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Abstract: It has been discovered that there is a dynamic coupling between cycloalkanes and aromatics,
which affects the number and types of radicals, thereby controlling the ignition and combustion of
fuels. Therefore, it is necessary to analyze the effects of cyclohexane production in multicomponent
gasoline surrogate fuels containing cyclohexane. In this study, a five-component gasoline surrogate
fuel kinetic model containing cyclohexane was first verified. Then, the effect of cyclohexane addi-
tion on the ignition and combustion performance of the surrogate fuel was analyzed. This study
shows that the five-component model exhibits good predictive performance for some real gasoline.
Meanwhile, the addition of cyclohexane decreases the ignition-delay time of the fuel in the low and
high temperature bands, which is caused by the early oxidation and decomposition of cyclohexane
molecules, generating more OH radicals; in the medium temperature band, the isomerization and
decomposition reactions of cyclohexane oxide cC6H12O2 dominate the temperature sensitivity of
the ignition delay, affecting the small molecule reactions that promote the generation of reactive
radicals such as OH, thus inhibiting the negative temperature coefficient behavior of the surrogate
fuel. The laminar flame speed of the surrogate fuels increased with the increase in the proportion
of cyclohexane. This is due to the fact that the laminar flame speed of cyclohexane is higher than
that of chain and aromatic hydrocarbons, and the addition of cyclohexane dilutes the ratio of chain
and aromatic hydrocarbons in the mixture. In addition, engine simulation studies have shown that
at higher engine speeds, the five-component surrogate fuel containing cyclohexane requires lower
intake-gas temperatures to achieve positive ignition and are closer to the in-cylinder ignition of
real gasoline.

Keywords: gasoline surrogate; cyclohexane; ignition-delay time; laminar flame speed

1. Introduction

With the growing world population and economy, the demand for energy is also
increasing. The transportation sector is one of the major final consumers of total energy
and a contributor to global atmospheric emissions. This sector accounts for 29% of the total
world energy consumption and 65% of the world’s consumption of petroleum products,
while gasoline is one of the most consumed fuels in the transportation sector [1,2]. In
addition, some studies have pointed out that the structure of energy consumption will
not undergo major changes for a long period of time in the future. Although the share of
renewable energy is increasing, oil, natural gas, and coal will still dominate [3]. Energy
conservation and environmental protection are two important themes in today’s world
economic development. The efficient utilization of fossil energy can not only reduce
energy waste but also reduce greenhouse gas emissions and then alleviate global warming.
Therefore, it is still of great significance to study the efficient utilization of fossil fuels.

Gasoline, which is mainly composed of alkanes, naphthenes, olefins, and aromatic
hydrocarbons, is a mixture of hydrocarbons with very complex components [4]. Gasoline
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components vary from country to country, from crude oil source to crude oil source, and
from refining process to refining process. Gasoline fuels with different components have
different physical properties (such as density and viscosity) and chemical properties (such
as flame propagation). The ratio of these components has a significant impact on fuel
properties and directly affects the engine efficiency and formation of pollutant emissions.
Therefore, we need to have a clear understanding of the chemical-reaction mechanism of
the gasoline fuel combustion process. However, studies have shown that an increase in
components will lead to an exponential increase in reaction, species, and thermal-physical
parameters, and the hundreds of components in gasoline will increase the complexity of
the reaction mechanism to an unacceptable level [5]. Therefore, it is a feasible research
trend to describe the physical and chemical properties of gasoline fuel with one or more
components; that is, to find gasoline surrogate fuels to replace gasoline for chemical kinetic-
model research. A good gasoline surrogate fuel and chemical kinetic model can not only
accurately simulate the properties of real gasoline but also greatly reduce the difficulty of
experimental research and the computational cost of numerical simulation.

