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Abstract: Development in the fields of natural-product-derived and synthetic small molecules is in
stark contrast to the ongoing demand for novel antimicrobials to treat life-threatening infections
caused by extended-spectrum β-lactamase producing Escherichia coli (ESBL E. coli). Therefore, there
is an interest in the antibacterial activities of synthesized N-(4-methylpyridin-2-yl) thiophene-2-
carboxamides (4a–h) against ESBL-producing E. coli ST131 strains. A blood sample was obtained from
a suspected septicemia patient and processed in the Bactec Alert system. The isolate’s identification
and antibacterial profile were determined using the VITEK 2® compact system. Multi-locus sequence
typing of E. coli was conducted by identifying housekeeping genes, while ESBL phenotype detection
was performed according to CLSI guidelines. Additionally, PCR was carried out to detect the
blaCTX-M gene molecularly. Moreover, molecular docking studies of synthesized compounds (4a–h)
demonstrated the binding pocket residues involved in the active site of the β-lactamase receptor
of E. coli. The result confirmed the detection of E. coli ST131 from septicemia patients. The isolates
were identified as ESBL producers carrying the blaCTX-M gene, which provided resistance against
cephalosporins and beta-lactam inhibitors but sensitivity to carbapenems. Among the compounds
tested, 4a and 4c exhibited high activity and demonstrated the best fit and interactions with the
binding pocket of the β-lactamase enzyme. Interestingly, the maximum of the docking confirmations
binds at a similar pocket region, further strengthening the importance of binding residues. Hence,
the in vitro and molecular docking studies reflect the promising antibacterial effects of 4a and 4c
compounds.
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1. Introduction

Antibiotic-resistant (AMR) infections are growing in number and severity around the
world, particularly in developing nations such as Pakistan. If we do not address AMR
today, one person will die every three seconds by 2050 [1]. Globally, AMR pathogens
caused 1.27 million deaths in 2019, leading to prolonged hospital stays and fatal conse-
quences [2]. Alarming projections suggest that the death toll caused by drug-resistant
infections in the upcoming years and decades may surpass the current global fatality rate of
the COVID-19 pandemic, which has already prompted multibillion-dollar investments in
vaccine development, drug repurposing, and anti-viral discovery [3]. Extended-spectrum
β-lactamase (ESBL)-producing infections are listed as “High-Priority Pathogens” by the
World Health Organization [4], and the treatment of infections brought on by Escherichia
coli that produce ESBL (ESBL E. coli) is a significant public health concern. Few therapeutic
options are available since these organisms resist widely used medicines such as penicillins
and cephalosporins [5]. The plasmid-mediated antimicrobial resistance genes blaCTX-M,
blaTEM, and blaTEM gene were carried by ESBL-producing E. coli. These are in charge of
causing severe clinical infections, such as urinary tract infections, bacteremia, septicemia,
wound infections, skin infections, and soft tissue infections [6].

The most prevalent lineage of extraintestinal pathogenic E. coli (ExPEC) worldwide is
ST131. According to historical studies, this lineage is believed to have gained prominence
as far back as 2003. In contrast to other classic-group B2 ExPEC isolates, ST131 isolates are
often found to produce extended-spectrum β-lactamases, such as CTX-M-15, and have near-
universal resistance to fluoroquinolones [7–9]. This was initially detected in 2008 [10,11].
Patients with urinary tract infections are most commonly diagnosed with ST131 [12].

