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Abstract: Tetrahydrocurcumin (THC) is a metabolite of curcumin (CUR). It shares many of CUR’s
beneficial biological activities in addition to being more water-soluble, chemically stable, and bioavail-
able compared to CUR. However, its mechanisms of action have not been fully elucidated. This
paper addresses the preventive role of THC on various brain dysfunctions as well as its effects on
brain redox processes, traumatic brain injury, ischemia-reperfusion injury, Alzheimer’s disease, and
Parkinson’s disease in various animal or cell culture models. In addition to its strong antioxidant
properties, the effects of THC on the reduction of amyloid β aggregates are also well documented.
The therapeutic potential of THC to treat patterns of mitochondrial brain dysmorphic dysfunction
is also addressed and thoroughly reviewed, as is evidence from experimental studies about the
mechanism of mitochondrial failure during cerebral ischemia/reperfusion injury. THC treatment also
results in a dose-dependent decrease in ERK-mediated phosphorylation of GRASP65, which prevents
further compartmentalization of the Golgi apparatus. The PI3K/AKT signaling pathway is possibly
the most involved mechanism in the anti-apoptotic effect of THC. Overall, studies in various animal
models of different brain disorders suggest that THC can be used as a dietary supplement to protect
against traumatic brain injury and even improve brain function in Alzheimer’s and Parkinson’s
diseases. We suggest further preclinical studies be conducted to demonstrate the brain-protective,
anti-amyloid, and anti-Parkinson effects of THC. Application of the methods used in the currently
reviewed studies would be useful and should help define doses and methods of THC administration
in different disease conditions.

Keywords: tetrahydrocurcumin; curcumin; brain injury; Alzheimer’s disease; Parkinson’s disease;
mitochondria; reactive oxygen species; antioxidants

1. Background

Chemoprevention, generally defined as the use of natural food chemicals and/or
synthetic substances to slow, inhibit, block, or even reverse the progression of human
diseases, is a relatively new technique for preventing degenerative diseases in humans.
Tetrahydrocurcumin (THC), as a significant metabolite of curcumin (CUR) (derived from
the roots of Curcuma longa Linn.), has been shown to possess antioxidant, anti-inflammatory,
neuroprotective, and anti-cancer properties. In this review, we analyze the existing data
and the underlying molecular mechanisms of the neuroprotective properties of THC, as
well as its potential implications for the prevention of different brain-related diseases.
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2. The Structural Feature of THC Associated with Its Antioxidant Properties

THC includes phenol and β−diketone functional groups, which are common struc-
tural characteristics of antioxidant compounds. (Figure 1). In this direction, by exposing it
to peroxyl radicals, Sugiyama et al. [1] found that THC produced four oxidation products
derived from the β−diketone. Moreover, Wu et al. [2] described the breaking of the C–C
bond in the β−diketone that occurs during redox reactions, which means that the structure
of the β−diketone plays a key role in the antioxidant properties of THC [1].
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In vivo, studies show that THC has a stronger antioxidant effect than CUR. THC low-
ered the levels of lipid peroxidation markers in the blood, liver, and kidney of cholesterol-
fed rabbits [3]. THC’s antioxidant activity was also beneficial in reducing chloroquine-
mediated damage in the rat kidneys by augmenting the endogenous non-enzymatic and
enzymatic antioxidants and inhibiting lipid peroxidation [4–6]. In the same direction,
Nakmareong et al. [7] showed that administration of a THC-containing diet in a rat model
of N(omega)-Nitro-L-Arginine Methyl Ester (L-NAME)-induced oxidative stress leads
to a significantly reduced production of superoxide (O2·) and malondialdehyde (MDA),
followed by increased endogenous synthesis of glutathione (GSH) [8]. Similarly, THC
significantly reduced L-NAME-induced aortic wall thickness and stiffness [9]. Ma et al. [10],
investigating the relationship between the antioxidative brain potential of brain tissue and
cognitive impairment in a C57BL/6 mouse model induced by acute hypobaric hypoxia,
discovered that THC improved cognitive impairment, accompanied by reduced oxidative
stress and increased glucose transporter 1 (GLUT1) protein levels. In addition, one cru-
cial brain-related THC-affected mechanism is the synthesis of the deacetylase, sirtuin 1
(Sirt1) [11]. Sirt1’s activity is associated with improved cellular physiological function and
is considered to have an anti-aging effect. Sirt1 promotes the production of brain-derived
neurotrophic factors, which is one of the most significant brain-related effects. [12]. For
these reasons, practical measures that might boost Sirt1 activity are of considerable interest.
Among the few already-proven nutraceuticals that have potential in this regard, THC is
one of the most prominent. THC was found to increase Sirt1’s mRNA as well as the levels
of the protein, but the details about how THC accomplishes this remain obscure [13,14].

