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Abstract: Isolation for antibacterial compounds from natural plants is a promising approach to
develop new pesticides. In this study, two compounds were obtained from the Chinese endemic
plant Piper austrosinense using bioassay-guided fractionation. Based on analyses of 1H-NMR, 13C-
NMR, and mass spectral data, the isolated compounds were identified as 4-allylbenzene-1,2-diol
and (S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol. 4-Allylbenzene-1,2-diol was shown
to have strong antibacterial activity against four plant pathogens, including Xanthomonas oryzae
pathovar oryzae (Xoo), X. axonopodis pv. citri (Xac), X. oryzae pv. oryzicola (Xoc) and X. campestris
pv. mangiferaeindicae (Xcm). Further bioassay results exhibited that 4-allylbenzene-1,2-diol had
a broad antibacterial spectrum, including Xoo, Xac, Xoc, Xcm, X. fragariae (Xf ), X. campestris pv.
campestris (Xcc), Pectobacterium carotovorum subspecies brasiliense (Pcb) and P. carotovorum subsp.
carotovorum (Pcc), with minimum inhibitory concentration (MIC) values ranging from 333.75 to
1335 µmol/L. The pot experiment showed that 4-allylbenzene-1,2-diol exerted an excellent protective
effect against Xoo, with a controlled efficacy reaching 72.73% at 4 MIC, which was superior to the
positive control kasugamycin (53.03%) at 4 MIC. Further results demonstrated that the 4-allylbenzene-
1,2-diol damaged the integrity of the cell membrane and increased cell membrane permeability. In
addition, 4-allylbenzene-1,2-diol also prevented the pathogenicity-related biofilm formation in Xoo,
thus limiting the movement of Xoo and reducing the production of extracellular polysaccharides
(EPS) in Xoo. These findings suggest the value of 4-allylbenzene-1,2-diol and P. austrosinense could be
as promising resources for developing novel antibacterial agents.

Keywords: antibacterial activity; cell membrane; mechanism; physiological and biochemical index;
Xanthomonas oryzae pathovar oryzae

1. Introduction

The medicinal importance of plants has led to the exploration of plant extracts that are
commonly used as antibacterial agents, because plant pathogenic bacteria are devastating
to plants all over the world, which can cause various disease symptoms including spots,
blights of leaf and soft rots of fruits [1–3]. Such events may greatly compromise the quality
and output of crops [4,5]. In recent years, the occurrence of bacterial diseases in crops is
increasing with the change in climate and planting structure. In some areas, bacterial diseases
are becoming the predominant diseases and seriously limit the development of the agricultural
industry. Currently, only a few varieties of pesticides, including kocide and thiadiazole copper
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(TC), have been registered for the control of bacterial diseases [6–9]. Given the practical
issues that include huge losses led by bacterial diseases, the lack of targeted agents and the
increasing resistance of pathogen strains are major concerns. Therefore, developing innovative
antibacterial substitutes with safe and high-efficient attributes has been urgently required.

Plants are potential sources of natural bioactive compounds, many of which possess
good antimicrobial activity and can be used as natural pesticides [10]. A large amount
of research work has put a focus on searching for plant-derived fungicides. For example,
some active compounds, such as physcion, osthole, and berberine, have been developed as
botanical fungicides to effectively control plant diseases. Physcion is one of the common
anthraquinone compounds that extensively exists in various plants. Increasing evidence
suggested that physcion effectively inhibited the growth of phytopathogenic fungi and bac-
teria [7,11,12]. Osthole, a natural product derived from medicinal plants including Cnidium
monnieri and Angelica, displayed multiple pharmacological actions such as immunomodu-
lation and antimicrobial activity. Previous reports have shown that osthole inhibited the
germination of spores and the growth of hyphae in Sphaerotheca fuliginea. Moreover, osthole
derivatives have also shown superior controlled efficacy against Phytophthora capsici [13–15].
As a traditional Chinese medicine, berberine has a potent role in controlling plant disease
and is also emerging as a promising botanical pesticide [6,16,17]. Currently, seeking novel
plant-derived antibacterial drugs with high efficacy and low toxicity or identifying new
properties using structural modifications has become the hot spot and provides strong
challenge in the relevant research field.