Since no novel therapeutic techniques have been developed in the past two decades to
treat life-threatening infections, they are crucial in the fight against AMR. Pyridyl is a crucial
moiety that exhibits insecticidal, anti-inflammatory, anti-cancer, anti-p38 MAP kinase, anti-
viral, and anti-convulsant properties [13–19]. Nicotinamide adenine dinucleotide (NAD)
undergoes redox reactions in biological systems, causing its pyridine ring to be reduced
to dihydropyridine and producing NADH. Comparable redox reactions are also found
in anabolic processes involving NAD phosphate interconversion (NADP+/NADPH) [20].
Carboxamide is a crucial scaffold with antibacterial properties. Proteins’ crucial building
block, the carboxamide bond (-CO-NH-), has drawn much interest because it resists hydrol-
ysis. Because of the ability to create peptides from extremely basic amino acid substrates,
this phenomenon is essential in biological systems [21–24]. The expression of efflux systems
that prevent the antibacterial drug from reaching its intracellular target, the modification of
the drug’s target site, or the production of an alternative metabolic pathway that avoids the
drug’s action are all possible effects of acquired resistance genes in bacteria [24]. ESBLs are
enzymes found in Gram-negative bacteria that hydrolyze antibiotics and lead to resistance
against third-generation cephalosporins [25]. The main RND efflux complex in E. coli is
made up of the pump protein AcrB, the outer membrane-crossing channel TolC, and the
protein AcrA, which links TolC and AcrB. A proton-motive force drives the efflux pump
complex. Due to the significance of the antibacterial properties of pyridyl and carboxamide,
which we have previously explored in our research against clinically derived resistant
bacteria [26–28].

In previous discussions, we covered the synthesis of 5-aryl-N-(4-methylpyridin-2-
yl)thiophene-2-carboxamides (4a–h), their in vitro cholinesterase inhibition, and their
in vivo anti-convulsant activity against Alzheimer’s disease [29]. We expanded our re-
search on N-(4-methylpyridin-2-yl)thiophene-2-carboxamides (4a–h) for their ability to
dock with E. coli 6N6K and 7BDS proteins in ESBL-producing E. coli.

2. Results and Discussion
2.1. Chemistry

Our research group has previously reported the synthesis of 5-Bromo-N-(4-methylpyri-
din-2-yl)thiophene-2-carboxamide (3) in good yield (80%) by reacting 5-bromothiophene-2-
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carboxylic acid (1) with 2-amino-4-methylpyridine (2) in the presence of titanium tetrachlo-
ride (TiCl4) coupling reagent and pyridine which acts as solvent as well as a base. A library
of 5-Bromo-N-(4-methylpyridin-2-yl)thiophene-2-carboxamides (4a–h) has been synthe-
sized in moderate to good yields of 35–84% by the Suzuki Miyaura cross-coupling reaction
of the intermediate compound (3) with various aryl boronic acids, using commercially
available Palladium tetrakis catalyst (Scheme 1, Figure 1) [29].
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Scheme 1. Synthetic pathway of intermediate compound 3 and 5-aryl-N-(4-methylpyridin-2-
yl)thiophene-2-carboxamide analogues (4a–h). Reagents and conditions: (i) 1 (14.49 mmol),
2 (14.49 mmol), TiCl4 (43.47 mmol), 85–90 ◦C, 2 h, solvent pyridine 150 mL; (ii) 3 (0.67 mmol),
Pd(PPh3)4 7 mol% (0.047 mmol), K3PO4 (1.35 mmol), aryl boronic acids/pinacol esters (0.74 mmol),
Solvent/H2O (4:1), reflux, inert atmosphere, 20–25 h.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 15 
 

 

2. Results and Discussion 
2.1. Chemistry 

Our research group has previously reported the synthesis of 5-Bromo-N-(4-
methylpyridin-2-yl)thiophene-2-carboxamide (3) in good yield (80%) by reacting 5-bro-
mothiophene-2-carboxylic acid (1) with 2-amino-4-methylpyridine (2) in the presence of 
titanium tetrachloride (TiCl4) coupling reagent and pyridine which acts as solvent as well 
as a base. A library of 5-Bromo-N-(4-methylpyridin-2-yl)thiophene-2-carboxamides (4a–
h) has been synthesized in moderate to good yields of 35–84% by the Suzuki Miyaura 
cross-coupling reaction of the intermediate compound (3) with various aryl boronic acids, 
using commercially available Palladium tetrakis catalyst (Scheme 1, Figure 1) [29]. 