Gasoline surrogate fuels are composed of a limited number of components. A binary
mixture of isooctane and n-heptane (called primary reference fuel, PRF) is commonly used
to match a given research octane number or motor octane number (RON or MON) [6–8].
The RON of PRF surrogate fuels is equal to MON. However, the RON and MON of actual
gasoline are not the same, generally RON > MON. During gasoline combustion, the octane
sensitivity (S, S = RON − MON) and antiknock index (AKI, AKI = RON + MON/2 [9])
have an impact on engine performance, power, and efficiency. Therefore, more components
are needed to match the various properties of the actual gasoline. Since they are known
to have high octane numbers and high sensitivity, aromatics are widely used to improve
octane in gasoline [10]. Toluene reference fuels (TRFs), consisting of toluene, n-heptane,
and isooctane, have been studied extensively [11–14]. Andrae et al. [11] constructed a
simplified mechanism for TRF with 137 species and 633 reactions, and this mechanism has
good predictive performance in terms of ignition-delay times. Badra et al. [12] reported
a correlation between the octane number of a TRF surrogate and the ignition time of a
homogeneous gas-phase air fuel.

Mixtures with more than three typical components (TRF) are called multicomponent
gasoline surrogate fuels. Such a mixture usually includes other components required to
reproduce the real gasoline characteristics in addition to the three typical components.
More components need to be added to the surrogate fuel to match important characteristics
such as gasoline functional group or hydrocarbon distribution, average molecular weight,
and octane number sensitivity, which are not met by PRF and TRF. Therefore, surrogate
fuel should include components that can cover a wider range of typical gasoline. Real
gasoline usually contains cycloalkanes, olefins, and oxygenates. The typical chemical kinetic
mechanisms of four-component and five-component gasoline surrogate fuels are mainly
linear alkanes, branched alkanes, aromatic hydrocarbons, olefins, and oxygen-containing
components. Liang [15] added diisobutylene (DIB) as a representative of olefins in gasoline
to TRF and developed a four-component simplified mechanism suitable for homogeneous
charge compression ignition (HCCI) engines. Shi [16] et al. developed an oxygenated
gasoline surrogate model based on the effect of water addition on chemical kinetics. In order
to improve the explosion resistance of gasoline, Andrae [17] developed a five-component
skeleton mechanism (including isooctane, n-heptane, toluene, diisobutylene, and ethanol)
by adding ethanol to gasoline surrogate fuels. The establishment of these models can
further understand the effects of different components on the combustion characteristics of
gasoline (such as ignition delay and laminar flame speed).

Cycloalkanes are an important component of transportation fuels, with different
percentages of about 10% and 40% in gasoline and diesel [10,18]. And among all cycloalka-
nes, cyclohexane (CHX) has been more studied due to its simple ring structure [19–23].
Daley et al. [19] observed that the autoignition of CHX under stoichiometric conditions
was more dependent than olefins on pressure. An experimental study on the autoignition
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behavior of CHX in a rapid compression machine (RCM) was carried out by Vranckx [21],
revealing a very strongly pressure-dependent negative temperature coefficient (NTC) be-
havior within the 710–870 K temperature regime. Silke et al. [24] developed a detailed
chemical kinetic model for simulating cyclohexane oxidation in a fast compressor and jet-
stirred reactor, which reproduced well the overall reactivity of cyclohexane oxidation and
many of the experimental data on the distribution of intermediate species, but the model
was unable to reproduce the experimentally observed amount of 1,2-epoxycyclohexane.

In order to make the physical and chemical properties of gasoline surrogate fuels closer
to those of actual gasoline or to better analyze the mechanism of carbon soot formation,
some researchers have started to focus on the development of simplified mechanisms
for multicomponent gasoline surrogate fuels containing CHX. Li et al. [25] developed a
five-component gasoline surrogate fuel kinetic model with 563 species and 2915 reactions,
which consisted of n-heptane, isooctane, toluene, diisobutene, and cyclohexane. This
five-component model can predict ignition-delay times well, but the excessive number
of reactions makes it difficult to cover a wider range of fuel properties (e.g., laminar
flame speed). The literature also does not study the effects of single components (e.g.,
cyclohexane) on surrogate fuel. A reduced 11-component (n-heptane, iso-octane, toluene,
ethanol, methanol, n-decane, n-dodecane, n-hexadecane, diisobutylene, cyclohexane, and
methyl-cyclohexane) chemical mechanism consisting of 178 species and 758 reactions
is proposed by Ren et al. [26] for combustion and soot formation predictions of wide
distillation fuel.