Piper is an indispensable condiment with high economic value [18]. Multiple medicinal
functions of Piper have also been confirmed [19], such as the relief in abdominal pain and
diarrhea and protection of the liver. To date, many Piper species have exhibited a broad
range of bioactivities, including antifungal, antibacterial and pesticidal properties [20].
Piper austrosinense, a peculiar genus of Piper plants in China, is distributed in Southern
Chinese provinces, such as Hainan, Guangdong, Guangxi and Yunnan [21], the picture
of P. austrosinense can be found in the supplementary materials (Figure S1). Besides its
well-known use as a culinary spice, P. austrosinense is mainly used as a medicine for
treating toothache and traumatic injuries [22,23]. Liu et al., 1995 [24] separated nine
compounds from P. austrosinense, two of which were identified as new amide alkaloids.
However, the pharmacological effects of these amide alkaloids have not been confirmed
yet. Chen et al., 2018 [25] separated eleven compounds (including protocatechualdehyde,
protocatechuate, pipernonaline, etc.), among which pipernonaline displayed the inhibitory
activity of butyrylcholinesterase. Moreover, the cytotoxic effects of the separated eleven
compounds were evaluated in HepG2 liver cancer cells using MTT assays; the results
showed that all compounds at a concentration of 30 µM did not exert cytotoxicity to the
HepG2 cell line.

Our recent study observed that methanol extracts of P. austrosinense had significant
antibacterial activity against Xoo. However, there is a lack of systematic investigation on
the antibacterial activity of P. austrosinense. Therefore, in this study, we further identified
the antibacterial properties of P. austrosinense based on the bioactivity-guided method while
evaluating their antibacterial activities.

2. Results
2.1. Structural Elucidation of Isolated Compounds

In this study, two bioactive metabolites were successfully isolated from the methanol
extract of P. austrosinense leaves and stems, using a tracing method of bioactivity. The
isolated compounds were purified using column chromatography, whose structures were
characterized using 1H NMR, 13C NMR and ESI-MS. Furthermore, their structures were
confirmed by comparing with previously reported spectroscopic data [26,27]. Based on
the spectroscopic data, the constituents were identified as 4-allylbenzene-1,2-diol (1), and
(S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol (2) (Figure 1).
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Figure 1. The chemical structures of the antibacterial active compounds from Piper austrosinense:
4-Allylbenzene-1,2-diol (1); (S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol (2).

2.2. In Vitro Antibacterial Activity

The bactericidal activities of 4-allylbenzene-1,2-diol and (S)-4-allyl-5-(1-(3,4-dihydroxy-
phenyl)allyl)benzene-1,2-diol are shown in Table 1. 4-allylbenzene-1,2-diol possessed excel-
lent antibacterial activities against Xac, Xoc, Xcm, and Xoo at a concentration of 1000 µmol/L,
with inhibition rates of 97.39%, 99.58%, 99.03%, and 99.24%, respectively, which was not
significantly different from the positive control (kasugamycin, the structure can be found
in the supplementary materials (Figure S2)) and was superior to that of (S)-4-allyl-5-(1-(3,4-
dihydroxyphenyl)allyl)benzene-1,2-diol.

Table 1. Antibacterial activities of isolated compounds from Piper austrosinens against four phy-
topathogenic bacteria (concentration: 1000 µmol/L).

Strain
Inhibition Rate (%)

4-Allylbenzene-1,2-diol (S)-4-Allyl-5-(1-(3,4-
dihydroxyphenyl)allyl)benzene-1,2-diol Kasugamycin

Xac 97.39 ± 0.17 a 24.73 ± 1.84 b 99.35 ± 0.25 a
Xoc 99.58 ± 0.96 a 37.53 ± 4.35 b 100.00 ± 0.22 a
Xcm 99.03 ± 0.24 a 40.44 ± 2.23 b 99.17 ± 0.50 a
Xoo 99.24 ± 0.05 a 30.97 ± 2.99 b 98.54 ± 0.25 a

Note: Different lowercase letters in the same column show the significant difference at p < 0.05 level using
Duncan’s new multiple range test.

Due to significant antibacterial activity of 4-allylbenzene-1,2-diol, 4-allylbenzene-1,2-
diol was selected for further analysis. The results of the 4-allylbenzene-1,2-diol bactericidal
assay showed that 4-allylbenzene-1,2-diol inhibited the growth of all the tested strains
with different degrees. In particular, among the tested bacteria, Xoo, Xac and Xcm were
sensitive to 4-allylbenzene-1,2-diol in a range of 250–500 µmol/L. 4-Allylbenzene-1,2-diol
completely inhibited the growth of the three different bacterial pathogens, with inhibition
rates > 94% at the concentration of 500 µmol/L (Figure 2). At a low concentration of
250 µmol/L, 4-allylbenzene-1,2-diol still showed good inhibition against Xac, Xoo and
Xcm, with inhibition rates of 72.28%, 56.72%, and 95.23%, respectively (Figure 2). The
inhibitory efficiency of 4-allylbenzene-1,2-diol against Xac, Xoo and Xcm were equal to
those achieved by kasugamycin at the concentration of 500 µmol/L (Figure 2). Higher
inhibition activity of 4-allylbenzene-1,2-diol against Xoo and Xcm was obtained when the
concentration decreased to 250 µmol/L.
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Figure 2. Antibacterial activity of 4-allylbenzene-1,2-diol against phytopathogenic bacteria. Note:
Different lowercase letters in the same column show the significant difference at p < 0.05 level using
Duncan’s new multiple range test. Xac represents Xanthomonas axonopodis pv. citri, Xoc represents
Xanthomonas oryzae pv. oryzicoia, Xca represents Xanthomonas campertris pv. campertris, Pcc represents
Pectobacterium carotovorum subsp. carotovorum, Xoo represents Xanthomonas oryzae pv. oryzae, Pcb
represents Pectobacterium carotovorum subsp. brasiliense, Xf represents Xanthomonas fragariae, Xcm
represents Xanthomonas campestris pv. mangiferaeindicae.

