
Citation: Charoensutthivarakul, S.;

Lohawittayanan, D.; Kanjanasirirat,

P.; Jearawuttanakul, K.; Seemakhan,

S.; Chabang, N.; Schlaeppi, P.;

Tantivess, V.; Limboonreung, T.;

Phanchana, M. Rational Design and

Lead Optimisation of Potent

Antimalarial Quinazolinediones and

Their Cytotoxicity against MCF-7.

Molecules 2023, 28, 2999. https://

doi.org/10.3390/molecules28072999

Academic Editor: Alessandro

Pedretti

Received: 28 February 2023

Revised: 21 March 2023

Accepted: 24 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Rational Design and Lead Optimisation of Potent Antimalarial
Quinazolinediones and Their Cytotoxicity against MCF-7
Sitthivut Charoensutthivarakul 1,2,3,* , Duangporn Lohawittayanan 1, Phongthon Kanjanasirirat 2 ,
Kedchin Jearawuttanakul 2, Sawinee Seemakhan 2, Napason Chabang 1, Patrick Schlaeppi 1, Varisa Tantivess 1,
Tanapol Limboonreung 4 and Matthew Phanchana 5

1 Innovative Molecular Discovery Laboratory (iMoD), School of Bioinnovation and Bio-Based Product
Intelligence, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

2 Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
3 Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
4 School of Dentistry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
5 Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University,

Bangkok 10400, Thailand
* Correspondence: sitthivut.cha@mahidol.ac.th; Tel.: +66-2201-5899

Abstract: Quinazolinedione is one of the most outstanding heterocycles in medicinal chemistry thanks
to its wide ranges of biological activities including antimalarial, anticancer, and anti-inflammatory.
TCMDC-125133 containing a quinazolinedione pharmacophore displays promising antimalarial
activity and low toxicity, as described in the GlaxoSmithKline (GSK) report. Herein, the design and
synthesis of novel quinazolinedione derivatives is described on the basis of our previous work on the
synthesis of TCMDC-125133, where low-cost chemicals and greener alternatives were used when
possible. The initial SAR study focused on the replacement of the valine linker moiety; according to
the in silico prediction using SwissADME, concise four-step syntheses toward compounds 4–10 were
developed. The in-house synthesized compounds 4–10 were assayed for antimalarial activity against
P. falciparum 3D7, and the result revealed that only the compound 2 containing a valine linker was
tolerated. Another round of lead optimization focused on the replacement of the m-anisidine moiety
in compound 2. A library of 12 derivatives was prepared, and the antimalarial assay showed that
potent antimalarial activity could be maintained by replacing the methoxy group in the meta position
of the phenyl side chain with a fluorine or chlorine atom (21: IC50 = 36 ± 5 nM, 24: IC50 = 22 ± 5 nM).
Further lead optimization is underway to enhance the antimalarial activity of this class of compound.
The compounds included in the study possess little to no antiproliferative activity against MCF-7 cells.

Keywords: quinazolinedione derivatives; antimalarial activity; antiproliferative activity

1. Introduction

Malaria is a health challenge with around 247 million cases and more than 619,000 deaths
in 2021, mostly in sub-Saharan Africa, as reported in the WHO’s 2022 malaria report [1]. The
disease is caused by Plasmodium parasites, of which P. falciparum is the deadliest form; it is
then transmitted to human by Anopheles mosquito vectors. Artemisinin-based combination
therapies (ACTs) have been employed as the front-line treatment over the past decade
in tackling global malaria deaths; however, there are several reports demonstrating that
P. falciparum has developed resistance to this class of therapy [2–5]. Therefore, the discovery
and development of novel antimalarial chemotypes with novel modes of action are urgently
required to circumvent cross-resistance with existing drugs. The discovery of novel drug
candidates focusing on new chemical scaffolds that have never been explored for their
antimalarial activity remains a top priority to back up current ACTs.

