), 3032 (Ar-CH), 2962,2906 (CH2, CH), 1698,1623
(C=O), 1598 (C=C), 1520, 1477 (thioamide) 1H NMR (DMSO-d6, 300 MHz,); δ (ppm): 12.67
(s, 1H, NH), 12.42 (s, 1H, NH), 11.68 (s, 2H, NH), 8.78 (s, 1H, Ar-H), 8.44 (d, 1H, J = 8.7 Hz,
Ar-H), 8.20 (d, 1H, J = 8.4 Hz, Ar-H),2.50–2.40 (m, 4H, CH2), 1.58 (m, 5H, CH2), 0.91–0.90
(d, 7H, 2(CH3)); 13C NMR (75 MHz DMSO-d6) δ (ppm) 181.12 (C=S), 175.7 (C=O), 175.5
(C=O), 144.89, 139.97, 133.85, 126.25, 122.30, 122.16 (Ar-C), 36.2, 29.3, 14.4 (Alkyl chain C)
Anal. Calcd.for C16H21N5O4S2: C, 46.70; H, 5.14; N, 17.02; S, 15.58. Found: C, 46.72; H, 5.12;
N, 17.04; S, 15.56 HRMS Caled for C16H21N5O4S2 +H: 411.1035. Found 411.1032.
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3.5. DFT and Docking—Theoretical Procedures

Quantum chemical studies were carried out using Amsterdam Density Function
Modeling Suite, and ADF builder was used to generate structures and to visualize graph-
ics [46,47]. All compounds were optimized at GGA: PBE method with DZ basis set. The
GGA: PBE is a more popular and reliable theoretical method in recent years to elucidate
the properties of a compound’s structure due to its accuracy and economical cost [48]. The
computation of FMO (frontier molecular orbitals), bandgap, and MEP (molecular electro-
static potential) were also made at GGA: PBE/DZ level of theory. FMOs were computed
through electronic energy levels, and MEP was computed by XC potential iso surfaces.
Both were visualized using SCM ADF viewer.

The structural optimization of compounds (UP-1–3) was conducted using version
2015.10 of MOE (Molecular Operating Environment) at MOPAC 7.0 level of theory. Fol-
lowing the geometry relaxation, the structures of all the compounds were constructed and
collected into the MOE database. The DNA and urease enzyme crystallographic structures
having PDB ID: 1BNA and PDB ID: 1EJU and having resolution of 1.9Å and 2.0Å, respec-
tively, were fetched from the Protein Data Bank for molecular docking simulations with
UP-1, UP-2, and UP-3 [49,50]. The molecules of H2O that were attached with the DNA
base pairs (1BNA), heteroatoms, and co-crystallized ligands were removed. Similarly, H2O
molecules attached to urease enzyme (1EJU) base pairs were also removed using sequence
editor of MOE. Additionally, 1BNA and 1EJU were protonated and optimized expending
protonate-3D menu. Coordinates of 1BNA and 1EJU were relaxed using AMBER forcefield
and semi-empirical PM3 approaches for docking analysis purpose. For the optimal compu-
tation, the energy and stability of the relaxed coordinates were kept minimal, and the best
scoring functions were computed. For docking, all optimized structures were submitted
to systematic molecular docking utilizing 1BNA and 1EJU as default parameters (RMS
gradient = 0.01 kcal mol−1) and using Site Finder to locate 1BNA and 1EJU active sites.
Several docking runs might achieve the final docking positions as perfectly as feasible. The
energy of the interaction of compounds with 1BNA and 1EJU were evaluated at each stage
of the simulation. Rest settings were maintained as default [25].

3.6. DNA Binding—Experimental Procedures

Individual absorption and emission spectra and the cyclic voltammogram of each
compound (UP–1-3) were recorded for their optimized concentration (2 × 10−5 M). Then
DNA titrations, upon the compound’s fixed concentration, were carried out in spectropho-
tometric (UV-visible and fluorescence) and cyclic voltametric (CV) experiments using DNA
concentrations ranging from 10 to 70 µM at pH (7.0) and at physiological temperature
of 37 ◦C [51]. The cells used in these experiments were kept at rest for a few minutes
before each run to assure an equilibrium for the compound–DNA complex. UV-visible
experiments were run within 200–500 nm, while 200 nm and 900 nm, respectively, were
the EM start and EM end wavelengths in fluorescence experiments. The cyclic voltametric
experiments were run within −2 to +1 V at a scan rate of 0.1 V/s, and for the determination
of Do (diffusion coefficient), the scan range of 0.03– 0.13 V/s was used with a difference of
0.02 V/s before the next scan. In viscosity experiment, DNA viscosity (ηo) at an optimized
concentration of 10 µM was measured, and then the small variations in the DNA viscos-
ity (η) after increases in the compound’s concentration (10–70 µM) were monitored. The
observed fractional changes in DNA viscosity were used to determine the binding modes
of interaction.