Although the addition of cyclohexane to gasoline surrogate fuels has been well stud-
ied, few studies have analyzed the effect of cyclohexane on the combustion characteristics
of gasoline surrogate fuels. However, cyclohexane content affects the ignition quality of
gasoline engines as well as the formation of polycyclic aromatic hydrocarbons (PAHs) and
carbon soot. In addition, Andrae [27], in his previous detailed chemical kinetic modeling,
showed that there is kinetic coupling between aromatic hydrocarbons and the main ref-
erence fuel, which affects the number and type of radicals and thus controls the ignition
and combustion of the fuel. A study by Sarathy [28] found a similar coupling between
cycloalkanes and aromatic hydrocarbons. Therefore, it is necessary to analyze the effect
of cyclohexane on surrogate fuels in multicomponent gasoline surrogate fuels containing
cyclohexane. In the study of RCCI combustion characteristics, Raza [29] found that toluene
and cyclohexane inhibited the reactivity of multicomponent surrogate fuels, and they
also controlled the low-temperature heat-release rate and increased the high-temperature
heat-release rate.

The above studies have shown that cyclohexane components have a notable influence
on the ignition and combustion processes of gasoline. However, in the development of
gasoline fuel models, fewer studies have analyzed the effect of the addition of the new
species (cyclohexane) on the original components and their predicted performance. In
this study, the effect of adding cyclohexane to a four-component mixture consisting of
n-heptane, isooctane, toluene, and diisobutene on the combustion of the surrogate fuel
was investigated by kinetic-model simulation studies using a preconstructed simplified
mechanism [30] for a five-component gasoline surrogate fuel containing cyclohexane. The
predictive performance of ignition-delay time, laminar flame speed, and HCCI cylinder
pressure curves of three-, four- and five-component gasoline surrogate fuels was first ex-
plored against real gasoline. Then, the effect of cyclohexane addition on the ignition and
combustion performance of the surrogate fuels was analyzed by adding different percent-
ages of cyclohexane to the four-component surrogate fuels formulated by Fikri [31]. The
aim was to investigate the effect of the addition of a new species (cyclohexane in this paper)
on the original components and their predicted performance during model development.

2. Real Gasoline Predictive Performance Analysis of Simplified Mechanism

The model used in this study is a five-component gasoline surrogate fuel kinetic
model (CHX-DIB-Toluene Reference Fuel, CDTRF) containing n-heptane, isooctane, toluene,
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diisobutylene, and cyclohexane, which we constructed in our previous work [30]. In our
previous work, we added a simplified cyclohexane kinetic model to a four-component
gasoline surrogate kinetic model (DIB-Toluene Reference Fuel, DTRF). A simplified five-
component mechanism for gasoline applicable to thin combustion was obtained, and the
constructed model was evaluated in terms of ignition-delay time, laminar flame speed, and
species-distribution data.

In this section, the predictions of ignition-delay times, laminar flame speed, and HCCI
cylinder pressure curves for three-, four-, and five-component gasoline surrogate fuels
are explored, and the ignition and combustion behaviors of the surrogate fuels when the
components are varied are verified against real gasoline, respectively.

2.1. Calculation of Physical Parameters

Based on the literature data [9,32,33], the physicochemical properties such as RON,
MON, calorific value, H/C, and molecular weight of the five components of n-heptane,
isooctane, toluene, diisobutene, and cyclohexane were compiled, as shown in Table 1.

Table 1. Physical and chemical properties of components of gasoline surrogate fuels.

