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Abstract: Omadine or N-hydroxypyridine-2-thione and its metal complexes are widely used in
medicine and show bactericidal, fungicidal, anticancer, and photochemical activity. The redox
activity of omadine complexes with iron, copper, and zinc on lipid peroxidation under light and
dark conditions has been investigated. The monitoring of the oxidation of linoleic acid micelles,
resembling a model of lipid membrane, was carried out using nuclear magnetic resonance (1H-NMR).
It has been shown that the omadine–zinc complex can induce the oxidation of linoleic acid under
light irradiation, whereas the complexes with iron and copper are photochemically stable. All the
chelating complexes of omadine appear to be redox-inactive in the presence of hydrogen peroxide
under dark conditions. These findings suggest that omadine can demonstrate antioxidant behavior
in processes involving reactive oxygen species generation induced by transition metals (Fenton
and photo-Fenton reactions). However, the omadine complex with zinc, which is widely used in
shampoos and ointments, is photochemically active and may cause oxidative cell membrane damage
when exposed to light, with possible implications to health.

Keywords: omadine; chelating drug; chelator; antioxidant activity; ROS; pro-oxidant activity; lipid
oxidation; photoactivity; toxicity

1. Introduction

Iron, copper, and zinc are essential metals that play vital roles in living organisms,
including humans. Metalloproteins containing these metals perform a variety of functions
in cells. In particular, iron participates in oxygen transport and in energy transduction [1–4],
while copper plays a vital role in enzymatic and catalytic functions [5,6]. Under normal
conditions, iron and copper catalytic centers participate in metabolic pathways involving
free radical formation, which is controlled by homeostatic mechanisms including antioxi-
dant enzymes and molecules [1,2]. However, the presence of excess iron or copper in the
case of various pathological conditions such as thalassemia, sickle cell anemia, idiopathic
hemochromatosis, and Wilson’s disease leads to serious toxic side effects and fatalities [2].
Under these conditions, excess iron and copper ions participate in redox reactions, with
the uncontrolled formation of reactive oxygen species (ROS), which cannot be balanced by
antioxidant mechanisms or molecules [2,7–9]. Reactive oxygen species are able to react with
lipids, DNA, sugars, proteins, and other molecules, causing their oxidation and irreversible
damage [10,11].

One of the types of cell death induced by iron is ferroptosis [12–15]. The mechanism of
this process is associated among other changes with the oxidation of lipids in the cell mem-
brane as a result of general redox imbalance caused by iron catalysis [12–15]. Ferroptosis is
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a programmed cell death process, which has been associated with various diseases such as
cancer and immune system, neurodegenerative, heart, and other diseases [16–19]. In all
these different diseases, ferroptotic programmed cell death is induced by iron in normal
healthy cells and involves oxidative stress. Effective iron chelators could inhibit ferroptosis
including redox reactions with iron ions [12,19–22]. However, selected lipophilic chelators
and their iron complexes have been proposed to be used as anticancer therapeutics by
inducing ferroptosis in drug-resistant tumors [22].

In contrast to the “free” metal ion, the reactivity and metabolic pathways for the
complexed metal ion can differ significantly [19,22,23]. In this context, the antioxidant/pro-
oxidant effects of the iron-selective chelating drugs deferiprone, deferoxamine, and de-
ferasirox have been previously studied under different conditions [24–27]. These studies
were aimed at finding an effective drug for inhibiting oxidative stress toxicity, including
related mechanisms associated to ferroptosis. However, there is no sufficient information
in the literature about studies regarding the effect of chelating drugs and other chelators on
different aspects of ferroptosis. Such information may have both fundamental and practical
implications, especially for the treatment of cancer and other diseases [19,22].