2.3. Minimum Inhibitory Concentration (MIC)

The MIC of 4-allylbenzene-1,2-diol against 8 phytopathogenic bacteria is presented in
Table 2. Xoo and Xcm were the most sensitive bacteria to 4-allylbenzene-1,2-diol, with MIC
values of 333.75 µmol/L for both, which were lower than that of kasugamycin. The MIC
values of 4-allylbenzene-1,2-diol against other bacteria ranged from 667.5 to 1335 µmol/L.

Table 2. Minimum inhibitory concentrations of 4-allylbenzene-1,2-diol against phytopathogenic
bacteria.

Bacteria
Minimum Inhibitory Concentration (µmol/L)

4-Allylbenzene-1,2-diol Kasugamycin

Xac 667.5 250
Pcc 1335 250
Xcc 1335 500
Pcb 1335 62.5
Xoo 333.75 500
Xoc 333.75 125
Xcm 333.75 500
Xf 1335 62.5

2.4. Growth Curve of the 4-Allylbenzene-1,2-diol against Xoo

The effects of various doses of 4-allylbenzene-1,2-diol on the growth curve of Xoo are
shown in Figure 3. Compared with the control, the log periods were positively correlated
with the treatment concentrations. Meanwhile, 4-allylbenzene-1,2-diol at MIC completely
inhibited the growth of Xoo after treatment for 12 h.
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2.5. In Vivo Bioactivity of 4-Allylbenzene-1,2-Diol against Xoo

The protective and curative effects of 4-allylbenzene-1,2-diol against Xoo are shown in
Table 3 and Figure 4. 4-Allylbenzene-1,2-diol exhibited a strong protective effect against
Xoo when the concentration was at 4 MIC (1335 µmol/L), with an efficacy of 72.73%, which
was superior to the positive control kasugamycin (53.03%). In addition, the efficiency of
4-allylbenzene-1,2-diol decreased to 54.54% at 2 MIC (667.5 µmol/L), which was similar to
that of the positive control kasugamycin. The in vivo curative activity of 4-allylbenzene-1,2-
diol against rice bacterial leaf blight was weaker, with the efficacy of nearly 30% at 15 days
after inoculation, which was significantly lower than that of kasugamycin (43.28%).

Table 3. Protective and curative activities of 4-allylbenzene-1,2-diol against Xoo.

Chemicals
Protective Activity (15 Days after Spraying) Curative Activity (15 Days after Spraying)

Morbidity (%) Disease Index (%) Control Efficiency
(%) Morbidity (%) Disease Index (%) Control Efficiency

(%)

4-Allylbenzene-1,2-diol
(2 MIC, 667.5 µmol/L) 100 37.04 b 54.54 ± 6.38 b 100 60.49 b 26.86 ± 5.65 b

4-Allylbenzene-1,2-diol
(4 MIC, 1335 µmol/L) 100 22.22 c 72.73 ± 5.60 a 100 56.79 b 31.34 ± 3.97 b

Kasugamycin
(4 MIC, 2000 µmol/L) 100 38.27 b 53.03 ± 4.61 b 100 46.91 c 43.28 ± 7.83 a

Control 100 81.48 a - 100 82.71 a -

Note: Different lowercase letters in the same column show the significant difference at p < 0.05 level using the
Duncan’s new multiple range test.