During the past decade, many research groups have worked on antimalarial drug dis-
covery initiatives, and the structures of thousands of lead compounds have been published
in the public domain, allowing other researchers to work on those starting points [6,7].
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Amongst them, the Tres Cantos Antimalarial Set (TCAMS) containing thousands of anti-
malarial hits is one of the largest set of potential molecules ever published in the antimalar-
ial drug discovery community [8]. In the TCAMS initiative, high-throughput phenotypic
screening against asexual stage P. falciparum was set up with access to the GSK corporate
library of over one million compounds. The hits from these screenings were analyzed
and prioritized according to their favorable characteristics [8]. One of the highly potent
molecules identified as a singleton hit from the TCAMS screening is TCMDC-125133 (2).
This hit compound features a quinazolinedione pharmacophore with valinyl side chain
(Figure 1).
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are patented for their highly potent cytotoxicity against human ovarian cancer (SKOV3) 
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Figure 1. Structures of MMV665916, MMV019066, TCMDC-125133, and compound 3 with their
quinazolinedione moiety highlighted in blue.

Quinazolinedione is a commonly present heterocycle in pharmaceutical and bioactive
molecules that possess a broad spectrum of biological activities, including antimalar-
ial, anticancer, antihypertensive, antiviral, and anti-inflammatory [9–13]. Many quinazo-
linedione derivatives have been recently reported to possess potent antimalarial activity.
Quinazolinedione-based MMV665916 (1) and MMV019066 (Figure 1) demonstrated potent
parasite growth inhibitory activity against multiple stages of the malaria parasite (<1 µM
against P. falciparum strains), as reported by TCAMS [8,14,15]. In our group, we recently
reported the synthesis of antimalarial quinazolinedione 2 with an IC50 of around 200 nM
against P. falciparum 3D7 [16]. This compound was also assayed for antiproliferative activity
against breast cancer cell line MCF-7 and showed mild inhibitory activity with an IC50 of
17.5 µM [16].

Breast cancer is one of the most common types of cancer. Most women diagnosed with
breast cancer are over the age of 50, with around one in eight women diagnosed with this
cancer during their lifetime [17]. In 2018, this cancer led to two million new cases and over
627,000 deaths [18]. It is well evident that quinazolinedione derivatives possess anticancer
activity. Akgun et al. reported the synthesis of quinazolinedione derivatives and their
antiproliferative activities against three different cancer cell lines, and the results showed
that some derivatives exhibited cytotoxicity below 10 µM [19]. Compound 3 (Figure 1) and
related compounds, which are 3-substituted-2,4-quinazolinedione derivatives, are patented
for their highly potent cytotoxicity against human ovarian cancer (SKOV3) [20].

To further progress the quinazolinedione 2 in an antimalarial drug discovery pipeline,
it is necessary to understand the structure–activity relationships (SARs) around this phar-
macophore. Therefore, in this paper, the proof-of-concept lead optimization was established
using a rational design approach around the side chain of quinazolinedione 2. Rapid and ra-
tional exploration of SARs was made possible thanks to the use of web-based SwissADME
in silico prediction [21]. A total of 19 final compounds were synthesized, and their SARs
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against the P. falciparum 3D7 strain were explored, along with their cytotoxicity against
MCF-7 cells.

The crucial part of this work was the design and synthesis of quinazolinedione deriva-
tives that contain various functionalities and side chains as outlined in Figure 2. Their
antimalarial activity was assessed against P. falciparum in vitro, along with their cytotox-
icity against MCF-7 cells. The synthetic strategy involved the incorporation of different
hydrophobic side chains to probe the SARs around the valine region, with the aim of
increasing the potency to a nanomolar level. As outlined in Figure 2, the chemical synthesis
involved the use of commercially available starting materials with a low cost, as this is a
crucial target candidate profile (TCP) in the antimalarial drug research community [22].
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2. Results and Discussion
2.1. SwissADME In Silico Prediction

To identify potential analogues of quinazolinedione 2 which could be progressed fur-
ther in a drug discovery pipeline, a preliminary in silico prediction is required. SwissADME,
a web-based in silico calculation, is a powerful tool to provide some physicochemical, phar-
macokinetic, and ADME (absorption, distribution, metabolism, and excretion) parameters
necessary in the small-molecule drug discovery pipeline [21]. SwissADME was used in this
work to investigate whether any other hydrophobic short chains would be suitable as a
replacement for valine in compound 2. The valine side chain is a rather bulky hydrophobic
moiety and contains an undesirable stereocenter; these factors could hamper further drug
development.