Several human diseases, including aging, diabetes, neurodegeneration, and cancer,
have been linked to oxidative stress as one of their most prominent causes [15,16]. THC
may have the ability to prevent oxidation-related human diseases due to its significant
antioxidant activity, which has already been demonstrated in many in vitro and in vivo
settings [17]. On the other hand, from a pharmacokinetic point of view, THC, compared
to hexahydrocurcumin, for instance, has lower pharmacokinetic properties and lower
bioavailability in various relevant models [18]. Based on its kinetic solubility, metabolic
stability, gastrointestinal (GI) and blood–brain barrier (BBB) penetration properties, and
lipophilic-ligand efficiency, THC is not at the top in comparison to some other curcum-
inoids [18]. Nevertheless, taking into account its advantages, such as in the case of the
promotion and activation of Sirt1, considerable emphasis in this systemic review will be
given to the impact of THC on neurodegenerative onset. However, its protective role in
all previously mentioned diseases cannot be excluded due to the systemic relationships
between them.
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3. THC-Related Neuroprotective Effects in Hippocampal HT22 Cells

Several previous studies have shown that, as a result of its antioxidant properties, THC
can prevent neuronal cell death during traumatic brain injury [19,20]. Thus, it has been
shown that THC can reduce glutamate-induced death of hippocampal HT22 cells [21]. To
test the neuroprotective effect of THC on glutamate-induced oxidative stress, Park et al. [21]
exposed HT22 cells to 5 mmol/L glutamate in the presence or absence of THC for 24 h.
The obtained data showed that glutamate decreased cell viability, while THC significantly
increased cell viability at doses of 10 and 20 mmol/L compared to cells treated only
with glutamate. Considering that oxidative stress has a significant role in neuronal cell
death, suppression of reactive oxygen species (ROS) can be considered a potential method
for slowing down neuronal cell death. Based on this, the fact that THC significantly
reduces the accumulation of intracellular ROS induced by glutamate treatment represents
a key step in neuroprotection [22]. Considering that an increase in intracellular Ca2+

([Ca2+]i) is characteristic of neuronal cell death caused by glutamate-induced oxidative
stress [23,24], Park et al. [21] measured [Ca2+]i levels in HT22 cells and found that THC
causes significant suppression of glutamate-induced [Ca2+]i accumulation. These findings
imply that THC may protect HT22 cells from glutamate toxicity by inhibiting oxidative
stress and preventing [Ca2+]i.

Previous studies have implied that glutamate induces apoptotic cell death, followed
by cell necrosis [25,26]. While examining the effect of THC on glutamate-induced apoptotic
damage in HT22 cells, Park et al. [21] found in their study that chromatin condensation, a
morphological marker of apoptotic cell death [27], is significantly increased in HT22 cells
treated with glutamate, but THC completely prevents such effects. In addition, the same
authors investigated whether the inhibition of mitogen-activated protein kinase (MAPK)
phosphorylation (as a mechanism responsible for cell survival) underlies the prevention of
glutamate-induced apoptosis [21]. The obtained results show that inhibiting intracellular
ROS causes inhibition of MAPK phosphorylation and cell death induced by peroxide
(H2O2) generation, indicating that ROS-mediated MAPK phosphorylation is involved in
neuronal cell apoptosis [28,29]. It was found that glutamate increases the stimulation
of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38,
whereas THC significantly decreases glutamate-induced phosphorylation of MAPK [21].
These findings imply that inhibition of MAPK phosphorylation is the molecular sword of
THC-mediated neuroprotection (Figure 2).
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4. THC-Related Neuropathic Protection

Current research has shown that mice injected with vincristine develop chemotherapy-
induced peripheral neuropathy (CIPN) [30,31]. In the study by Greeshma et al. [32], rats
injected with vincristine were characterized by lower motor nerve conduction velocity,
functional loss (lower sciatic functional index), elevated oxidative stress, and TNF-α pro-
duction in the sciatic nerve. It was shown that THC treatment significantly improved the
nociceptive threshold in vincristine-injected rats while reducing oxidative stress, inflamma-
tory mediators, and total [Ca2+]i levels in the sciatic nerve. THC treatment also showed a
protective effect (dose-dependent) on the decline of the functional index and conduction
velocity induced by vincristine [32].