2.6. SEM Observation

The morphological changes of Xoo after treatments with various concentrations of
4-allylbenzene-1,2-diol are presented in Figure 5. Untreated Xoo cells (control) were rod-
shaped with a relatively smooth surface and uniform in shape (Figure 5A), while the
4-allylbenzene-1,2-diol treatment for 5 h at MIC resulted in the appearance of ruffle in
cells (Figure 5B). More apparent cell deformation was observed when the concentration
of 4-allylbenzene-1,2-diol treatment increased to 2 MIC (Figure 5C). Moreover, Xoo cells
treated with 4 MIC 4-allylbenzene-1,2-diol were deformed, collapsed, and wrinkled, while
irregularly shaped holes were observed. (Figure 5D).
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2.7. Membrane Permeability

The relative conductivity values constantly increased in control and 4-allylbenzene-
1,2-diol-treated Xoo (Figure 6). Compared to the application of lower concentrations (1/4
and 1/2 MIC), the greatest efficacy of promoting the increases in relative conductivity was
found in Xoo treated with 4-allylbenzene-1,2-diol at MIC and 2 MIC (Figure 6).
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2.8. Cell Motility Assays

As shown in Figure 7, 4-allylbenzene-1,2-diol strongly inhibited the motility of Xoo,
and the inhibitory effect significantly improved with increasing 4-allylbenzene-1,2-diol
concentrations. Colony diameters of Xoo after 48 h of treatments with 1/4 MIC, 1/2
MIC, MIC and 2 MIC of 4-allylbenzene-1,2-diol were 22 mm, 12 mm, 1 mm and 0 mm,
respectively, each of which was significantly less than that of the control.
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2.9. Assay of 4-Allylbenzene-1,2-diol-Inhibited Biofilm Formation Assay

As illustrated in Figure 8, 4-allylbenzene-1,2-diol treatments at concentrations of 2 MIC,
MIC, 1/2 MIC and 1/4 MIC resulted in reductions of biofilm formation by 83.92%, 56.64%,
44.98% and 31.50%, respectively, when compared to controls.
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2.10. Extracellular Polysaccharide (EPS) Production

To examine the effect of 4-allylbenzene-1,2-diol on the production of EPS, Xoo was
treated with multiple concentrations of 4-allylbenzene-1,2-diol. The results showed that
4-allylbenzene-1,2-diol at 2 MIC, MIC, 1/2 MIC and 1/4 MIC led to reductions of 74.01%,
46.49%, 32.84% and 5.35%, respectively, compared to controls (Figure 9).
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3. Materials and Methods
3.1. Experimental Materials and Reagents

Leaves and stems of P. austrosinense were randomly collected in Xinglong Tropi-
cal Botanical Garden, Wanning City, Hainan Province, China (18◦44′ N, 110◦11′ E). The
obtained plants were identified by the Spice and Beverage Research Institute, Chinese
Academy of Tropical Agricultural Sciences. Eight phytopathogenic bacterial strains used
for in vitro antibacterial screening included Xoo (bacterial leaf blight of rice), X. oryzae pv.
oryzicola (Xoc, bacterial leaf streak of rice), Xac (citrus bacterial canker), X. campestris pv.
mangiferaeindicae (Xcm, bacterial black spot of mango), X. fragariae (Xf, bacterial angular leaf
spot of strawberry), X. campestris pv. campestris (Xcc, black rot of cabbage), Pectobacterium
carotovorum subsp. brasiliense (Pcb, bacterial soft rot of potato) and P. carotovorum subsp.
carotovorum (Pcc, bacterial soft rot of Chinese cabbage). All of the strains were incubated
in 20% glycerol and preserved at −80 ◦C for further use. Strains were cultured on Luria-
Bertani (LB) agar plates (containing 10 g of tryptone, 5 g of yeast extract, 10 g of NaCl, 16 g
of agar and 1 L of distilled water) or in LB broth without agar at 28 ◦C in the dark. All the
bacteria were obtained from the Environment and Plant Protection Institute of the Chinese
Academy of Tropical Agricultural Science (Haikou, China).

3.2. Extraction and Isolation

The leaves and stems (2 kg) of P. austrosinense were air-dried and powdered, and then
macerated in 10 L methanol for 7 days under room temperature. After filtration, the filtrate
was evaporated under hypobaric condition to yield the crude extracts. The methanol
extracts (320 g) were re-suspended in water (1.8 L) and partitioned with petroleum ether
(3 × 1.8 L), followed by extraction with ethyl acetate (2 × 1.8 L). The petroleum ether
and ethyl acetate solutions were evaporated under hypobaric conditions to produce the
petroleum ether-extracted residues (43.85 g) and ethyl acetate-extracted (58.29 g). Pre-
liminary experimental results demonstrated that the petroleum ether extract had potent
antibacterial activity against Xoo, Xoc, Xac and Xcm. Petroleum ether extract was subjected
to passing through a column of MCI gel (methanol-H2O: 70–100%) to obtain five com-
ponents (Fr. A–Fr. E). Fr. C and Fr. D were separated on a column of Sephadex LH-20
column and eluted with methanol to obtain two fractions (Fr. CD1 and Fr. CD2). Afterward,
Fr. CD1 was separated on a silica gel column by an elution with petroleum ether: ethyl
acetate (15:1) to obtain compound 1 (30.0 mg). Fr. CD2 was applied to a silica gel column
(petroleum ether/ethyl acetate =3:1) to yield compound 2 (14.3 mg). The characteristics of
both compounds were identified as follows:

Compound 1: (4-Allylbenzene-1,2-dio), colorless oil, ESI-MS: m/z 173 [M + Na]+, 149 [M
− H]−; 1H-NMR (500 MHz, CDCl3) δH: 6.75 (lH, d, J = 7.8 Hz, H-5), 6.67 (IH, s, H-2),
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6.57 (lH, d, J = 7.8 Hz, H-6), 5.88 (1H, m, H-8), 5.02(2H, m, H-9), 3.20 (2H, d, J = 6.4 Hz,
H-7). 13C-NMR (125 MHz, CDCl3) δC: 133.4 (C-1), 115.9 (C-2), 143.6 (C-3), 141.8 (C-4), 116.2
(C-5), 121.2 (C-6), 39.5 (C-7), 137.8 (C-8), 115.7 (C-9). The 1H and 13C NMR data were in
accordance with those of 4-allylbenzene-1,2-diol [27].

Compound 2: ((S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol), brown oil, ESI-
MS: m/z 297 [M − H]−; 1H-NMR (500 MHz, CD3OD)δH: 6.65 (lH, d, J = 8.1 Hz, H-5′), 6.55
(lH, s, H-6), 6.55 (lH, s, H-3), 6.52 (lH, d, J = 2.1 Hz, H-2′), 6.42 (lH, dd, J = 8.1, 2.0 Hz, H-6′),
6.15 (1H, ddd, J = 16.9, 10.2, 6.3 Hz, H-8′), 5.85 (1H, m, H-8), 5.09 (1H, m, H-9′b), 4.95 (2H,
m, H-9), 4.75 (1H, dt, J = 17.1, 1.8 Hz, H-9′a), 4.67 (lH, d, J = 6.3 Hz, H-7′), 3.16 (2H, m, H-7).
13C-NMR (125 MHz, CDCl3) δC: 130.4 (C-1), 134.2 (C-2), 117.3 (C-3), 144.2 (C-4), 144.4 (C-5),
118.0 (C-6), 37.4 (C-7), 139.4 (C-8), 115.3 (C-9), 136.3 (C-1′), 117.1 (C-2′), 146.0( C-3′), 144.5
(C-4′), 116.0 (C-5′), 121.2 (C-6′), 50.4 (C-7′), 143.1 (C-8′), 115.6 (C-9′). The 1H and 13C NMR
date were in accordance with those of (S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-
1,2-diol [26].

3.3. In Vitro Antibacterial Bioassay

The antibacterial activities of 4-allylbenzene-1,2-diol against Xoc, Xac, Xcm, and Xoo
were measured according to the method of Zhao et al., 2019 [28], with some modifications.
Compounds 1 and 2 were dissolved in sterile distilled water with 1% acetone and diluted
to a final concentration of 1000 µmol/L. Sterile distilled water with 1% acetone was used
as the negative control, and Kasugamycin (Shanghai Macklin Biochemical Technology
Co. Ltd., Shanghai, China) was used as the positive control. Approximately 10 µL of
bacteria suspensions cultured on the phase of logarithmic growth was added to 190 µL
LB containing tested compounds. The cultures were inoculated at 28 ◦C at 180 rpm for
12–18 h. The OD600 value was recorded to evaluate the bactericidal activity. Each treatment
was repeated three times.

4-Allylbenzene-1,2-diol determination of the bactericidal spectrum was set up iden-
tically to that of the antibacterial activity assay in vitro. Antibacterial activities of 4-
allylbenzene-1,2-diol on 8 phytopathogenic bacteria, including Xoo, were evaluated us-
ing turbidity assays. The 4-allylbenzene-1,2-diol was tested at final concentrations of
250 µmol/L and 500 µmol/L respectively. The OD value was measured after incubation to
evaluate the antibacterial activity.

3.4. Determination of the Minimum Inhibitory Concentration (MIC)

The activities of 4-allylbenzene-1,2-diol against Xoo, Xoc, Xac, Xcm, Xf, Xcc, Pcc, and
Pcb were examined by referring to the twofold dilution method, by which the minimum
inhibitory concentrations were obtained [29]. The bacterial suspension (OD600 = 0.6) was
added to the drug-contained medium to get the concentrations of 2670, 1335, 667.5, 333.75,
166.88, 83.44, 41.72, and 20.86 µmol/L, respectively. Kasugamycin at 1000, 500, 250, 125,
62.5, 31.25, 15.625, and 7.8125 µmol/L were used as positive controls, while 1% acetone
was used as a negative control. Finally, the 96-well plate was incubated for 12 h at 28 ◦C in
the incubator, and the lowest concentration was recorded as MIC when the blank control
group became turbid. All measurements were repeated three times.