Component Molecular
Formula RON MON Calorific

Value (kJ/kg) H/C Density
(kg/m3)

Molecular
Weight

N-Heptane
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83 77.2 43.08 2 773 84.16

Real gasoline with different physicochemical properties can be described to some
extent by adjusting the composition ratio between the five components. Over the years,
the development of gasoline surrogate fuels has prompted many researchers to develop
methods for formulating gasoline surrogate fuels [9,34–36] with the aim of matching a
wider range of physicochemical properties of gasoline. Morgan et al. [35] proposed a
computational model for the nonlinear mixing of component volume fractions, which is a
second-order modified nonlinear model that uses experimentally determined TRF octane
values to accurately predict the octane values of other arbitrary TRF fuels. Knop et al. [34]
used a simple-component molar fraction linear mixing calculation method to predict the
physical and chemical properties of blended fuels based on the physical and chemical
properties of the pure components of the fuel, which compares well with the equation
in the literature [36]. In the recent work of Del Pecchia [9], fuel combustion properties
(e.g., ignition-delay time and laminar flame speed) were also taken into account in the
formulation of surrogate-fuel components. Although Morgan et al.’s method more accu-
rately matches the physical and chemical properties of three-component surrogate fuels,
it is difficult to apply to more complex species distributions (four- and five-component).
Therefore, the method of linear mixing of component molar fractions was chosen for the
calculation of gasoline surrogate fuel component proportions in this paper. The RON,
MON, calorific value (LHV), density, H/C, and molecular weight of the surrogate fuels
were calculated by the following equations:

n

∑
i=1

xiRONi = RONblend (1)

n

∑
i=1

xi MONi = MONblend (2)
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n

∑
i=1

xiLHVi = LHVblend (3)

n
∑

i=1
xi Mi

n
∑

i=1
xi

Mi
ρi

= ρblennd (4)

n
∑

i=1
xi Hi

n
∑

i=1
xi Hi

=
H
C

(5)

Here, i and n denote the i-th component and the total group fraction in the compound,
respectively; xi, RONi, MONi, LHVi, Mi, ρi, Hi, and Ci denote the molar fraction, research
octane number, motor octane number, low calorific value, molecular weight, density,
number of H atoms, and number of C atoms of component i. It should be noted that the
sum of the molar fractions of the components is one in the calculation of each physical
property, i.e.,

n

∑
i=1

xi = 1 (6)

The basic physical and chemical properties (density, molecular weight, H/C, RON,
MON, etc.) of the surrogate fuels can be basically determined by the above formulae to
match the appropriate surrogate to the actual gasoline fuel. Therefore, the proportion of
surrogate components is different for different actual gasoline, and even if two actual fuels
have similar ignition and flame-combustion characteristics, their surrogate components are
not the same.

2.2. Ignition Performance Analysis of Surrogate

Sarathy et al. [28] measured the ignition-delay time of FACE F and FACE G gasolines
from Saudi Aramco in 2 MPa and 4 MPa shock tubes and rapid compression machines.
Their study showed that the gasoline of FACE F with lower octane sensitivity exhibited
a smaller slope in the negative temperature coefficient region, as fuels with lower octane
sensitivity behaved more like n-alkanes and showed a distinct NTC characteristic [37].
In addition, they found that the ignition-delay time of lower-octane sensitive gasoline
(e.g., FACE F, S = 5.6) could be captured by simple binary PRF or ternary TRF mixtures.
However, the ignition behavior of higher-octane sensitive gasolines (e.g., FACE G, S = 11)
requires more complex multicomponent surrogate mixtures. Therefore, in this paper, three
surrogate fuels are formulated for the hydrocarbon ratio composition of FACE G gasoline
(7.9% n-alkanes, 38.3% isoparaffins, 14.1% cycloalkanes, 31.8% aromatics, and 7.9% olefins
in molar fractions), combining existing formulations in the literature and the computational
work in this paper, as shown in Table 2.

Table 2. Three surrogate fuels of FACE G gasoline (by volume fraction).

Mixture Isooctane (%) N-Heptane (%) Toluene (%) DIB (%) CHX (%) RON Ref.