Vincristine generally causes hyperresponsiveness of A-δ and C-fiber nociceptive neu-
rons, which sensitize dorsal horn neurons, causing hyperalgesia and allodynia [33]. Ac-
cording to published data, spinal microglia and astrocytes react to vincristine-induced
peripheral neuropathy [34]. Thus, it was reported that activated glial cells secrete upregu-
lated pronociceptive mediators such as nitric oxide (NO), prostaglandins, pro-inflammatory
interleukins, and TNF-α [34]. Hence, any drug that suppresses pronociceptive and pro-
inflammatory mediators is a potential suppressor of neuropathic pain [35,36]. THC’s
analgesic and anti-inflammatory effects underlie the suppression of vincristine-induced pe-
ripheral neuropathy [34]. Additionally, THC is superior to CUR in reducing the activation
of inducible NO synthase (iNOS), nuclear factor kappa light chain enhancer of activated B
cells (NF-κB), cyclooxygenase 2 (COX-2), JNK, and ERK (Figure 3) [37].
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Figure 3. Vincristine-induced peripheral neuropathy. THC-induced suppression of the nuclear
factor kappa light chain enhancer of activated B cells (NF-κB), c-Jun N-terminal kinase (JNK), p38,
extracellular signal-regulated kinase (ERK), inducible NO synthase (iNOS), cyclooxygenase 2 (COX-2),
and matrix metalloproteinase (MMP-9).

Another model of clinical pain, formalin-induced nociception, occurs as a result of
tissue damage and is characterized by an acute (0–10 min) and a delayed (20–40 min)
phase [38,39]. THC treatment induces an analgesic response only in the delayed phase,
indicating that it can block inflammatory mediators in the process of causing pain [38].
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It is also known that the accumulation of [Ca2+]i ions induces secondary messengers
(calpain and calmodulin), which may further be the causes of axonal degeneration. In
vincristine-treated rats, intrathecal injection of Ca2+ chelators dramatically reduces allody-
nia and hyperalgesia [40]. On the other hand, the suppressive capacity of THC upon the
[Ca2+]i ions in the sciatic nerve could be taken as a reason that defines its protective role
against vincristine-induced peripheral neuropathy (Figure 4).

Molecules 2023, 28, x FOR PEER REVIEW 5 of 18 
 

 

and hyperalgesia [40]. On the other hand, the suppressive capacity of THC upon the [Ca2+]i 

ions in the sciatic nerve could be taken as a reason that defines its protective role against 

vincristine-induced peripheral neuropathy (Figure 4). 

Finally, all the above-presented findings show that THC attenuates vincristine-in-

duced biochemical, neurophysiological, and histological changes in rats. The benefits of 

THC may be associated with various mechanisms, including antinociceptive, anti-inflam-

matory, Ca2+-accumulation-inhibitive, TNF-α suppression, neuroprotective, and antioxi-

dant activities [40]. 

 

Figure 4. THC attenuates vincristine-induced pathogenesis at the level of mitochondria. 

5. THC-Related Induction of Mitochondrial Apoptotic Route, Autophagy, and 

PI3K/AKT Pathways: Neuroprotection after TBI and I/R Injury 

The capacity of THC to enhance the activity of endogenous antioxidant enzymes po-

tentiates its antioxidant properties [41–43]. It has been established that the increase in ROS 

after traumatic brain injury (TBI) causes oxidative stress, a disorder caused by subsequent 

brain damage [44]. During respiration, mitochondria are known to generate ROS, which 

can be further used to oxidize proteins and DNA [45]. At the same time, if there is damage 

to the mitochondria, ROS accumulation interferes with mitochondrial function and dis-

rupts the balance of the redox processes [46]. In this direction, Wei et al. [47] examined the 

protective capacity of THC after TBI and found a reduction of oxidative stress caused by 

brain contusion, reduction of cerebral edema, and reduced death of brain neurons. Differ-

ent authors observed a curcuminoide-induced reduction in superoxide dismutase (SOD) 

and glutathione peroxidase (GPx) activities as well as a decrease in MDA levels as markers 

of oxidative stress after TBI, cardiac damage, and bronchopulmonary dysplasia [48–54]. 

In addition, Wei et al. [47] found an increase in the expression of pro-apoptotic factors in 

comparison to the expression of anti-apoptotic factors, resulting in Bax-dependent pore 

formation and increased cell permeability, followed by activation of caspase-3 and degra-

dation of DNA and some critical proteins, ultimately resulting in cell death [19]. Admin-

istration of 25 mg/kg THC causes suppression of the Bax translocation, upregulating the 

expression of the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein. Hence, it seems that 

the neuroprotective mechanism of THC is based on the blockage of apoptotic mecha-

nisms. 