 
Scheme 1. Synthetic pathway of intermediate compound 3 and 5-aryl-N-(4-methylpyridin-2-yl)thi-
ophene-2-carboxamide analogues (4a–h). Reagents and conditions: (i) 1 (14.49 mmol), 2 (14.49 
mmol), TiCl4 (43.47 mmol), 85–90 °C, 2 h, solvent pyridine 150 mL; (ii) 3 (0.67 mmol), Pd(PPh3)4 7 
mol% (0.047 mmol), K3PO4 (1.35 mmol), aryl boronic acids/pinacol esters (0.74 mmol), Solvent/H2O 
(4:1), reflux, inert atmosphere, 20–25 h. 

 
Figure 1. An overview of 5-aryl-N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogues (4a–
h). 

2.2. Confirmation of the Bacterial Isolate 
The clinical isolate was confirmed as E. coli from the blood sample and belonged to 

the pathogenic strain ST131. E. coli ST131 was phenotypically positive for ESBL produc-
tion and contained the blaCTX-M gene. 

  

Figure 1. An overview of 5-aryl-N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogues (4a–h).

2.2. Confirmation of the Bacterial Isolate

The clinical isolate was confirmed as E. coli from the blood sample and belonged to
the pathogenic strain ST131. E. coli ST131 was phenotypically positive for ESBL production
and contained the blaCTX-M gene.

2.3. Antibacterial Activity

ESBL-producing E. coli ST131 displayed resistance to the AWaRe (Access, Watch,
and Reserve) WHO classes of antibiotics. They showed increased MIC (µg/mL) to ampi-
cillin (≥512), ceftazidime (≥256), ceftaroline (≥8), ciprofloxacin (≥8), and cotrimoxazole
(≥4/152). However, the most sensitive drugs were imipenem (2), nitrofurantoin (16), and
fosfomycin (32), as presented in Table 1. The isolate obtained from the patient blood sample
was confirmed as E. coli by VITEK 2® compact system. The isolate was synergistically
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resistant to cephalosporins antibiotics and monobactam and sensitive to carbapenems
and polymixins.

Table 1. MIC (µg/mL) of antibiotics against ESBL-producing E. coli ST131.

Antibiotics WHO Antibiotic
Classification Antibiotic Class MIC Breakpoints

(ug/mL) E. coli

AMP Access Penicillins ≤8–≥32 ≥512
PIP Watch Penicillins ≤16–≥128 ≥512

CRO Watch Third-generation-cephalosporins ≤1–≥4 ≥256
CAZ Watch Third-generation-cephalosporins ≤4–≥16 ≥256
FEP Watch Fourth-generation-cephalosporins ≤2–≥16 ≥128
CFT Reserve Fifth-generation-cephalosporins ≤0.5–≥2 ≥8
ATM Reserve Monobactams ≤4–≥16 ≥64
IMP Watch Carbapenem ≤1–≥4 2

MEM Watch Carbapenem ≤1–≥4 2
AK Watch Aminoglycosides ≤16–≥64 32
LEV Watch Fluoroquinolones ≤0.5–≥2 ≥16
CIP Watch Fluoroquinolones ≤0.25–≥1 ≥8

MNO Watch Fluoroquinolones ≤4–≥16 ≥64
SXT Access Sulfonamide-trimethoprim-combinations ≤2/38–≥4/76 ≥4/152

F Access Nitrofuran-derivatives ≤32–≥128 16
FOS Reserve Phosphonics ≤64–≥156 32
CS Reserve Polymyxins ≥4 0.5

AMP: Ampicillin; AMC: Amxocillin/Clavulanic acid, CRO: Ceftriaxone; FEP: Cefepime; CAZ: Ceftazidime, CFT:
Ceftarolin, ATM: Aztreonam; LEV: Levofloxacin; IMP: Imipenem, MEM: Meropenem; AK: Amikacin, MNO:
Minocycline; SXT: Co-trimethoprim; F: Nitrofurantoin, FOS: Fosfomycin; CS: Colistin.