Omadine (N-hydroxypyridine-2-thione, OM) (Figure 1) is a biologically active chelating
drug of the pyrithione group [22,23,28,29]. Both the chelator and its complexes with metal
ions, have been shown to have anticancer, fungicidal and bactericidal activities [29–36].
Moreover, OM is also a photochemically active substance. Under irradiation, OM is
decomposed, causing the formation of sulfur-centered radicals and also hydroxyl radicals
(·OH). In further reaction steps, sulfur-centered radicals are able to recombine with the
formation of different products or participate in radical reactions with other radicals and
molecules. In addition, the highly reactive hydroxyl radicals can react with almost all
biomolecules and also with OM itself, causing their oxidation (Figure 1) [37–40]. For
example, the effectiveness of OM as an oxidant in photo-Fenton reactions has been shown
in experimental models using DNA and carotenoids [38,41].
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Figure 1. Schematic representation of the photochemical decomposition of omadine (OM). 
Modification of the OM molecule is shown, following exposure to light and formation of 
Figure 1. Schematic representation of the photochemical decomposition of omadine (OM). Modifica-
tion of the OM molecule is shown, following exposure to light and formation of photo-degradation
products. The numbers denote the position of protons in the OM molecule. The scheme is based on
information provided in the references [37–40].
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It should be noted that among the OM chelate complexes, the most studied is the
omadine–zinc (OM–Zn) complex, which is widely used as the active ingredient in medici-
nal ointments and shampoos for the treatment of fungal and bacterial infections [42–44].
Different studies have shown that zinc enhances the membranotropic activity of OM, al-
lowing an increase in OM–Zn penetration into the cells. Subsequently, OM is able to bind
to different metals, for example, to the copper and iron present in cells due to transmetalla-
tion, leading to the possible participation of chelate complexes in intracellular activities
including redox reactions, the inhibition of DNA, and also protein activity [45]. Similar
transmetallation effects in the use of zinc have also been described in studies with other
chelators such as the thiosemicarbazones [46,47]. Furthermore, it appears that zinc could
demonstrate antioxidant activity due to competitive binding with various sulfur-containing
metalloproteins, thereby inhibiting oxidative stress [48–50]. Another antioxidant property
proposed for zinc is the stabilization of the cell membrane, but the exact mechanism has
not yet been fully defined [49].

The main goal of this work is to study the antioxidant/pro-oxidant activity of OM
and its complexes with iron, copper, and zinc ions in photo-Fenton and lipid peroxidation
reactions using the nuclear magnetic resonance (1H-NMR) technique. In this context,
linoleic acid (LA) micelles were selected as a model resembling a lipid membrane.

2. Results
2.1. Photo-Induced Oxidation of Linoleic Acid Micelles in the Presence of Omadine and Its
Metal Complexes

The absorption spectra and extinction coefficients (ε) of OM, OM–Zn, OM–Cu, and
OM–Fe at a laser wavelength of 308 nm have been previously measured and reported
as follows: ε308nm(OM) = 1150 sm−1M−1; ε308nm(OM–Zn) = 2200 sm−1M−1; ε308nm(OM–
Cu) = 5250 sm−1M−1; ε308nm(OM–Fe) = 1530 sm−1M−1 [51,52]. In the present study, the
photochemical activity of OM and its metal complexes in the photo-oxidation of lipid
membranes was studied using LA micelles. Lipid micelles including those of LA were
widely used in previous studies as a model for mimicking the properties of biological
membranes [53]. Similarly, the peroxidation of LA, which is a polyunsaturated fatty acid,
has also been previously described [53,54].

The photo-induced oxidation of LA in the presence of OM and its metal complexes
was investigated in the present study using 1H-NMR spectroscopy. Figure 2 shows the
1H-NMR spectra of LA micelles in the presence of OM and its complexes with Zn2+, Cu2+

and Fe2+. No decrease in the intensity of the LA signals was observed in the absence of
OM. On the other hand, a significant decrease in the intensity of LA signals in the presence
of OM was observed after irradiation (Figure 2a). It appears that the decrease in the signal
intensity in the presence of OM may have been caused following the reaction with hydroxyl
radicals, which are formed during the OM photo-degradation (Figure 1) [37–40]. In the
absence of metal ions, a decrease in the intensity of about 10% was observed during the
irradiation time (90 s). Following irradiation, the samples were kept in dark conditions and
the total decrease in signal intensity over a two-hour period was estimated as 35%. The
addition of Zn2+ enhanced the decrease in the signal intensity during irradiation up to 25%,
but the total decrease during the two-hour period was close to that of OM without metal
ion incubation (40%). In contrast, addition of the Fe2+ and Cu2+ decreased the pro-oxidant
photo-activity of OM. The total decrease in signal intensity in the presence of Cu2+ and Fe2+

was estimated as 5% and 20%, respectively.
Figure 3 shows fragments of 1H-NMR spectra containing the signals of OM in LA