Conversely, Gao et al. [41] found that THC reduces brain edema and improves neu-

robehavioral function while inhibiting TBI-induced apoptosis, which is mainly activated 

through autophagy and the phosphatidylinositol 3’-kinase (PI3K)/AKT pathway. Cyto-

plasmic matter and dysfunctional organelles are sequestered and destroyed in an orderly 

fashion during the process of autophagy, providing a recycling mechanism for cellular 

components [55]. Stressful conditions such as starvation [56], subarachnoid bleeding [57], 

TBI [58], and cerebral ischemia [59] promote autophagy, which subsequently supplies nu-

trients necessary for the critical maintenance of certain metabolic processes [60]. A study 

by Gao et al. [41] shows that after TBI, rats treated with THC dramatically increased the 

Figure 4. THC attenuates vincristine-induced pathogenesis at the level of mitochondria.

Finally, all the above-presented findings show that THC attenuates vincristine-induced
biochemical, neurophysiological, and histological changes in rats. The benefits of THC may
be associated with various mechanisms, including antinociceptive, anti-inflammatory, Ca2+-
accumulation-inhibitive, TNF-α suppression, neuroprotective, and antioxidant activities [40].

5. THC-Related Induction of Mitochondrial Apoptotic Route, Autophagy, and
PI3K/AKT Pathways: Neuroprotection after TBI and I/R Injury

The capacity of THC to enhance the activity of endogenous antioxidant enzymes
potentiates its antioxidant properties [41–43]. It has been established that the increase
in ROS after traumatic brain injury (TBI) causes oxidative stress, a disorder caused by
subsequent brain damage [44]. During respiration, mitochondria are known to generate
ROS, which can be further used to oxidize proteins and DNA [45]. At the same time, if
there is damage to the mitochondria, ROS accumulation interferes with mitochondrial
function and disrupts the balance of the redox processes [46]. In this direction, Wei et al. [47]
examined the protective capacity of THC after TBI and found a reduction of oxidative
stress caused by brain contusion, reduction of cerebral edema, and reduced death of brain
neurons. Different authors observed a curcuminoide-induced reduction in superoxide
dismutase (SOD) and glutathione peroxidase (GPx) activities as well as a decrease in MDA
levels as markers of oxidative stress after TBI, cardiac damage, and bronchopulmonary
dysplasia [48–54]. In addition, Wei et al. [47] found an increase in the expression of pro-
apoptotic factors in comparison to the expression of anti-apoptotic factors, resulting in
Bax-dependent pore formation and increased cell permeability, followed by activation of
caspase-3 and degradation of DNA and some critical proteins, ultimately resulting in cell
death [19]. Administration of 25 mg/kg THC causes suppression of the Bax transloca-
tion, upregulating the expression of the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein.
Hence, it seems that the neuroprotective mechanism of THC is based on the blockage of
apoptotic mechanisms.

Conversely, Gao et al. [41] found that THC reduces brain edema and improves neu-
robehavioral function while inhibiting TBI-induced apoptosis, which is mainly activated
through autophagy and the phosphatidylinositol 3’-kinase (PI3K)/AKT pathway. Cyto-
plasmic matter and dysfunctional organelles are sequestered and destroyed in an orderly
fashion during the process of autophagy, providing a recycling mechanism for cellular
components [55]. Stressful conditions such as starvation [56], subarachnoid bleeding [57],
TBI [58], and cerebral ischemia [59] promote autophagy, which subsequently supplies
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nutrients necessary for the critical maintenance of certain metabolic processes [60]. A study
by Gao et al. [41] shows that after TBI, rats treated with THC dramatically increased the
activation of the autophagy system, as seen by increased expression of light chain 3 (LC3)-II
and beclin-1, as well as decreased expression of p62. However, autophagy after TBI is
a double-edged sword, and the mechanisms that regulate its control are unknown [61].
Madathil et al. [62] have shown that the PI3K/AKT signaling pathway plays a key role
in the control of cell survival after TBI. At the same time, various neuroprotective drugs
such as estradiol [63] and statins [64], through stimulation of the PI3K/AKT pathway, may
have therapeutic advantages after TBI. In this direction, Gao et al. [41] found that THC
therapy improves AKT phosphorylation, while LY294002, a highly specific PI3K inhibitor,
eliminates THC-induced neuroprotection 24 h after TBI. Hence, the PI3K/AKT signaling
pathway is probably the most involved mechanism in the anti-apoptotic effect of THC
(Figure 5).
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Brain damage resulting from a variety of diseases, such as neurodegenerative disor-
ders [65–67], and cerebral ischemia [68–70] is linked to autophagy. Autophagy’s role in cell
survival or death is currently unclear [61]. Clark et al. [71] found that after TBI, there is an
intensification of autophagy in human brain tissue and that the oxidative stress that occurs
in TBI further exacerbates the neurological damage in mice by altering autophagy [71].
Gao et al. [19] showed that THC therapy increased autophagy and protected the brain from
mitochondrial apoptosis in a rat model of TBI.