The molecules (4a–h) were screened for antibacterial activity at five concentrations
(10, 20, 30, 40, and 50 mg/well) against ESBL-producing E. coli by agar well diffusion.
Broth dilution methods calculated MIC and MBC. The results are presented in Table 2
and Figures 2 and 3 regarding the activity. The zone of inhibition (mm) increases as the
concentration of compounds increases. Compounds 4a and 4c showed the highest zone
of inhibition (13 ± 2 and 15 ± 2, respectively) at 50 mg concentration of compound as
compared to other compounds. All other compounds also showed good activity. The MIC
and MBC of the tested molecules were calculated (Table 3 and Figures 4 and 5).

Table 2. Agar well diffusion of compounds (4a–h) against ESBL-producing E. coli ST131.

Compound No. Zone (mm)
(50 mg/mL)

Zone (mm)
(40 mg/mL)

Zone (mm)
(30 mg/mL)

Zone (mm)
(20 mg/mL)

Zone (mm)
(10 mg/mL) Zone (mm) DMSO

4a 13 ± 2 12 ± 2 10 ± 2 8 ± 2 6 ± 2 0
4b 12 ± 2 9 ± 2 8 ± 2 7 ± 2 6 ± 2 0
4c 15 ± 2 13 ± 2 10 ± 2 9 ± 2 7 ± 2 0
4d 10 ± 2 9 ± 2 8 ± 2 7 ± 2 4 ± 2 0
4e 12 ± 2 10 ± 2 8 ± 2 7 ± 2 5 ± 2 0
4f 10 ± 2 8 ± 2 7 ± 2 6 ± 2 5 ± 2 0
4g 12 ± 2 10 ± 2 9 ± 2 8 ± 2 7 ± 2 0
4h 11 ± 2 10 ± 2 8 ± 2 6 ± 2 4 ± 2 0
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Table 3. MIC and MBC of compounds (4a–h) against ESBL-producing E. coli ST131.

Compound No. MIC (mg/mL) MBC (mg/mL)

4a 3.125 6.25
4b 12.5 25
4c 3.125 6.25
4d 6.25 12.5
4e 25 50
4f 6.25 12.5
4g 6.25 12.5
4h 25 50
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2.4. Molecular Docking Studies

Molecular docking of β-lactamase from Escherichia coli strain with carboxamide deriva-
tives, Sakai (PDB ID: 6N9K), demonstrated necessary hydrogen bonding and hydrophobic
interactions. In addition, the binding pattern of 6N9K revealed two binding cavities
(Figure 6A). However, the maximum of the poses resides in the binding pocket A. There-
fore, the binding cavity A confirmations were selected for protein-interaction analysis.
Moreover, the superposition of the molecule 4a confirmations was not so good due to the
flexibility and conformational changes in the ligand and protein environment. We have
observed that the superposition of different ligand conformations in pocket A can result in
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variations in the binding pose and binding affinity, leading to inconsistencies in the molec-
ular docking results. Therefore, to address this issue, we performed multiple docking runs
using different conformations of the ligands and analyzed the resulting poses and scores.
This approach allowed us to obtain a more comprehensive view of the ligands’ potential
binding modes and identify the most likely binding poses. In addition, the two highly
active compounds 4a and 4c showed almost a similar binding pattern, further validating
the authenticity and stability of the interacting residues and the binding cavity. The highly
active compound 4a showed hydrophobic interactions with N255, D258 and hydrogen
bonding with R257 amino acid residues (Figure 7A). Another compound 4c in the carbox-
amide derivates demonstrated hydrogen bonding interaction between the carboxyl (C=O)
group and L358 amino acid residue. Moreover, two hydrophobic interactions were also
observed between the (i) benzene (6-ring) and I64 residue (ii) thiopyran and P42 (Figure 6B).
The interaction pattern of the remaining compounds with 6N9K is shown in Figure S1.
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In the case of the CTX-M-15 enzyme (PDB ID: 7BDS), all the conformations bindings at
the similar region (Figure 6B) of the receptor are considered an important site to target for
the inhibition of the CTX-M-15 enzyme to control antibiotic resistance. The highly active
compound 4a showed hydrophobic interactions, i.e., thiopyran, chlorobenzene with T105,
and pyridine with A219 and R274 amino acid residues. Interestingly, hydrogen bonding
interaction was also observed between the carboxyl (C=O) group and S130 amino acid
residue (Figure 7C). For compound 4c, only one hydrophobic interaction was observed
between thiopyran and S237. Moreover, two hydrogen bonding interactions also demon-
strated (i) OH and S130 (ii) NH and P167 (Figure 7D). Moreover, the interaction pattern of
the rest of the carboxamide derivatives with 7BDS is shown in Figure S2.