micelles. In the absence of metal ions, four signals corresponding to four OM protons are
observed. In the presence of metal ions, the number of signals increases, indicating the
presence of complexes with various stoichiometry and/or complexes with several forms
of OM (neutral, neutral zwitterion, anion) in the samples (Figure 1). Unfortunately, the
accurate identification of additional signals for OM complexes was difficult due to the
significant broadening of the NMR lines.
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absence and in the presence of ZnCl2, CuCl2 or FeSO4 (0.5 mM) before and after 90 s of irradiation
(irr) (308 nm, 90 laser pulses). The signals in the spectrum correspond to the neutral zwitterion form
of OM as shown in Figure 1. All experiments were carried out at a temperature of 303 K.
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It is noteworthy that in the absence of metal ions and in the presence of only zinc ions,
the OM signals totally disappeared from the spectrum after irradiation, which indicates the
complete decomposition of OM. In the case of iron and copper complexes, only part of the
signals disappears from the spectrum, indicating that some form of OM complexes with
iron and copper exhibits higher photo-stability than pure OM, which apparently leads to
the inhibition of the photo-induced oxidation of LA.

Additionally, selective NOESY experiments were carried out to determine the local-
ization of OM and its complexes in the LA micelles (Figure 4). Cross-peaks in the NOESY
spectrum are observed between the nuclei located at a distance of less than 0.4 nm. For
example, in the case of OM, cross-peaks between OM protons and CH2-groups of LA were
observed. In the case of zinc complexes, additional cross-peaks between OM protons and
proton 6 of LA near double bonds and terminal CH3-groups were observed. However, no
cross-peaks with lipids signals were observed in the case of copper and iron complexes.
Overall, it can be suggested from these observations that OM is located inside the LA
micelles, its complexes with zinc penetrate deeper into micelles, and its complexes with
copper and iron do not penetrate inside micelles. This may be another reason for the lower
photo-activity of OM complexes with copper and iron.
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(black line) of OM (1 mM) and its complexes with ZnCl2, CuCl2 or FeSO4 (0.5 mM) in LA micelles
(7 mM) at pH = 6 and at a temperature of 303 K. Selective excitations of all OM protons was performed.

2.2. Peroxidation of Linoleic Acid Micelles in the Presence of Omadine and Its Metal Complexes in
Dark Conditions

Further studies were carried out to examine the redox activity of OM complexes with
metal ions in the peroxidation reactions of LA, which in the present study was used as a
general model of lipid peroxidation [53,54] (Equations (1)–(8)). The effectiveness of the OM
complexes in this reaction was monitored using 1H-NMR spectra at different time intervals.
Furthermore, this procedure allowed for the measurement of the kinetic changes in the
integral intensity of the LA protons. The same approach was previously described in more
detail [27]. In this context, the time dependence of the intensity of the NMR signal was
measured by monitoring the changes of the bis-allylic protons of LA (2.7 ppm, signal 3 in
Figure 4). Since the initiation stage of LA oxidation involves the abstraction of a hydrogen
atom at this position, whereas the reaction products (lipid radicals and conjugated dienes,
Equations (1)–(8)) do not contain such protons in the structure, it can be suggested that
the initiation stage leads to a decrease in the intensity of this signal as a function of time
(Figure 5).



Molecules 2023, 28, 4210 6 of 13

Molecules 2023, 28, x FOR PEER REVIEW 7 of 15 
 

 

𝐿𝑂𝑂𝐻 → 𝐿𝑂ሶ → epoxides, hydroperoxides, aldehydes (8)

 

(a) (b) 

 

(c) 

Figure 5. Kinetic profile of linoleic acid peroxidation in the presence of omadine complexes with 
iron, copper and zinc ions. The experimental conditions were as follows: 7 mM LA + 1 mM OM + 
0.5 M H2O2, plus (a) FeSO4 (0.5 mM), (b) CuCl2 (0.5 mM), (c) ZnCl2 (0.5 mM), all in D2O at pH = 6. 
All experiments were carried out at a temperature of 303 K. The graphs were plotted using the 
decay of the integral intensity signal of the LA protons (proton 3) at 2.7 ppm (a.u.—arbitrary units). 