The SMILES strings of compounds 2 and 4–10 were entered on the SwissADME website
(http://www.swissadme.ch/, accessed on 26 April 2022). The results from the in silico
prediction displayed in Table 1 show that other linkers—i.e., aminoethyl (compound 4),
glycine (compound 5), alanine (compound 6), and homoalanine (compound 10)—could be
alternatives to valine (compound 2) as the derivatives containing these linkers (compound 4–6
and 10) showed superior lead-likeness properties, i.e., improved aqueous solubility and
better CYP inhibition profiles when compared to the parent compound (compound 2).

http://www.swissadme.ch/
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Table 1. SwissADME in silico calculation of TCMDC-125133 and other derivatives containing various side chains. Red font denotes unsuitable properties for a drug
candidate, orange font denotes moderate suitability, and green font denotes a favorable profile.

Structure
Consensus

Log P LogS (ESOL)
Pharmacokinetics

Lead-Likeness
Synthetic

TractabilityGI
Absorption

BBB
Permeant Pgp Substrate CYP1A2

Inhibitor
CYP2C9
Inhibitor
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Table 1. Cont.
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2.2. Lead Optimization

From Table 1, we initially prioritized compounds 4–6 and 10 due to their synthetic
tractability and suitable physicochemical properties including a low logP (lipophilicity),
high logS (solubility), and fewer interactions with CYP450s. The first part of this work was
to develop a synthetic approach toward all these compounds and assess their antimalarial
activity. The syntheses of interest need to match with the scalability and tractability condi-
tions (i.e., robust, compatible with various functionalities, using cheap and commercially
available starting materials, and divergent).

The routes toward these derivatives were successfully developed and identified, and
the synthetic plan was divided into two main synthetic routes for two different types of
side chains being explored, as depicted in Scheme 1. The first route (A) was designed to
produce the quinazolinedione derivatives with an ethyl linker between the core structure
and the amine side chain. The synthesis in route A started with the cyclization reaction
of commercially available quinazolinedione 11 in acetonitrile (ACN) in the presence of
a catalytic amount of KI, and the resultant residues were then purified by flash column
chromatography (CC) to yield 12 in 97% yield. The intermediate 12 was then reacted with
m-anisidine in ACN at 110 ◦C for 2 days to obtain 4 in 16% yield (see Supplementary
Materials for detailed experiment and compound characterization) [23].
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The synthesis in Scheme 1 (Route B) toward quinazolidinones with various amino-acid
side chains followed the protocol previously published by our group [16]. In brief, the
synthesis began with a reaction between commercially available isatoic anhydride and the
corresponding amino-acid ethyl/methyl ester in the presence of K2CO3 in ACN solution at
60 ◦C for 18 h to afford amides 15a–g (55–93% after purification). The cyclocarbonylation
reactions of compounds 15a–g using 1,1-carbonyldiimidazole (CDI) in tetrahydrofuran
(THF) solution at 85 ◦C for 18 h yielded the quinazolinediones 16a–g in 55% to quantitative
yield after CC. The esters 16a–g were subsequently hydrolyzed using LiOH in a THF/water
mixture to afford the carboxylic acids 17a–g without any further purification (24% to
quantitative yield). The corresponding acids 17a–g were then reacted with the m-anisidine
side-chain to form an amide bond using 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo
[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU) as a coupling agent in the presence
of triethylamine (Et3N) in dimethylformamide (DMF) to yield the quinazolidinone final
products 2 and 5–10 in 14–77% yields after purification (see Supplementary Materials for
detailed experiment and compound characterization). It is worth noting that compound 8
was prepared as a racemate.