Additionally, we compared the docking results of N-(4-methylpyridin-2-yl) thiophene-
2-carboxamide analogues with tazobactam, the natural ligand of the target protein (7BDS).
Our docking analyses showed that tazobactam exhibited hydrogen bonding interactions
with R44, E64, R65, A172, and T264 residues, while no hydrophobic interactions were
observed (Figure S2). Moreover, the binding energy and RMSD values for tazobactam
were found to be relatively higher than those of the synthesized carboxamide analogues
(Table S1). The observed differences in the interaction pattern between tazobactam and
the carboxamide analogues may be attributed to their structural diversity. Tazobactam is a
β-lactamase inhibitor with a β-lactam ring, while the carboxamide analogues synthesized
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in this study have a thiophene ring and a carboxamide group. These structural differences
may lead to variations in the binding orientations and interactions with the target protein.

Moreover, the carboxamide analogues have additional interactions, such as hydropho-
bic interactions, due to the presence of the thiophene ring, which may contribute to the
stability of the protein-ligand complex. This may explain the relatively lower binding en-
ergy and RMSD values observed for the carboxamide analogues compared to tazobactam.
Based on these comparisons, we concluded that the synthesized carboxamide analogues
exhibited a more stable binding conformation and better interaction patterns than the
natural ligand tazobactam.

In conclusion, hydrophobic and hydrogen bonding interactions and the binding pock-
ets for 6N9K and 7BDS identified from this study are important residues and sites that
could be used to check the inhibition potential of the designed chemical compounds. More-
over, compounds 4c and 4d showed better binding patterns and least energy values (most
stabilizing energy conformation) and Root-Mean-Square Deviations (RMSDs) from the
original conformation (Table S1) as compared to the rest of the compound series which is
in agreement with the experimental results. These findings suggest that the synthesized
compounds have the potential as effective inhibitors for the target protein. Overall, our
study provides valuable insights into the binding mechanisms of the carboxamide ana-
logues and paves the way for further optimization and development of novel inhibitors
against this protein.
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2.5. Molecular Dynamic (MD) Simulations of Highly Active Compounds