The experimental points in Figure 5 were approximated to fit an exponential decay, 
and subsequently the reaction rate constants of LA peroxidation were calculated from the 
fitting parameters. In this context, the rate constant of the initiation stage of the LA 
peroxidation in the presence of FeSO4 was estimated to be 5.2 ± 0.2 × 10−4 s−1. In the 
presence of OM–Fe, the rate constant decreased to 4.0 ± 0.2 × 10−4 s−1. In the case of copper, 
the rate constant in the absence of OM was estimated as 4.5 ± 0.2 × 10−4 s−1, whereas in the 
presence of OM–Cu the reaction was completely inhibited. However, in the case of zinc, 
which is a non-transition metal, no changes related to LA signal intensity were observed 
both in the absence and presence of OM. 

Figure 5. Kinetic profile of linoleic acid peroxidation in the presence of omadine complexes with iron,
copper and zinc ions. The experimental conditions were as follows: 7 mM LA + 1 mM OM + 0.5 M
H2O2, plus (a) FeSO4 (0.5 mM), (b) CuCl2 (0.5 mM), (c) ZnCl2 (0.5 mM), all in D2O at pH = 6. All
experiments were carried out at a temperature of 303 K. The graphs were plotted using the decay of
the integral intensity signal of the LA protons (proton 3) at 2.7 ppm (a.u.—arbitrary units).

The schematic representation of iron- and copper-induced lipid peroxidation is de-
scribed in Equations (1)–(8) below. Similar mechanisms are suggested for both the iron-
and copper-induced Fenton reaction. The peroxidation of lipids (LH) involves a number of
reactions in the presence of hydrogen peroxide [55–58].

Fe2+ + H2O2 → Fe3+ +
.

OH + OH− (1)

Fe3+ + H2O2 → Fe2+ +
.

OOH + H+ (2)

Cu+ + H2O2 → Cu2+ +
.

OH + OH− (3)

Cu2+ + H2O2 → Cu+ +
.

OOH + H+ (4)
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LH +
.

OH →
.
L + H2O (5)

.
L + O2 →

.
LOO (6)

.
LOO + LH → LOOH +

.
L (7)

LOOH →
.

LO→ epoxides, hydroperoxides, aldehydes (8)

The experimental points in Figure 5 were approximated to fit an exponential decay,
and subsequently the reaction rate constants of LA peroxidation were calculated from
the fitting parameters. In this context, the rate constant of the initiation stage of the LA
peroxidation in the presence of FeSO4 was estimated to be 5.2 ± 0.2 × 10−4 s−1. In the
presence of OM–Fe, the rate constant decreased to 4.0 ± 0.2 × 10−4 s−1. In the case of
copper, the rate constant in the absence of OM was estimated as 4.5 ± 0.2 × 10−4 s−1,
whereas in the presence of OM–Cu the reaction was completely inhibited. However, in the
case of zinc, which is a non-transition metal, no changes related to LA signal intensity were
observed both in the absence and presence of OM.

Finally, in the control experiments using the mixture of LA plus ZnCl2 or FeSO4 or
CuCl2 in the absence of H2O2, there was no decrease in the intensity of LA signals in the
spectrum over 24 h at a temperature of 303 K.

3. Materials and Methods
3.1. Materials

Omadine (OM, 99%), ferrous sulphate (FeSO4·6H2O, 99%), copper chloride (CuCl2·2H2O,
99%), zinc chloride (ZnCl2·2H2O, 99%), and H2O2 (35.5%) were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Linoleic acid (LA, purity > 99.0%) was purchased from
Shanghai Aladdin Bio-Chem Technology Co., Ltd., (Shanghai, China). All compounds
were used as received. Deuterated solvent (D2O, 99.8% D) was obtained from Solvex-D
Co. (Moscow, Russia) and was used as supplied. All experiments were carried out at a
temperature of 303 K.

3.2. Methods

3.2.1. The 1H-NMR Study of Lipid Peroxidation

The study of lipid peroxidation was carried out using a reaction mixture that consisted
of LA micelles (7 mM), H2O2 (0.5 M), OM (1 mM), and FeSO4, ZnCl2, or CuCl2 (0.5 mM)
in deuterated water (pH 6). The 1H-NMR spectra were recorded using a Bruker Avance
HD III NMR spectrometer (500 MHz) (Rheinstetten, Germany). Omadine was mixed with
LA in chloroform, then the solvent was evaporated, and the remaining film was hydrated
in deuterated water of pH 6 (pKa of OM is 4.6). Then, one of the salts (FeSO4, ZnCl2 or
CuCl2) was added and the sample was incubated for 30 min to establish equilibrium. The
reaction was initiated by the addition of H2O2 into the solution mixture. This method has
been described in more detail in a previous study [59].