CUR has been proven to have a neuroprotective effect against brain injury caused by
cerebral ischemia/reperfusion (I/R) [72]. Tyagi et al. [73] found that THC lowers infarction
by improving neurological outcomes after I/R injury in CBS heterozygous knockout mice
with hereditary hypercysteinemia (HHcy). THC reduces cytochrome c homocysteinylation
by decreasing oxidative stress and matrix metalloproteinase 9 (MMP9), as well as protecting
neurons via autophagic mechanisms. [9]. The BBB could be disrupted in a variety of clinical
situations, including I/R injury, which causes increased vascular permeability and the
formation of cerebral edema [74]. Tyagi et al. [73] discovered that THC lowers homocysteine
(Hcy) neurotoxicity by decreasing endothelial cell damage, which is the reason for BBB
integrity preservation. Hcy-induced N-homocysteinylation induces protein structural
disruption, which leads to vascular injury [74–76]. Tyagi et al. [73] studied the impact of
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Hcy on the homocysteinylation of cytochrome c following I/R damage and discovered
that THC reduced the homocysteinylation of cytochrome c by lowering oxidative stress,
which leads to MMP-9 activation [76]. MMP-2 and MMP-9 develop early in HHcy and are
related to cardiovascular and neurovascular diseases [77–79]. Thus, MMP-9 is involved in
the pathological proteolytic breakdown of the BBB, and its enhanced activation is linked
to brain dysfunction caused by I/R damage [79,80]. Tyagi et al. [81,82], on the other hand,
found that Hcy induces apoptosis or autophagy/mitophagy. Adhami’s group [68,83] found
that upon I/R injury in mice, many damaged neurons show autophagic/lysosomal cell
death features. Otherwise, the study by Ventruti et al. [84] implies a relationship between
autophagy and neuroprotection. Hence, the association between autophagy and cell death
or survival during cerebral I/R remains an enigma. Tyagi et al. [82] found that in genetic
HHcy mice, THC treatment improves autophagy after cerebral I/R injury. It appears that
autophagy may be a unique method by which persistent ischemic stroke induces neuronal
death, and its inhibition may help reduce the damage from I/R injury.

In addition, Zhan et al. [85] discovered that in diseased circumstances, growth receptor-
induced ERK signaling influences proliferation and differentiation. Redox imbalance, brain
ischemia, and neurotransmitter release may all activate these pathways [86]. Lin et al.
investigated the expression of Golgi reassembly-stacking protein of 65 kDa (GRASP65)
and phosphorylated-GRASP65 (pGRASP65), which are membrane proteins involved in
Golgi-stacking, cell division, proliferation, and apoptosis [87–92]. Extensive experimental
data have demonstrated that GRASP65 is a substrate of ERK as well as of cyclin-dependent
kinase 1 (CDK1) and polo-like kinase 1 (PLK1), and the action of these kinases is responsible
for the depolymerization and division of the Golgi apparatus during mitosis [88,89,91–93].
THC administration, according to Lin et al. [87], resulted in a dose-dependent reduc-
tion in ERK-mediated GRASP65 phosphorylation (Figure 6). Under conditions of high
oxidative stress, the Golgi apparatus, as a downstream target organelle associated with
GRASP65 phosphorylation, is essential for the endoplasmic reticulum and mitochondria.
The Golgi apparatus’s reaction to stress restricts the production of critical proteins, which
undoubtedly influences the severity of I/R damage [87]. The same authors observed that
THC administration attenuated I/R damage-induced SOD depletion dose-dependently.
THC therapy also lowers MDA elevations caused by I/R injuries in a dose-dependent
manner [87].
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6. Anti-Amyloid Activity of THC

The use of CUR to treat Alzheimer’s disease (AD) has sparked considerable interest
due to its powerful anti-amyloid and anti-inflammatory characteristics, since this polyphe-
nol is less toxic and less costly than most other therapies [94–98]. Most studies emphasize
the anti-amyloid activities of CUR in turmeric extract; however, it also includes a high
concentration of other polyphenols, including BDMC and DMC [97]. In addition, these
compounds are metabolized in the liver and produce significant amounts of a relatively
stable, water-soluble metabolite, namely THC. To determine the anti-amyloid properties of
THC, Maiti et al. [99] compared the binding and aggregation inhibition efficiency of CUR,
BDMC, DMC, and THC (Figure 7) in relation to Alzheimer’s Aβ42 and Aβ40 peptides.
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The authors found that DBMC, DMC, and THC had a stronger interaction with
Aβ40 and Aβ42. The same scientists reported that the majority of the chemicals favored
binding in the N-terminal sequence of Aβ’s core hydrophobic region, indicating that this
binding is responsible for inhibition of Aβ aggregation. Maiti et al. [99] observed that
keto-CUR (KCUR) has the lowest binding energy for CUR derivatives and Aβ40 and Aβ42,
suggesting that KCUR has a greater binding affinity to both Aβ40 and Aβ42 than other
CUR derivatives, followed by enol-CUR (ECUR), BDMC, DMC, and THC (Figure 7) [99]. As
a result, they demonstrated that in the presence of CUR derivatives, the two Aβmolecules
dissociate from clumping together.