In this study, we conducted molecular docking and 100 ns molecular dynamics (MD)
simulations of the β-lactamase (PDB ID: 6N9K) and antimicrobial protein from Klebsiella
(PDB ID: 7BDS) with highly active compounds (4a,4c) using the CHARMM36 force field
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in GROMACS. The 6N9K-4a docked complex remained stable throughout the simulation,
while minor fluctuations in the root-mean-square deviation (RMSD) plot were observed
for the 6N9K-4c complex after 80 ns. These minor fluctuations may be attributed to the
natural flexibility and dynamics of the 6N9K-4c complex. The overall RMSD value of both
docked complexes (6N9K-4a and 6N9K-4c) was less than 0.3 Å, indicating stability and
maintenance of their initial conformation throughout the 100 ns simulation (Figure 8A).
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Similar to the 6N9K-4a complex, no fluctuations in the RMSD plot were observed for
the 7BDS-4a complex. However, a significant rise in the RMSD trajectory was observed
for the 7BDS-4c complex after 80 ns of simulation. This rise in RMSD may be attributed to
conformational changes or the instability of the protein-ligand complex. Nevertheless, it is
noteworthy that the overall RMSD values for both 7BDS-4a and 7BDS-4c complexes were
less than 0.4 Å, indicating that these complexes were also stable and maintained their initial
conformation throughout the simulation (Figure 8B). Our results suggest that both docked
complexes (6N9K-4a and 6N9K-4c) are stable, while the stability of the 7BDS-4c complex
may require further investigation. These findings may aid in designing novel inhibitors for
β-lactamase enzymes, which are critical for combating antibiotic resistance in bacteria.

In addition, our experimental studies showed high IC50 values at 50 mg/mL and
inhibition zones of 13 ± 2 for 4a and 15 ± 2 for 4c, which agrees with our computational
findings. This agreement between computational and experimental results adds strength
to our findings. It suggests that our computational approach can be reliable for identifying
and evaluating potential inhibitors for β-lactamase enzyme inhibitors. Our study provides
a promising approach for identifying potential inhibitors for the β-lactamase enzyme. In the
future, we plan to investigate the binding mechanisms of these highly active compounds
using more advanced computational techniques and to conduct in vivo studies to validate
their effectiveness as antibacterial agents.

3. Materials and Methods
3.1. Antibacterial Activity
3.1.1. Identification of the Bacterial Strains

After obtaining ethical permission from the Ethical Review Committee (ERB), Govern-
ment College University Faisalabad, and written consent from the patients, 3 mL blood
samples were taken and inserted into the BACTEC/Alert blood culture bottle. The bot-
tles were incubated at 37 ◦C in BACTEC/Altert automatic system (BD, UK). The positive
samples were sub-cultured on blood and MacConkey agar (Oxoid, UK). Using a Gram-
negative card, the isolates were preliminarily identified based on colony morphology
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and biochemically confirmed in an automatic VITEK 2® compact system (Biomerieux,
Marcy-l’Étoile, France).

3.1.2. Antibiogram of the Isolates

MIC (µg/mL) of various antibiotics against these pathogens was carried out in VITEK
2® compact system (BioMerieux, Marcy-l’ÉtoileFrance France). The antimicrobials tested
were ampicillin, pipracillin, amoxicillin/clavulanic acid, ceftazidime, ceftriaxone, cefepime,
ceftaroline, aztreonam, imipenem, meropenem, amikacin, ciprofloxacin, levofloxacin, tetra-
cycline, co-trimoxazol, nitrofurantoin, fosfomycin, and colistin (Table 1). The interpretation
of the susceptibility was made as per CLSI guidelines 2020.

3.1.3. Phenotypic Detection ESBL Enzyme

ESBL production was determined by the double disc diffusion method [30]. In short,
the isolates were owned on the MHA plate, co-amoxiclav antibiotic was placed in the
center, and 3rd generation cephalosporins were placed at a distance of 10 mm to co-
amoxiclav. After overnight incubation, the synergy-like pattern confirmed the presence of
ESBL enzymes (Figure 9).
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3.1.4. MLST of E. coli Strain

For the MLST, seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA)
were amplified and sequenced according to the conditions provided by the EnteroBase
Database. The obtained PCR products were sent for sequencing to Macrogen (South
Korea). The ChromasPro software (Technelysium, South Brisbane, Australia) edited the
raw sequences. The sequences were aligned using the ClustalW algorithm (MEGA, version
number.7 software). The allele number was assigned to each gene locus, and the sequence
types (STs) were determined according to each isolate’s allelic profile [31].