3.2.2. The 1H-NMR Study of the Photo-Oxidation of Linoleic Acid

The study of LA photo-oxidation was carried out using a reaction mixture that con-
sisted of LA micelles (7 mM), OM (1 mM) and FeSO4, ZnCl2 or CuCl2 (0.5 mM) in deuterated
water (pH 6). The preparation method of LA micelles is the same as that described in the
previous section. An EMG 101 MSC Lambda Physik excimer laser was used as the light
source for photo-oxidation experiments (λ = 308 nm, pulse duration 15 ns, average pulse
energy100 mJ). The pulse frequency used was 1 Hz.
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3.2.3. The 1H-NMR Study of the Penetration of Omadine and Its Metal Complexes
into Micelles

The 1H-NMR and the selective Nuclear Overhauser Effect Spectroscopy (NOESY)
methods were used to examine the penetration of OM and its chelate complexes with
iron (OM–Fe), copper (OM–Cu), and zinc (OM–Zn) ions into LA micelles. The NMR
spectra were recorded on Bruker Avance HD III NMR spectrometer (500 MHz 1H operating
frequency). T1 relaxation times were measured using a standard inversion-recovery pulse
sequence. All experiments were carried out at a temperature of 303 K.

4. Discussion

There are many different biological and toxicity targets, which can be affected by
the action of various drugs possessing pro-oxidant or antioxidant properties. Some of
these drugs, such as doxorubicin, are commonly used to treat cancer and also other condi-
tions [19,22,60–62]. One of the targets for designing anticancer drugs is DNA, which is a
vital biomolecule for cell viability and functioning [62–65]. Nevertheless, the cell membrane
is also considered as a potential target for oxidative activity in cancer treatment [66–69].
Recently, the ferroptotic mechanism of programmed cell death, which involves the genera-
tion of ROS and the oxidative destruction of cell membranes by iron, has also been a major
target under investigation [17,70,71]. However, there is no sufficient information thus far
on the initiation and/or enhancement of ferroptosis caused by drugs that have chelating
metal capability and pro-oxidant activity.

Omadine was proposed as a potential drug capable of initiating and accelerating
the process of oxidative stress toxicity, including ferroptotic cell death. Several prop-
erties of OM fulfill this role, including the binding of metal ions, such as iron, copper,
and zinc; membranotropic activity; and also the pro-oxidant activity in photochemical
reactions with the formation of hydroxyl radicals [29,72–75]. There are many studies re-
ported regarding the possible use of OM and its metal complexes as potential anticancer
drugs [2,30–33,44,45,73,75]. However, the mechanisms of the redox activity of the OM
metal complexes have not been previously described. In addition, despite the reports of
many studies on the photochemical activity of OM, the photochemical activity of OM metal
complexes has not yet been fully investigated. In this context, the study of the redox activity
of OM and its metal complexes in dark and photochemical reactions involving lipids may
have important pharmacological and toxicological implications, especially in relation to the
influence of the OM metal complexes on bio-molecular mechanisms, including ferroptosis.

A comparative analysis of OM and its metal complexes in the photo-oxidation activity
of LA micelles has shown low efficiency for OM–Fe and OM–Cu complexes compared to
OM–Zn complexes, as well as compared to OM itself (Figure 2). It is known that many
chelate complexes with iron, including aqua complexes, are photoactive and can participate
in photo-induced reactions with the formation of reactive oxygen radicals [76–78]. It was
somewhat unusual to see the display of antioxidant activity by OM in the presence of
iron ions. This observation can be explained by the low membranotropism of OM–Fe and
OM–Cu complexes, which was proved by the selective NOESY method in the present
study (Figure 4). Previous studies have suggested that the mechanism of penetration
of the OM–Fe and OM–Cu chelate complexes into cells is based on the participation of
membrane-transport metal-binding proteins [72].

Similarly, it was also previously suggested that the OM–Zn complexes are able to
interact with lipids inside membranes, disrupting their organization and uncoupling
them [79]. The results of the present study, which were obtained using the NOESY method,
suggest that the OM–Zn complex demonstrates the highest penetration ability into the LA
micelles among all other OM metal complexes.