TRF-G 58.1 11.6 30.3 0 0 96.8 [28]
DTRF-G 25 20 45 10 0 94.6 [31]

CDTRF-G 23.75 19 42.75 9.5 5 94 [30]

Figure 1 shows the capture of FACE G gasoline shock tube ignition-delay time data by
TRF-G, DTRF-G, and CDTRF-G. Simulations are performed at two different equivalence
ratios of lean conditions (ϕ = 0.5) and chemical equivalence ratio (ϕ = 1.0) and at pressures
of 2 MPa and 4 MPa. As can be seen from the figure, the data are well predicted for various
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surrogate mixtures above 1000 K (1000/T < 1.0) at all pressures. The behavior of all surro-
gate fuels (TRF-G, DTRF-G, and CDTRF-G) is similar in these high-temperature regions,
where the ignition-delay time decreases with increasing temperatures. Nevertheless, above
1000 K, the simulations for CDTRF-G under lean conditions are quantitatively closer to
the measured data, while TRF-G is more dominant at ϕ = 1.0, with negligible differences
between the three. Below 1000 K, the best predictions are obtained for the five-component
mixture CDTRF-G, although below 900 K (1000/T > 1.1) the three surrogate-mixtures
simulations all reproduced the NTC behavior. However, only the CDTRF-G surrogate fuel
accurately captured the ignition-delay data. This suggests that the addition of cyclohexane
causes the fuel to experience a smaller NTC effect on the combustion behavior. In addition,
the variation of the equivalence ratios shows that the newly constructed model has higher
accuracy in predicting real gasoline under lean conditions (ϕ = 0.5), while the accuracy de-
creases at chemical-equivalence ratios, which is due to the fact that the model construction
and validation process is performed based on lean combustion and the model has better
prediction performance for combustion under lean conditions.
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2.3. Flame Propagation Performance Analysis of Surrogate Fuel

During previous validation of chemical kinetic models, the dependence of laminar
flame speed on fuel combustion temperature and pressure was observed. The laminar
flame speed increased with the increase in temperature and decreased with the increase in
pressure [30]. However, the effect of different fuel components on the laminar flame speed
was not considered. Sileghem [38] used the heat-flux method on a flat flame adiabatic
burner to measure the laminar flame speed of Exxon 708629-60 gasoline from ExxonMobil,
Irving, TX, USA, which consists of 10.37% n-alkanes, 40.2% isoalkanes, 34.39% aromatics,
9.39% cycloalkanes, and 5.65% olefins by volume fraction. In their study, a mixture of
1/3 isooctane, 1/3 n-heptane, and 1/3 toluene by volume fraction was used to predict
the laminar flame speed and showed good consistency. In addition, Sileghem [38] did
not give the relevant physicochemical properties (e.g., RON, MON) of Exxon 708629-60
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gasoline. Therefore, in this work, in addition to using their formulated TRF-Exxon fuel and
the DTRF-Exxon fuel given by Fikri [31], the CDTRF-Exxon surrogate prepared according
to Exxon 708629-60 gasoline volume fraction is also used to predict laminar flame speed, as
shown in Table 3.

Table 3. Three surrogate fuels of Exxon 708629-60 gasoline (by volume fraction).

Mixture Isooctane (%) N-Heptane (%) Toluene (%) DIB (%) CHX (%) RON Ref.

TRF-Exxon 33.33 33.33 33.33 0 0 78 [34]
DTRF-Exxon 25 20 45 10 0 94.6 [31]

CDTRF-Exxon 65.31 8.11 14.52 5.36 6.7 95 [30]