3.1.5. Molecular Detection of blaCTX-M Gene

Bacterial DNA was extracted by a commercially available DNA extraction kit (Qiagen,
Germany). The following primer detected the blaCTX-M gene; blaCTX-M F: ATGTGCAGY-
ACCAGTAARGTKATGGC, blaCTX-R: TGGGTRAARTARGTSACCAGAAYCAGCGG by
PCR. The PCR reactions (30 µL) were used using 15 µL 2X DreamTaq Green master mix
(Thermo Fisher Scientific, Waltham, MA, USA), 1 µL of each primer (forward and reverse)
was used and 1 µL of the template DNA was used. The PCR water was used to make a
total volume of 30 µL. The agarose gel (1.5%) was used to visualize the amplicons after
electrophoresis at 100 V for 30–45 min. All the amplified samples were sent for Sanger
sequencing from Macrogen, Inc. (Gangnam-gu, South Korea). The obtained sequences
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were aligned and compared with the sequences in the GenBank database using the NCBI
BLAST tool.

3.1.6. Agar Well Diffusion Method of Compounds (4a–h) against ESBL-Producing E. coli

The antibacterial activity of the compounds was determined by agar well diffusion
assay against ESBL-producing E. coli described previously [28]. In short, 0.5McFarland
bacterial suspension was inoculated on the Mueller Hinton Agar plate, and a sterile 6 mm
cork borer was used to make wells on each plate. Subsequently, 100 µL of each DMSO
diluted compound (50 mg, 40 mg, 30 mg, 20 mg, 10 mg) was poured into each well, and
plates were incubated at 37 ◦C overnight. Vernier caliper measured the zone of inhibition
(mm). The assay was performed in triplicate (Table 2, Figures 2 and 3).

3.1.7. Minimum Inhibitory Concertation of Compounds (4a–h) against ESBL-Producing
E. coli

Microbroth dilution assay determined different compounds’ MIC (% w/v) [28]. Two to
three isolated colonies were mixed in 20mL of double-strength lysogeny broth (LB) medium
in 50 mL of falcon tubes and incubated at 37 ◦C overnight. The bacterial suspension was
diluted to achieve 0.5 McFarland at an optical density (OD) of 0.07 at 600 nm. Briefly, serial
dilutions of each compound (0.76, 1.56, 3.12, 6.25, 12.5, 25, 50 mg) were prepared in DMSO,
and 100 µL of each compound dilution was added in 96 wells, flat-bottom microtiter plates
(Thermo Fisher Scientific, Leicestershire, UK). Subsequently, 100 µL of bacterial suspension
was added to each well. Negative-control wells contained 100 µL of LB, and positive-
control wells contained LB with bacterial suspension. The microtiter plate was incubated at
37 ◦C overnight in a shaking incubator (MaxQTM Mini 4450, Thermo Fisher Scientific) at
3 g. MIC was calculated by comparing each well with negative and positive-control wells.
All procedures were performed in triplicate (Table 3, Figures 4 and 5).

3.1.8. Minimum Bactericidal Concentration of Compounds (4a–h) against ESBL-Producing
E. coli

Minimum bactericidal concentration (MBC, % w/v) is the first dilution with no growth
on the agar plate. A 10 µL sample was taken from no-visible-growth wells of a microtiter
plate. It was inoculated on the nutrient agar plates (Oxoid, Hampshire, UK) and incubated
at 37 ◦C for 24 h aerobically. Plates were examined for cell viability, and any colonies
developed were scored as bacterial growth and no bacterial growth. All procedures were
repeated in triplicates (Table 3, Figure 4).