3.7. Anti-Urease Assay

The anti-urease activity of the compounds was measured by determining the amount
of free ammonia produced as described earlier [52]. The experiment was performed by
mixing 10 µL of enzyme (0.1 U/per reaction), 30 µL of each concentration (100, 75, 50, 25,
and 12.5 µM) of the compound, and 50 µL of buffer at pH 8.2 consisting of 100 mM urea,
0.01 M LiCl2, 1 mM EDTA, and 0.01 M K2HPO4. Reaction mixtures were incubated at 37 ◦C
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for 15 min in a 96-well plate. Then 50 µL of phenol reagent (0.005% sodium nitroprusside
and 1% phenol) and 50 µL of alkali reagent (0.1% NaOCl + 0.5% NaOH) were added to each
well, and plates were incubated at 37 ◦C for 50 min. The assay was performed in triplicate,
and absorbance (A) was recoded at 625 nm using a microplate reader. The anti-urease
activity of each compound was calculated in percentage inhibition using the following
formula, and IC50 was calculated using GraphPad PrismV8.

% inh. = (Acontrol − Asample/Acontrol) × 100

3.8. Cell Line Assay

The MTT analysis is the most common type of assay involving cell lines. MTT (3-
(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) is a dye used for the
measurement of in vitro cell proliferation. Tetrazolium salts have been widely used tools in
cell biology for determining the metabolic activity of cells ranging from microbial origin to
mammalian cells [53]. For this purpose, the assay was performed on two cell lines: MG-U87
(malignant glioma cell line) and HEK-293 (human embryonic kidney cell line). Cells were
maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, Life Technologies,
Waltham, MA, USA, catalogue 31800-022) and supplemented with 10 % fetal bovine serum
(Gibco, Life Technologies, catalogue 16050) and 1% penicillin–streptomycin (Gibco, Life
Technologies, catalogue 00580). The exponential growth of cells was counted. Then, in
triplicate, 10,000 cells/well were plated in Nunc MicroWell 96-well microplates (Fisher
Scientific, Roskilde, Denmark) by keeping the cells’ volume at 100 µL/well. The plates
were incubated at 37 ◦C for 24 h in a 5% CO2 incubator.

The compounds (UP-1, UP-2, and UP-3) were dissolved in 1 mL of 10% DMSO
solution to obtain five concentrations 40, 80, 120, 200, and 400 µM (10 µL/mL, 20 µL/mL,
30 µL/mL, 50 µL/mL, and 100 µL/mL). These concentrations were then added, separately,
into 96-well plates to get ~200 µL/well as the final volume. Moreover, all concentrations
were individually tested on both HEK-293 and MG-U87 cell lines in triplicate. Control
wells contained solvent control (without drug) and blank media (without cells). The plates
were kept for 48 h in a 5% CO2 incubator at 37 ◦C. Subsequently, 5.0 mg/mL MTT per
1.0 mL of PBS was prepared, and from this solution, 15 µL was added to each well and,
at 37 ◦C, it was incubated for 3 h to microscopically visualize the formazan crystals. The
solution from the wells was discarded after the formation of formazan crystals. Then the
plates were kept for a short period at room temperature, and the crystals were dissolved in
100 µL DMSO in each well. Lastly, the absorbance measurements of the cells were done
at 550 nm.

4. Conclusions

Three bis-acyl-thioureas UP-1, UP-2, and UP-3 were synthesized and characterized
by different spectral techniques (FT-IR, 1H-NMR, and 13C-NMR) that confirmed the com-
pounds’ structures. These derivatives were further investigated for DNA binding, anti-
urease, and anti-brain-tumor activities. Theoretical and experimental studies indicated
that all the derivatives interacted significantly and spontaneously with DNA via partial
intercalation and groove binding. However, the binding parameters (Kb, ∆G, and n) were
evaluated in the order UP-3 > UP-1 > UP-1. The formation of bulky compound–DNA
complex was further confirmed by CV studies where the determined values of the diffu-
sion coefficient (Do) were evaluated to be smaller as compared to compounds’ Do values
without DNA. The binding parameters (Kb; 6.73 × 105 M−1, ∆G; −33.25 kJ mol−1) for
UP-1 obtained from docking studies were found to be comparatively greater than other
compounds for their interaction with urease enzyme. All the compounds showed strong
anti-urease activity in the order UP-1 > UP-2 > UP-3, which matched with the molecular
docking results. Cytotoxicity activity of all the compounds was tested against brain tumor
(MG-U87) and normal (HEK-293) cell lines. Compounds UP-1 and UP-3 showed greater
cytotoxicity on both healthy and cancerous cells, while cytotoxicity of UP-2, in comparison
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to brain tumor cells, was found less (at concentrations >200 µM) to none (at concentrations
<200 µM) on normal cells, thus showing a comparatively promising effect. These studies
may help to enlighten the role of new bis-thiourea derivatives for the exploration of their
drug candidacy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28062707/s1, 1H-NMR, 13C-NMR, FT-IR spectra, and
other supplementary figures as Figures S1–S14.
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