The prediction of laminar flame speed by three surrogate fuels is shown in Figure 2.
It can be seen from Figure 2 that the TRF-Exxon surrogate mixture of 1/3 isooctane, 1/3
n-heptane, and 1/3 toluene volume ratio calculated by this model can match the laminar
flame speed of gasoline. The prediction performance of DTRF-Exxon is the worst due to the
fact that the four-component fuel components contain too much toluene volume fraction,
which reduces the reactivity of the fuel and shortens the laminar flame speed near the
lean combustion and even the chemical-equivalence ratio. The calculation results of the
CDTRF-Exxon surrogate mixture are consistent with those of TRF-Exxon and show higher
accuracy in lean combustion (ϕ < 1.0). According to the explanation of Sileghem [38],
although the laminar flame speed of TRF-Exxon, the toluene reference fuel, is consistent
with that of Exxon 708629-60 gasoline, the mixture of isooctane, n-heptane, and toluene
will not be able to predict the experimental data of ignition, combustion, or engine char-
acteristics of all fuels (ignition-delay time, evaporation characteristics, emissions, etc.).
Therefore, the CDTRF-Exxon with more components may be used to simulate specific
engine combustion properties.
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2.4. HCCI Engine Combustion-Performance Analysis of Surrogate

To further evaluate the effectiveness of the chemical kinetic model in simulating the
combustion characteristics of gasoline fuels when different surrogate-fuel mixture composi-
tions are selected, a homogeneous reactor HCCI model is used to simulate the variation of
pressure curves of surrogate fuels operating in an HCCI engine. Christensen [39] measured
the cylinder pressure curves of typical high-octane gasoline (Grön 98 MK1, RON = 98.5,
MON = 88) on the Volvo TD100 engine. The engine size is shown in Table 4, and the intake
conditions are shown in Table 5 for three cases of engine-compression ratio and intake
temperature changes.
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Table 4. The size of the Volvo TD100 engine used in the experiment.

Parameters Bore (mm) Stroke (mm) Displacement (cm3)
Connecting Rod

Length (mm)

Volvo TD100 120.6 140.0 1600 260.0

Table 5. Engine operating conditions.

Working Condition C Equivalence Ratio Pin/MPa Tin/K Speed/rpm

1 22.4 0.333 0.101 303 1000
2 20 0.333 0.101 343 1000
3 17.7 0.333 0.101 383 1000

The fuel used is a high-octane gasoline (Grön 98 MK1) with a RON of 98.5 and a MON
of 88. Equations (1) and (2) are used to calculate the RON and MON for the three Grön
98 MK1 gasoline surrogate mixtures. The composition of the fuel is shown in Table 6.

Table 6. Three surrogate fuels of Grön 98 MK1 gasoline (by volume fraction).

Mixture Isooctane (%) N-Heptane (%) Toluene (%) DIB (%) CHX (%) RON MON

TRF-Grön 11.9 20.5 67.6 0 0 98.5 87.6
DTRF-Grön 10.6 19.8 61.8 7.8 0 98.5 87.9

CDTRF-Grön 5.3 18 65.6 1.6 9.5 98.5 87.6

The in-cylinder pressures of HCCI engines are predicted for the three surrogate
fuels using the selected CDTRF kinetic model (equivalence ratio 0.333). Considering the
uncertainty of the energy conversion of the fuel–air mixture from the engine intake to the
time of entering the intake valve, the starting moment of the calculation is chosen to be
−30 ◦CA (the upper dead point is 0 ◦CA). According to the experimental data, the initial
conditions for the calculation at the moment of −30 ◦CA are condition 1: temperature
730 K, pressure 1.4 MPa; condition 2: temperature 750 K, pressure 1.35 MPa; condition 3:
temperature 770 K, pressure 1.3 MPa.

Figure 3 shows the comparison between the experimental pressure curves of the
engine and the pressure curves calculated from the surrogate fuels in Table 6. It can be seen
that in all three cases, the DTRF-Grön and CDTRF-Grön surrogate fuels accurately capture
the sudden pressure change after the compression top dead center (TDC), which means that
heat is released at this moment. In contrast, TRF-Grön fuel is too resistant to spontaneous
combustion under these specific engine conditions. When the compression ratio is reduced,
the ignition of TRF-Grön is delayed (CR = 20), and it is even difficult to spontaneously
ignite (CR = 17.7). The ignition times of DTRF-Grön and CDTRF-Grön surrogate fuels are
similar in all three cases. According to the analysis of the fuel components, it is difficult for
TRF-Grön to self-ignite at the compression ratio of 17.7 because it contains too many toluene
components, and DTRF-Grön and CDTRF-Grön can self-ignite not because of the addition
of new substances to enhance the reactivity, but because of the composition of a variety of
components to reduce the use of toluene, and then achieve ignition near TDC under the
same conditions. In addition, since the adiabatic model is used in HCCI simulation, the
in-cylinder pressure calculated by all models is higher than the experimental value at the
ignition timing.