3.2. Molecular Docking

Hyperproduction of β-lactam antimicrobial agents in E. coli inactivate and, thus, pro-
vides resistance to the antibiotic used to treat E. coli infections [32]. Additionally, E. coli
strains carrying CTX-M-15 ESBLs are notably observed to be highly prevalent in the Asian
population and found to be the most abundant enzyme for causing infectious diseases.
Interestingly, previous studies showed that CTX-M-15 also exhibits resistance against third-
generation cephalosporin drugs [33,34]. Therefore, in our study, molecular docking studies
of synthesized carboxamide derivatives against β-lactamase and CTX-M-15 in ligase and
antimicrobial proteins were analyzed. Additionally, for the comparative analysis, the
already known inhibitors i.e., tazobactam [35], are also considered for molecular dock-
ing. The X-ray crystallographic structure of β-lactamase from Escherichia coli str. Sakai
(PDB ID: 6N9K) and CTX-M-15 (PDB ID: 7BDS) with a resolution of 1.60 and 0.91 Å were
downloaded from Protein Data Bank (PDB) (http://www.rcsb.org/pdb/home/home.do
(accessed on 18 November 2022)) [35,36]. The crystallized structure was protonated (adding
charges), and energy was minimized (Amber99 force field) using Molecular Operating En-
vironment (MOE) designed by Chemical Computing Group, Montreal, QC, Canada [37,38].
Furthermore, the 3D structures of chemical compounds (4a–h) and tazobactam were opti-
mized through energy minimization using MMFF94x force field. Target protein structures
(6N9K and 7BDS) were docked using placement methods i.e., Triangular Matcher and

http://www.rcsb.org/pdb/home/home.do
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Induced fit with a scoring method of London dG and GBVI/WSA dG. The Triangular
Matcher is a MOE docking placement method and was implemented with three different
scoring functions, i.e., London dG, GBVI/WSA, and Affinity dG [39]. It is the best docking
algorithm for standard and well-defined binding sites. Moreover, MOE assigns S-score
(docking score) based on hydrogen bonds, hydrophobic interactions, salt bridges, solvent
exposure, sulfur-LP, and cation-π interaction. The lower the S-score more stabilized the
conformation [40,41]. Herein, the algorithm gives the five best poses out of the 30 stochastic
search confirmations. The pose with minimum S-score representing the stable energy con-
formation was selected for further protein-ligand interaction and binding cavity analysis in
Discovery Studio version v19.1.0.18287 (BIOVIA, San Diego, CA, USA) [42].

3.3. Molecular Dynamic (MD) Simulations

The molecular dynamics (MD) simulations were performed using Gromacs software
version 2018 [43]. The docked complexes of two highly active ligands, 4a and 4c, with 7BDS
and 6N9K, were energy minimized. The ligand topology of 4a and 4c was generated using
the cgenff server. The four complexes (6N9K-4a, 6N9K-4c, 7BDS-4a, 7BDS-4c) were solvated
with TIP3P water molecules in a cubic box, and counterions were added to neutralize the
system. The systems were then energy minimized using the steepest descent and conjugate
gradient algorithms to remove steric clashes and close contacts. The equilibration of the
systems was carried out in the NPT ensemble for 100 ps, during which the temperature and
pressure were maintained at 300 K and 1 bar, respectively. The production MD simulations
were carried out for 100 ns using the CHARMM36 force field with a time step of 2 fs [44].
The trajectories generated from the MD simulations were analyzed to obtain Root-Mean
Square deviations (RMSD) of protein-ligand complexes to investigate their conformational
stability. All simulations were performed on high-performance computing clusters using
parallel computing to improve efficiency.

4. Conclusions

All the N-(4-methylpyridin-2-yl)thiophene-2-carboxamides (4a–h) are good ESBL-
producing antibacterial agents, but the compounds 4a and 4c show the highest activity.
Moreover, compound 4a followed by 4c is the most potent inhibitor against the selected
target enzymes (6N9K and 7BDS) of β-lactamase E. coli in comparison to the remaining N-
(4-methylpyridin-2-yl)thiophene-2-carboxamide analogues. The reported binding residues
were crucial in stabilizing the complexes through hydrogen bonding and hydrophobic
(π-interactions) interactions. In conclusion, in vitro and computational studies provide
promising evidence for 4a and 4c compounds that could be used as novel β-lactamase
inhibitors to combat antibiotic resistance.
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