3.5. Growth Curve Assay

The effect of 4-allylbenzene-1,2-diol on the growth curve of Xoo was determined
according to a previous method [30] with some modifications. 4-Allylbenzene-1,2-diol was
dissolved in sterilized distilled water with 1% acetone and added to the culture medium to
obtain final concentrations of 1/16 MIC, 1/8 MIC, 1/4 MIC, 1/2 MIC, and MIC. Sterilized
distilled water with 1% acetone was used as a blank control. The bacterial suspension
(OD600 = 0.6) was inoculated into LB medium-contained agents. Cell densities were
monitored by measuring the optical density at 600 nm every 12 h during the cultivation of
84 h. All measurements were conducted in triplicate and means were considered.
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3.6. In Vivo Antibacterial Activity against Xoo

The protective and curative activities of 4-allylbenzene-1,2-diol against rice bacterial
leaf blight in potted plants were evaluated under greenhouse conditions. The experimental
procedures followed the reference [31] with slight modifications. Rice seeds of ‘Xian-
gliangyou 900’ were germinated in the greenhouse and grown for 5 weeks. 4-Allylbenzene-
1,2-diol in acetone was diluted with sterile distilled water (containing 0.1% Tween-20) to
final concentrations of 2 MIC (667.5 µmol/L) and 4 MIC (1335 µmol/L). Sterile distilled
water with 0.1% Tween-20 and 1% acetone served as blank controls, while kasugamycin (2%
aqueous solution, 2000 µmol/L) was used as a positive control. For the protective activity
experiment, the tips of rice leaves were cut using sterile scissors, and the Xoo in the loga-
rithmic growth phase was inoculated at 24 h after evenly spraying 4-allylbenzene-1,2-diol
solutions. In the curative activity experiment, the solutions were sprayed on the leaves at
24 h after inoculation. Additionally, the assay was repeated three times, with seven plants
for each treatment. Inoculated rice plants were placed in a greenhouse at 70–80% relative
humidity and 28 ± 2 ◦C. The disease index of the inoculated leaves was evaluated and
photographed for 15 days. The degree of disease was graded as follows: level 0, no onset;
level 1, lesions accounted for less than 1–5% of the leaf area; level 3, lesions accounted
for 6–15% of the leaf area; level 5, lesions accounted for 16–25% of the leaf area; level 7,
lesions accounted for 26–50% of the leaf area; level 9, lesions accounted for more than 50%
of the leaf area. The disease index and control effect were calculated based on the following
formula; see Equations (1) and (2) for details:

Disease index =
Σ(the number of diseased leaves in each grade× corresponding grade value)

(total number of leaves investigated× the highest disease grade value)
× 100% (1)

Control effect (%) =
disease index in the control− disease index in the treated group

disease index in the control
× 100% (2)

3.7. Scanning Electronic Microscope (SEM)

Sample preparation for scanning electron microscopy was carried out according to
the method provided by Liu et al., 2021 [32] with slight modifications. The bacterial sus
pensions (OD600 = 0.6) were washed three times with 0.1 mol/L phosphate buffer (pH 7.2)
and resuspended. Thereafter, 4-allylbenzene-1,2-diol was added to the bacterial suspension
to make the final concentrations reaching to MIC, 2 MIC and 4 MIC, respectively, and
then the mixture was shaken at 180 rpm for 5 h at 28 ◦C. The cells were obtained after
centrifugation at 5000 rpm for 5 min, and then washed three times with 0.1 mol/L PBS
(pH 7.2). Subsequently, the bacterial cells were fixed to dehydrate with 2.5% glutaraldehyde
at 4 ◦C for 12 h, and then washed 3 times with 0.1 mol/L PBS (pH 7.2), dehydrated with
30%, 50%, 70%, 80%, 90% and 100% ethanol solution for 15 min in sequence, and freeze-
dried for 12 h. Finally, the samples were flattened and sprayed with gold. A SEM (Quorum
Technologies, SC7620, East Sussex, UK) was used to observe the morphological change of
the bacterial membrane.