An additional feature of the OM metal complexes with iron and copper ions is their
higher photostability. As mentioned above, OM under UV irradiation can be decomposed
with the formation of hydroxyl radicals [37–40]. It appears that upon the irradiation of
OM and the OM–Zn complex in LA micelles, the OM NMR signals disappear from the
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spectra and the integral intensity of LA protons decreases (Figure 3), which supports the
mechanism that the generated hydroxyl radicals participate in the redox reactions of LA
oxidation (see Equations (1)–(8)). Even after irradiation, the integrated signal intensity
continues to decrease due to the chain reaction of the formation of various dimers and
other LA oxidation products (see Equations (1)–(8) and Figure 2a,b) [55–57]. It can be
suggested that the higher photostability of the OM complexes with iron and copper ions
can be due to their possible protonation, thereby hindering the passage of the complex into
the membrane.

The peroxidation of LA micelles in the presence of the OM complexes with iron,
copper, and zinc ions has also been studied under dark conditions using 1H-NMR.

As is shown in Figure 5, all OM complexes exhibit antioxidant activity under such
conditions. It was also observed that the rate of decay of the integral intensity of LA
decreases significantly when the chelator is added to the solution. The overall decrease
in the redox activity of iron and copper ions during complex formation with OM can
be explained by the low membrane permeability of these chelate complexes into LA
micelles. This suggestion is supported by the results of the selective NOESY study (see
Figure 4). However, it has been previously shown that the cell membrane permeability
of OM–Fe is much higher in cell studies, suggesting a different mechanism of membrane
transport [72,80,81]. In the case of OM–Zn, the oxidation of LA has not taken place because
zinc is a non-transition metal and does not participate in the Fenton reaction. It is also
important to clarify that OM itself did not degrade, indicating a lower rate constant of OM
oxidation by hydroxyl radicals in comparison to the rate constant of LA oxidation.

Lipid peroxidation is widely studied using various other techniques in addition to 1H-
NMR, such as UV-Vis spectroscopy and Raman spectroscopy [82–84]. In each case, the use
of such techniques could provide important information for monitoring different aspects of
the oxidation of lipids [82–84]. For example, UV-Vis spectroscopy could be used to detect
malondialdehyde accumulation, which is one of the terminal products of peroxidation
reactions, whereas the 1H-NMR method used in this study provides information on the
initial stages of the reaction.

Overall, it can be suggested that the main cause of the low redox activity of the OM
metal complexes with copper and iron is their low LA micelle membranotropic ability.
In such cases, ligands and complexed metals cannot penetrate close enough to the LA
biotargets of ROS attack to initiate and maintain the cascade of redox reactions (Figure 6).
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5. Conclusions

Molecular studies including the redox effects of OM and its metal complexes with
iron, copper, and zinc are of major importance for determining the general pharmacological
and toxicological properties of OM, as well as all other chelating drugs. Furthermore, the
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findings from such studies may have therapeutic or toxicological implications for people
receiving OM-containing pharmaceutical and cosmetic products.

It has been shown in this study that OM cannot enhance the pro-oxidant properties of
iron and copper ions, but instead can act as an antioxidant in this experimental LA micelle
membrane model. In general, the binding of iron and copper ions by OM prevents the
transfer of these metal–OM complexes inside LA micelles and their participation in dark
and photo-induced redox reactions. In contrast, only OM and OM–Zn complexes show
pro-oxidant activity in the photo-oxidation reaction of LA micelles.

In general, OM shows much lower efficiency for antioxidant potential in comparison
to other chelating drugs of iron and copper ions, such as deferiprone, in both dark and
photo-induced reactions using the same model system.

The mechanism of anticancer activity of OM–iron complexes, which has been shown
in many cancer cell lines, has not been elucidated in the present study. However, it appears
that the anticancer mechanism is not associated with free radical activity and processes
involving the lipid peroxidation of the cell membrane.

Nevertheless, this study is of great fundamental and applied importance for under-
standing the mechanism of the influence of various chelators in ferroptosis and other
similar processes.

The finding that the OM complex with zinc ions is photochemically active and may
cause oxidative cell membrane damage when exposed to light is of major toxicological
importance. Considering that the OM–Zn complex is widely used in shampoos and
ointments, it can be suggested that such products may have adverse implications on health,
unless such medications are stored in the dark.
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