Compounds 2 and 4–10 were evaluated for their in vitro antimalarial activities
against the blood-stage P. falciparum 3D7 strain. The results in Table 2 show that only
the in-house synthesized compound 2 containing a valine linker possessed a promising
IC50 (3D7) of 219 nM, whereas many analogues containing a less hydrophobic linker
(compounds 4–6 and 10) showed antimalarial activity of above 10 µM. Interestingly, some
derivatives containing a slightly more hindered hydrophobic side chain (compounds 7 and 9)
showed a mild antimalarial activity (around 1–3 µM) against 3D7. Interestingly, compound 8
as a racemate displayed potent sub-micromolar activity against 3D7 but its activity was still
worse than that of its original counterpart (compound 2). Our group is currently working
on another lead optimization program based on the structure of compound 8. The results
shown in Tables 1 and 2 did not provide any correlations between good drug-likeness
properties and potent antimalarial activities; therefore, the in silico prediction was not
further employed in the next round of lead optimization. This result led to further lead
optimization based on the structure of compound 2 to probe the antimalarial SARs around
the m-anisidine side chain.

Table 2. In vitro antimalarial activities against P. falciparum 3D7 of quinazolinedione derivatives with
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Another round of lead optimization focused on the SARs around the m-anisidine
side chain of the valinyl quinazolinedione derivatives. It is well perceived that a methoxy
group in a hit candidate could be replaced with a halogen or a nitrogen atom due to their
similarity in size and their electronic properties [24]; for this reason, the substitution pattern
on the aromatic side chain of quinazolinedione 2 was briefly investigated.

The synthesis of compounds 18–29 is described in Scheme 2, based on the synthesis
of parent compound 2, as depicted previously in Scheme 1 (Route B). The synthesis was
proven to be robust and compatible with various aromatic amine side chains. The result-
ing compounds 18–29 were obtained in 34–78% yield (see Supplementary Materials for
compound characterization) and were then assayed for their antimalarial activity against
blood-stage P. falciparum 3D7, as well as their cytotoxicity against MCF-7 cells.

As depicted in Table 3, the in vitro antimalarial data showed that excellent activity
could be maintain by replacing the methoxy substituent in the meta position of the phenyl
side chain with a fluorine or chlorine atom (compound 21 and 24). A trend was observed
in this series, whereby 3-fluoro and 3-chloro analogues provided optimal activity, and
the addition of a small fluorine substituent at the 4-position did not dramatically affect
the antimalarial activity (see comparisons of compound 1 and compound 21 for 3-fluoro,
and compound 24 and 27 for 3-chloro). This 4-position blocking by a fluorine atom is
a useful common strategy in a lead optimization to improve the metabolic stability of a
lead compound. In contrast, removal of this methoxy group or replacing the m-anisidyl
side chain with a benzyl or a p-anisidyl side chain (compound 18 and 28–29, respectively)
resulted in a dramatic loss in the antimalarial activity observed. Interestingly, derivatives
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with a halogen (F or Cl) at the 4-position of the phenyl possessed good antimalarial
activity (compound 22 and 25). Although the 3-chlorophenyl analogue (compound 24)
provided the best activity, we also noted that analogue 26, which contained another chloro
substituent at the 4-position, was a less potent antimalarial. Though it is widely accepted
that fluorobenzene is a good bioisostere of pyridine due to their similarities in size and
electron density, it was to our surprise that compounds 19 and 20 showed a decrease in
antimalarial activity when compared to their fluorobenzene counterparts (compounds 21
and 22, respectively) by up to an order of magnitude.
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Compounds 18–29 were also assayed for their cytotoxicity against MCF-7 cells, and
the results showed that only compounds 23 and 26 showed a slightly higher cytotoxicity
against MCF-7 cells when compared with the parent compound. This suggests that the
synthesized quinazolinediones derivatives may not be suitable as potent anti-MCF-7 agents.