3.8. Membrane Permeability

The permeability of the bacterial membrane was expressed in the relative electric
conductivity that was measured using the method of Ernst et al., 2000 [33] with minor
modifications. Bacteria were cultured at 28 ◦C until the logarithmic growth phase, followed
by centrifugation at 2000 rpm for 20 min. The supernatant was discarded, and the cells
were re-suspended with sterile water. The concentration of bacterial suspensions was
approximately 108 CFU/mL. Different concentrations of 4-allylbenzene-1,2-diol were re-
spectively added to the bacterial suspension and incubated at 37 ◦C for 24 h. Conductivity
was measured at 0, 2, 4, 6, 8, 10 and 24 h after additions of 4-allylbenzene-1,2-diol and
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recorded as L1. The conductivity of the mixture in boiling water for 10 min was recorded
as L2. The cell membrane permeability was calculated using the following formula 3:

Membrane permeability (%) =
L1

L2
× 100% (3)

3.9. Bacterial Motility Assay

Bacterial motility was measured using a swimming assay according to the method
of Di et al., 2008 [34]. Cultures of Xoo (OD600 = 0.6) were prepared. The LB solid medium
containing 0.3% agar powder was heated in a microwave oven and boiled until completely
dissolved. After cooling down to 40 ◦C, the reagent containing 4-allylbenzene-1,2-diol
was added to the culture medium, with the final concentrations being 1/4 MIC, 1/2 MIC,
MIC and 2 MIC, respectively. The overnight cultured bacterial suspension containing
4-allylbenzene-1,2-diol was drop-inoculated to the center of semisolid medium plates and
incubated for 48 h at 28 ◦C. The bacterial solution without containing 4-allylbenzene-1,2-
diol served as a blank group. The motility of bacterial cells was evaluated by measuring the
diameter of the longest bacterial circles, and the measurement was repeated three times.

3.10. Assay of Biofilm Formation

The biofilm formation assay was performed based on the crystal violet staining
method, as described by Du et al., 2018 [35] with slight modifications. The overnight
cultured bacterial suspension (OD600 = 0.6) was inoculated into the LB medium containing
4-allylbenzene-1,2-diol whose final concentration was 1/4 MIC, 1/2 MIC, MIC and 2 MIC,
respectively. For promoting the growth of biofilms, the mixed cultures in glass tubes were
incubated at 28 ◦C for 5 d. After that, the culture medium was poured out and gently
washed three times with distilled water. The cultures in each glass tube were stained with
2.5 mL of crystal violet (0.1%) for 30 min. After staining, the glass tubes were washed three
times with 0.1 mol/L PBS (pH 7.2) to remove excess stains. Finally, the crystal violet-stained
cells were solubilized with glacial 3 mL of glacial acetic acid. The absorbance of the biofilm
was measured at 590 nm. Three replicates were performed.

3.11. Extracellular Polysaccharide (EPS) Production

EPS production was determined according to previous reports [22,36]. The bacterial
cells were shakenly (180 rpm) cultured in LB media containing different concentrations
(1/4 MIC, 1/2 MIC, MIC and 2 MIC) of 4-allylbenzene-1,2-diol for 72 h at 28 ◦C. Afterward,
the cultures were centrifuged at 3000 rpm for 20 min, and the supernatants were collected.
Finally, the supernatants were mixed with three-fold volumes of absolute ethanol and
incubated overnight to precipitate EPS. The obtained EPS was pelleted via centrifugation
and desiccation. The assay was performed three times.

3.12. Statistical Analyses

Data were presented as means ± standard deviations, and the data were subjected to
variance analysis using the SPSS software (version 20.0, IBM Corp., Armonk, NY, USA).
Significant differences between means were analyzed using Duncan’s Multiple Range
Test at 0.05 levels. All assays for evaluating the activity of 4-allylbenzene-1,2-diol were
performed with three replicates. The graphs were generated using Sigma Plot (version 12.5,
Systat Software Inc., San Jose, CA, USA).

4. Discussion

In this study, (S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol and 4-allylbenzene-
1,2-diol were separated from P. austrosinense petroleum ether extract using the bioassay-guided
assay. Structurally, (S)-4-allyl-5-(1-(3,4-hydroxyphenyl)allyl)benzene-1,2-diol is a dimer version of
4-allylbenzene-1,2-diol. Moreover, in vitro bioassays revealed that only 4-allylbenzene-1,2-diol
possessed antibacterial activity. Few target bacteria have previously been used to screen active
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constituents of P. austrosinense for antibacterial activity, which might be one of the reasons why
we failed to obtain more active ingredients. Additionally, the partial fractions obtained from
column chromatographic separation were not further separated, which were likely to possess
active components that could inhibit phytopathogenic bacteria.