The higher affinity of KCUR for Aβ is due to its lipophilicity, which allows it to
penetrate the hydrophobic core of Aβ aggregates, preventing further aggregation. THC,
on the other hand, is projected to form weaker contacts with the hydrophobic residues of
Aβ owing to its greater hydrophilicity; nonetheless, due to its high stability, it inhibits Aβ
aggregation to a comparable extent as KCUR or other CUR derivatives [99].

Considering that CUR can form H-bonds with a variety of Aβ-amino acid residues, pri-
marily N-terminal or occasionally C-terminal amino acids [100], Maiti et al. [99] examined
the binding energy between Aβ’s binding pocket and various amino acids and discov-
ered a favorable interaction between a greater number of Aβ’s amino acids and ECUR
or THC [101]. The same researchers examined the number of CUR-derivative molecules
required to induce certain effects during Aβ aggregation and concluded that a minimum
of 12–18 CUR molecules are required to significantly reduce aggregation, while in the case
of THC, the minimal number of molecules is between 5–6, indicating that THC has a more
significant Aβ42 inhibitory effect than CUR.

To further investigate the neuroprotective effects of CUR and THC, Maiti et al. [99]
measured protein kinase B (Akt) and caspase-3 levels in Aβ42-treated SH-SY5Y neuroblas-
toma cell cultures and observed that both CUR and THC (1 mmol/L) significantly reduced
caspase-3 levels and caused an increase in the level of Akt, suggesting that both compounds
may prevent apoptotic death (Figure 5). Further investigation of the effects of THC on
the induction of molecular chaperones such as heat shock proteins (HSPs) showed that
different concentrations of THC induced HSP90 and HSP70 levels in SH-SY5Y cells, similar
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to CUR treatment, suggesting that THC plays a significant role in protein quality control
and inhibition of Aβ aggregation [102], which has also been observed in the case of other
CUR derivatives. The molecular mechanisms of HSP induction by CUR derivatives and/or
by THC are not clear yet, although Maiti et al. [99] confirmed that THC could induce a
CUR-like HSP response.

7. THC-Related Inhibition of Cell Cycle Arrest and Apoptosis in Microglia through
Ras/ERK Signaling

The study of Xiao et al. [103] showed that THC treatment of BV-2 cells (microglial
cells immortalized by v-raf/v-myc carrying J2 retrovirus and expressing nuclear v-myc
and the cytoplasmic v-raf oncogene products as well as the env gp70 antigen at the surface
level) exposed to Aβ can alleviate the reduced cell viability and inhibit cell cycle arrest
and apoptosis. A comprehensive proteomic analysis of hippocampal tissue from APP/PS1
mice (double-transgenic mice expressing a chimeric mouse/human amyloid precursor
protein and a mutant human presenilin 1) revealed that the effects of THC in controlling
the development of amyloid plaques are related to the activation and regulation of immune
cells. Meanwhile, proteomic analyses by Xiao et al. [103] suggest that THC-induced
suppression of Ras and JAK–STAT signaling pathways is involved in cell progression.
The Ras/ERK signaling pathway is the main controller of cell survival, differentiation,
proliferation, metabolism, and motility during extracellular induction [104] and is directly
related to the G1/S transition in the cell cycle [105]. K-Ras activation induces upregulation
of several cell cycle stimulators, such as cyclin D, which accelerates the G1/S transition [106].
The Ccnd2 gene encodes a specific G1/S cyclin-D2, which functions as a regulatory subunit
of CDK4 and CDK6, whose activity is required for the G1/S cell cycle transition [106,107].
CDKN1A, known as a cyclin-dependent kinase inhibitor 1A, prevents the phosphorylation
of critical cyclin-dependent kinase substrates and different signaling pathways involved
in the transcriptional activation of the Cdkn1a gene [108,109]. Xiao et al. [103] found
that Aβ downregulated the expression of Grb-associated binding 2 (GAB2) and K-Ras
proteins and inhibited the transcriptional expression of Ccnd2 and Cdkn1a genes in BV-
2 cells. Decreased expression of Gab2 and K-Ras in vivo is also observed in APP/PS1
mice. Precisely, Xiao et al. [103] confirmed that THC treatment causes attenuation of the
up-regulated expression of GAB2 and K-Ras in APP/PS1 mice in addition to BV-2 cells
exposed to Aβ. THC treatment also caused alleviation of the down-regulated Ccnd2 gene
induced by Aβ in BV-2 cells, suggesting that THC generally attenuates Aβ-induced G1/S
arrest in BV-2 cells via the Ras/ERK signaling pathway. However, the data also show that
THC did not affect the Aβ-induced upregulation of Cdkn1a. It has to be pointed out here
that the mechanism underlying Aβ-induced upregulation of Cdkn1a transcription and the
relationship between decreased Cdkn1a transcription and oligomeric Aβ-induced cell cycle
arrest and apoptosis require further investigation.