In conclusion, a concise four-step synthesis of an array of valinyl quinazolinediones
with potent antimalarial activity was successfully established with good overall yields, low
cost of goods, and mild reaction conditions with the potential for scaling up. Although the
chemical design was preliminarily guided by in silico predictions using SwissADME to pre-
dict any unwanted properties, any subtle changes to the hydrophobicity of the valine side
chain dramatically affected the antimalarial activity. Most of the derivatives from this series
showed no antimalarial activity at 10 µM. Only compound 2 possessed a potent IC50 of
219 nM. Further lead modification on the m-anisidine moiety of compound 2 led to the iden-
tification of more potent analogues 21 and 24 (21; IC50 = 36 ± 5 nM, 24; IC50 = 22 ± 5 nM).
Continuing lead optimization is underway to enhance the antimalarial activity of this
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series of compounds described in this work. The results from this work can encourage the
selection of molecules in this class for additional in vitro DMPK, target identification, and
in-depth hit-to-lead optimization campaigns in the near future.

3. Materials and Methods
3.1. Chemistry

All chemicals, reagents, and solvents were purchased from commercial suppliers
(Sigma-Aldrich, Merck, or Tokyo Chemical Industry) and were used as such. NMR spectra
were recorded on either a Bruker Avance AV400 (400/100 MHz for 1H/13C NMR) or Bruker
Avance AV600 (600/150 MHz for 1H/13C NMR) spectrometer (Bruker, Billerica, MA, USA),
and chemical shifts (δ, ppm) were downfield from the TMS reference. The chemical shifts
are reported relative to residual the solvent signal in part per million (δ) (CD3OD: 1H: δ
3.31, 13C: δ 49.1; DMSO-d6: 1H: δ 2.50, 13C: δ 39.5; CDCl3: 1H: δ 7.26, 13C: δ 77.23). For the
1H-NMR spectra, data were assumed to be first-order with apparent singlets, doublets,
triplets, quartets, and multiplets reported as s, d, t, q, and m, respectively. High-resolution
mass spectral measurements were performed on either a Thermo Scientific Orbitrap Q
Exactive Focus mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) or a
Bruker Daltonics maxis-UHR-TOF (Ultra High Resolution-TOF) (Bruker, Billerica, MA,
USA). Thin-layer chromatography (TLC) was performed on a Merck aluminum sheet
coated with silica gel 60 F254 (Merck, Darmstadt, Germany). UV lamps were used to
visualize spots on the TLC sheet. The purification was performed on a Biotage® Selekt
Automated flash column chromatograph (Biotage, Uppsala, Sweden).

3.2. Synthesis
3.2.1. General Procedure A (Scheme 3)

To a solution of ACN (75 mL) in a round-bottom flask, isatoic anhydride 14 (1 eq),
amino acid ester (1 eq), and potassium carbonate (2.5 eq) were added. The reaction was
allowed to stir, and then heated to 60 ◦C for 18 h. After that, the mixture was allowed to
cool to room temperature, and then evaporated to remove solvent. The resulting residue
was then stirred in a 0.4 M Na2CO3 solution for 1 h, and the mixture was extracted with
CH2Cl2. The organic phase was collected, dried with anhydrous MgSO4, and evaporated to
dryness by a rotary evaporator. Purification was performed using column chromatography
(CC) over silica gel (10–30% ethyl acetate (EtOAc)/Hexanes) to yield compounds 15a–g.
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3.2.2. General Procedure B (Scheme 4)

To a solution of compounds 15a–g (1 eq) in THF (40 mL), CDI (2 eq) was added. The
reaction was allowed to stir for 18 h at 85 ◦C. When completed, the reaction was concen-
trated by a rotary evaporator. The resulting residue was then dissolved in EtOAc, washed
with water, and dried over MgSO4. The organic portion was filtered and concentrated
to give a crude product. Purification was performed using CC over silica gel (10–30%
EtOAc/hexanes) to obtain the cyclized products 16a–16g.
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3.2.3. General Procedure C (Scheme 5)