4-Allylbenzene-1,2-diol is a simple phenolic compound that has been reported to
have a variety of biological functions such as antifungal, anticancer and antioxidant prop-
erties [37]. Ali et al., 2010 [38] reported that 4-allylbenzene-1,2-diol is the most active
compound extracted from Piper betle L. and has antibacterial properties, particularly for
treating topical infections. According to a report by Sharma et al., 2009 [39], 4-allylbenzene-
1,2-diol may be a promising compound that is developed as an antibacterial agent to treat
oral diseases. In addition, 4-allylbenzene-1,2-diol was clinically confirmed to increase
the sensitivity of bacteria to antibiotics due to its property of damage to the membrane
in bacteria [40]. These findings indicate that 4-allylbenzene-1,2-diol is a promising func-
tional compound. However, the bactericidal activity of 4-allylbenzene-1,2-diol against
plant pathogens has not been reported. In our study, in vitro activity results showed that
4-allylbenzene-1,2-diol had good bactericidal activities against eight plant pathogenic bac-
teria, especially for Xoo and Xoc, with MIC values of 333.75 µmol/L, which were lower
than that of kasugamycin. Kasugamycin has systemic activity and has been widely used to
control disease in rice [41]. Thus, we used kasugamycin as the positive control to evaluated
in vivo controlled efficacy of 4-allylbenzene-1,2-diol against Xoo on rice. 4-Allylbenzene-1,2-
diol was found to have excellent protective activity, but its curative activity was relatively
poor, which indicates that 4-allylbenzene-1,2-diol had a poor systemic activity or perme-
ability in rice leaves, and its bactericidal activity might be induced by directly contacting
with the pathogen. Furthermore, we explored the mechanism of bactericidal action 4-
allylbenzene-1,2-diol in vitro. The results of SEM showed that 4-allylbenzene-1,2-diol
caused the concaves and perforations in bacteria, which indicated that 4-allylbenzene-1,2-
diol might disrupt cell membrane integrity. Moreover, 4-allylbenzene-1,2-diol promoted the
increase in the relative conductivity of Xoo in a dose-effect manner, which further confirmed
that this active compound could trigger damage to the cell membrane, resulting in the
leakage of cellular contents. These findings indicated that the bactericidal mechanism of
4-allylbenzene-1,2-diol against plant pathogenic bacteria could be related to its damage to
the cell membrane, which was consistent with the results obtained by Singh et al., 2021 [40].

Further results showed that 4-allylbenzene-1,2-diol limited the movement of Xoo
in addition to inhibiting the growth of pathogenic bacteria. The swimming mobility
of plant pathogenic bacteria is considered to be directly correlated with pathogenicity,
and is also able to promote the formation of biofilm while helping the interaction be-
tween the bacterium and host, thus serving to enhance the infectious ability of the bacte-
ria [42]. In this study, the swimming mobility of Xoo decreased by more than 50% when
applied 4-allylbenzene-1,2-diol at the minimum concentration (1/4 MIC). Interestingly,
4-allylbenzene-1,2-diol showed a weaker inhibition on the growth of Xoo under the same
conditions (1/4 MIC, 48 h), which indicated that the motility of Xoo could be more sensitive
to 4-allylbenzene-1,2-diol. Tans-Kersten et al., 2001 [43] found that the loss of motility could
significantly reduce the pathogenicity of Ralstonia solanacearum-caused bacterial wilt disease
in tomato plants. In this study, the decreased infectious ability of Xoo due to the treatment
of 4-allylbenzene-1,2-diol could be associated with the inhibition of swimming mobility.
The formation of bacterial biofilms can enhance the tolerance of bacteria to bactericides,
which increases the difficulty of preventing and controlling the infection of bacteria [44,45].
Exocellular polysaccharides, as one of the main constituents of biofilm, are closely related to
the pathogenicity of bacteria of plant pathogens [46–48]. Chen et al. 2016 [49] reported that
the natural product resveratrol inhibited the formation of biofilms of Ralstonia solanacearum,
which contributed to the improvement of antibacterial ability. In our study, 4-allylbenzene-
1,2-diol inhibited the biofilm and reduced the exopolysaccharide production of Xoo. Based
on the above results, we speculated that the antibacterial effect of 4-allylbenzene-1,2-diol
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against Xoo might be associated with reduced pathogenicity by inhibiting polysaccharide
synthesis and secretion, bacterial swimming mobility, and biofilm formation.

5. Conclusions

In this study, 4-allylbenzene-1,2-diol, an active compound was separated from the
endemic plant P. austrosinense in China, which exhibited strong antibacterial activity
against plant pathogenic bacteria with a broad spectrum. The antibacterial mechanism
of 4-allylbenzene-1,2-diol might involve the loss of cell membrane integrity and reduced
pathogenicity in plant pathogens. The results suggested that 4-allylbenzene-1,2-diol and the
medicinal plant P. austrosinense could be potential sources of developing novel bactericides.
Further studies will aim to elucidate the antibacterial molecular mechanisms as well as
investigate their controlling efficiency in field conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
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