Considering that cell cycle progression and apoptosis are closely related, Xiao et al. [103]
examined the expression of caspase-3, poly [ADP-ribose] polymerase 1 (PARP1), and
cleaved-PARP1 to check apoptosis. In doing so, they found that inhibition of PARP-
1 could prevent Aβ-induced neuronal death [110]. Furthermore, during the apoptotic
process, caspase-3 induces the cleavage of PARP1 into an 85–89 kDa COOH-terminal
fragment [111]. The appearance of PARP1 fragments is commonly considered an important
biomarker of apoptosis. Xiao et al. [103] showed that Aβ upregulates the expression of
caspase-3, PARP1, and cleaved-PARP1 in BV-2 cells, while upregulation of caspase-3 was
also observed in APP/PS1 mice. THC treatment down-regulated caspase-3 in APP/PS1
mice and Aβ-exposed BV-2 cells and decreased the expression of PARP1 and cleaved-
PARP1 in Aβ-exposed BV-2 cells, indicating a summative effect of THC in inhibiting
Aβ-induced apoptosis.

On the other hand, Bcl-2-associated athanogene 1 (Bag1) (cochaperone for the heat-
shock protein Hsp70 that interacts with C-Raf, B-Raf, Akt, Bcl-2, steroid hormone re-
ceptors, and other proteins) as another potential THC-affected player possesses several
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functions, among which the most important are the activation of Raf-1 (proto-oncogene
serine/threonine-protein kinase) through its N-terminal domain that promotes cell
growth [112,113] and binding to Bcl-2 (a cellular protein that inhibits apoptosis), which
enhances the antiapoptotic activity of Bcl-2 [114]. Actually, Xiao et al. [103] found that
THC up-regulates Bag1 expression in APP/PS1 mice and BV-2 cells exposed to Aβ, sug-
gesting the combinatorial effects of THC on inhibition of cell cycle arrest and apoptosis by
up-regulating Bag1.

Higher expression of TNF-α and TGF-β1 as concomitant AD mechanisms is reported
in APP/PS1 mice, while THC administration reduces TNF-α and up-regulates TGF-β1
expression in APP/PS1 mice [103]. In BV-2 cells, Aβ induces up-regulation of TNF-α
and down-regulation of TGF-β1, indicating that Aβ accumulation generally induces a
more self-sustaining inflammatory reaction than an increased phagocytic capacity of BV-2
cells under experimental conditions. The down-regulation of TNF-α and up-regulation
of TGF-β1 by THC suggest that the effects of THC on neuroprotection probably involve
alternative activation of microglia, which warrants further investigation (Figure 8).
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8. CUR- and THC-Associated Effects on Parkinson’s Disease Progression

Rajeswari et al. [20] investigated the effects of CUR and THC on the progression
of Parkinson’s disease (PD). According to their results, CUR and THC normalized the
depletion of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) caused by
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and also had a considerable impact
on the activity of monoamine oxidase (MAO) B (MAO-B) in the striatum. MPTP’s activ-
ity mainly affects the nigrostriatal system [115]. Upon its administration, MPTP quickly
crosses the BBB and is converted to the 1-methyl-4-phenyl pyridinium ion (MPP+) via
the action of MAO in the brain. In turn, dopamine transporters are responsible for the
selective transport of MPP+ into dopaminergic neurons [115]. Its subsequent accumulation
in the mitochondria [116–118] leads to increased ROS production, which is toxic to neu-
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rons [119,120]. The inhibition of MAO-B by CUR and THC resulted in an increase in DA
and DOPAC levels [20]. CUR was also found to increase DA levels in the frontal cortex
and striatum and inhibit brain MAO-B activity in the 6-OHDA animal model of PD [121].
All these findings emphasize the neuroprotective effects of CUR and THC treatment in
the direction of MAO-B inhibition and preservation of DA and DOPAC levels. Thus, ac-
cording to Rajeswari et al. [20], CUR’s and THC’s inhibitory effects on MAO-B could offer
significant benefits in slowing the progression of PD.