A solution of LiOH (2.5 eq) in water (6 mL) was added to a solution of compounds 7–12
(1 eq) in THF (20 mL). The reaction mixture was heated and stirred at 95 ◦C for 18 h. After
that, the mixture was allowed to cool down to room temperature and was concentrated
under reduced pressure. The residue was dissolved in 10 mL of water and acidified with
1 M HCl. The white precipitate was collected and washed successively with methanol to
afford the acid intermediates 17a–g without further purification.
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3.2.4. General Procedure D (Scheme 6)

To a solution of carboxylic acids 17a–17f (1 eq) in DMF (4 mL), triethylamine (1 eq)
and HATU (1 eq) were added. The mixture was left to stir for 1 h at room temperature.
After that, amine (1.5 eq) was added, and the reaction mixture was left to stir at room
temperature for 18 h. After the reaction was completed, the solvent was removed under
reduced pressure. The residue was dissolved in EtOAc; the organic solution was extracted
with 0.4 M Na2CO3 solution and washed with water. The organic layer was collected
and dried over MgSO4; the solvent was evaporated under reduced pressure. Purification
was performed using CC over silica gel or an automated flash column chromatograph
(Biotage®) (10–50% EtOAc/hexanes), or recrystallization was performed with EtOAc to
afford the desired quinazolinedione products 2, 5–10, and 18–29.
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3.3. Antimalarial Assay against P. falciparum 3D7

Plasmodium falciparum strain 3D7 was cultured in complete medium (RPMI-1640 sup-
plemented with 10% Albumax II) using O Rh+ red blood cells in a microaerobic environment
(5% CO2, 5% O2, 90% N2). IC50 assay plates were prepared using fourfold serially diluted
test compounds in complete medium to a final volume of 50 µL. Then, 50 µL of parasite
inoculum at 2% parasitemia ring stage and 1% hematocrit was added to each well and
incubated for 48 h in a microaerobic environment. The assay was terminated by freezing at
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−20 ◦C before growth measurement. Parasite growth was measured adding 100 µL of lysis
buffer supplemented with 1× DNA fluorescent dye (UltraPower, Gellex, Tokyo, Japan),
and the fluorescent signal was measured at 495/530 nm. The IC50 value was calculated
by GraphPad Prism 9.0 software (La Jolla, California, USA) using the dose–response (four-
parameter) function. Artemisinin at 1 µM and complete medium were used as positive and
negative controls, respectively.

3.4. Antiproliferative Assay against MCF-7

Human breast cancer cells (MCF-7) purchased from ATCC were seeded at 2 × 103

cells/well on a 96-well black flat-bottom plate and were cultured in high-glucose DMEM
(Dulbecco’s modified Eagle medium) supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin. The culture was incubated at 37 ◦C, 5% CO2 for 24 h. After the
incubation period, the test compounds were added into the cell plate at serially diluted
concentrations (20, 2, 0.2, 0.02, 0.002, and 0.0002 µM), and the culture was incubated for
72 h at 37 ◦C, 5% CO2. After the 72 h incubation, the cultured media containing compounds
were removed, and the serum-free media containing MTT were added to the same well
with additional incubation for 3 h at 37 ◦C, 5% CO2. After 3 h incubation, the serum-
free media containing MTT were removed, and DMSO was added into the same well; the
resulting solution was measured for its absorbance at 570 nm using a Multimode Microplate
Reader (ENVISION) (PerkinElmer, USA). The IC50 value was calculated using GraphPad.
Doxorubicin at 10 µM was used as a positive control in this assay.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/molecules28072999/s1 including 1H-NMR, 13C-NMR, and HRMS data of
compounds 2, 4–10, 12, and 14–29.
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