9. Conclusions

Numerous recently published in vitro and in vivo studies show that the application of
THC can prevent the occurrence of various diseases related to oxidative disorders, primarily
due to its strong antioxidant activity. Research shows that THC reduces the biochemical,
neurophysiological, and histological changes caused by vincristine treatment in rats. The
obtained results indicated that the benefits of THC in such processes might be related to
different mechanisms, including antinociceptive, anti-inflammatory, Ca2+-accumulation-
inhibitive, TNF-α-suppressive, neuroprotective, and antioxidant activities. THC therapy
also has a neuroprotective effect on TBI-induced apoptosis, potentially through autophagy
and induction of the PI3K/AKT pathway. As a result of these findings, THC may be a
beneficial therapeutic agent for TBI therapy.

Furthermore, if HHcy is proven to cause neurodegenerative disorders (stroke), THC
may be an effective prophylactic agent in preventing Hcy-induced oxidative stress. THC
also shows a protective effect against damage caused by cerebral I/R, which is probably me-
diated by inhibition of the ERK signaling pathway and subsequent reduction of GRASP65
phosphorylation. Based on this, THC may be a useful therapeutic agent to prevent brain
I/R-induced damage.

Both in silico and in vitro data suggest that THC has anti-amyloid and neuroprotective
properties similar to those of CUR. THC, being a more stable metabolite of CUR, has the
potential to more effectively inhibit Aβ aggregation than other CUR derivatives. Nonethe-
less, further investigation is needed, particularly using various animal models of AD, to
verify these results and optimize them for future therapeutic use. The identification of
THC’s influence on amyloid plaque development in a mouse model of AD, which has a
vital role in restoring cell cycle homeostasis, as well as THC’s inhibitory effects on microglia
apoptosis via the Ras/ERK signaling pathway, provide fresh insights on the potential of
THC in slowing the progression of AD.

However, as with other natural compounds, based on its limited pharmacokinetic
properties, the applicability of THC as a lead compound could depend on an appropriate
formulation bypassing the first-pass metabolism. Further improvement of the bioavailabil-
ity of THC in vivo is a key direction for future research. Combinatorial therapies that target
multiple processes. such as reducing oxidative stress and enhancing anti-inflammatory
effects. may offer greater opportunities for clinically meaningful prevention. In addition,
with the study of Pari and Murugan (2006) [6] in mind, besides its application in com-
bination with other compounds for better effects, special attention should be given to
its doses.
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Abbreviations

Aβ Amyloid-β
AD Alzheimer’s disease
APP/PS1 mice Double-transgenic mice expressing a chimeric mouse/human amyloid

precursor protein and a mutant human presenilin 1
Bag1 Bcl-2-associated athanogene 1
BBB Blood–brain barrier
Bcl-2 B-cell lymphoma 2
BDMC Bisdemethoxycurcumin
BV-2 Immortalized by v-raf/v-myc carrying J2 retrovirus cells
[Ca2+]I Intracellular Ca2+

CDK1 Cyclin-dependent kinase 1
CDKN1A Cyclin-dependent kinase inhibitor 1A
COX-2 Cyclooxygenase 2
DA Dopamine
CUR Curcumin
DOPAC 3,4-di-hydroxy phenylacetic acid
JNK c-Jun N-terminal kinase
DMC Demethoxycurcumin
DOPAC 3,4Dihydroxyphenylacetic acid
DPPH 2,2-Diphenyl-1-picrylhydrazyl
ECUR Enol-curcumin
ERK Extracellular signal-regulated kinase
GAB2 Grb-associated binder 2
GI Gastrointestinal
GSH Glutathione
GPx Glutathione peroxidase
GLUT1 Glucose transporter 1
GRASP65 Golgi reassembly-stacking protein of 65 kDa
Hcy Homocysteine
HHcy Hyperhomocysteinemia
HSP Heat-shock protein
iNOS Inducible nitric oxide synthase
I/R Cerebral ischemia/reperfusion
KCUR Keto-curcumin
L-NAME (ω)-nitro-L-arginine methyl ester
MAPK Mitogen-activated protein kinase
MDA Malondialdehyde
MMP Matrix metalloproteinase
MPP+ 1-methyl-4-phenyl pyridinium ion
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MAO Monoamine oxidase
NF-κB Nuclear factor kappa light chain enhancer of activated B cells
O2 Superoxide
PARP1 poly [ADP-ribose] polymerase 1
PD Parkinson’s disease
PI3K Phosphatidylinositol 3’-kinase
PLK1 Polo-like kinase 1
ROS Reactive oxygen species
Sirt1 Sirtuin 1
SOD Superoxide dismutase
TBI Traumatic brain injury
TGF-β1 Transforming growth factor β1
THC Tetrahydrocurcumin
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TNF-α Tumor necrosis factor α
TPA 12-O-Tetradecanoylphorbol-13-acetate.
PI3K Phosphatidylinositide 3-kinases
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