In addition, the accuracy of the model is not only to predict the cylinder pressure but
also to be able to accurately predict the combustion exothermic rate. The calculation results
of the exothermic rate of three surrogate fuels are shown in Figure 3 and it can be seen that
the exothermic rate curves and peak positions of the surrogates with different compositions
are different. In fact, during engine operation, the in-cylinder combustion heat-release rate
can be calculated by calculating the value of the variation of the in-cylinder pressure with
the crankshaft rotation angle of the engine. As can be seen in Figure 3, the peak magnitude
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of the exothermic rate of the three surrogate fuels is proportional to their cylinder pressure
curves in the engine, and the peak exothermic rate occurs at the peak pressure position.
In addition, it can be seen that the exothermic rate of TRF-Grön is almost 0 kJ/◦CA in the
calculated crankshaft angle range at a compression ratio of 17.7. Therefore, there is no
sudden change in pressure and thus it fails to ignite.
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Figure 3. HCCI engine experiments and simulated pressure curves of gasoline and its three surro-
gate mixtures under different compression ratios. 
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3. Effect of Cyclohexane on Combustion Characteristics of Gasoline Surrogate Fuel

In the previous section, the ignition and combustion characteristics of three-, four-,
and five-component gasoline surrogate fuels were analyzed with reference to experimental
data on the ignition, flame propagation, and HCCI in-cylinder combustion of common
gasoline on the market. However, the development of the model needs to consider the
effect of the addition of new species on the original components and their predicted
performance. In this section, the effect of adding cyclohexane to a four-component mixture
consisting of n-heptane, isooctane, toluene, and diisobutene on the combustion of the
surrogate fuels is explored through kinetic-model simulation studies. This four-component
surrogate fuel was formulated by Fikri et al. [31], and the physical parameters of the five-
component surrogate fuel mixture after the addition of cyclohexane were calculated from
Equations (1)–(5). They have a similar low calorific value (42.4 kJ/kg), but their RON is
decreasing with increasing the proportion of cyclohexane, as shown in Table 7.

For the fuels formulated in Table 7, the ignition-delay times calculated in the zero-
dimensional homogeneous reactor and the laminar flame speed calculated in the one-
dimensional flame reactor are compared separately, and kinetic analysis is performed
to interpret the results. Finally, two of the surrogate fuels are simulated using an HCCI
homogeneous reactor. The effects of surrogate-fuel component changes, engine speed,
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and intake air temperature on fuel autoignition are studied and explained from a fuel-
chemistry perspective.

Table 7. Gasoline fuel surrogates with different cyclohexane ratios (by volume fraction).

Mixture Isooctane (%) N-Heptane (%) Toluene (%) DIB (%) CHX (%) RON

Fuel 1 25 20 45 10 0 94.6
Fuel 2 23.75 19 42.75 9.5 5 93.9
Fuel 3 22.5 18 40.5 9 10 93.2
Fuel 4 21.25 17 38.25 8.5 15 92.6
Fuel 5 20 16 36 8 20 92.0

3.1. Effect of Cyclohexane on Ignition-Delay Time

The ignition characteristics of the fuel are controlled by the chemical-reaction kinetic
process of the fuel itself and the input of external boundary conditions. Therefore, in this
paper, the effect of cyclohexane addition on the ignition-delay time of gasoline–surrogate
fuel mixtures are first investigated under lean combustion conditions.

The ignition-delay times are calculated for five gasoline–surrogate fuel mixtures
(Fuel 1–5) under the lean combustion condition (equivalent ratio of 0.5), temperature range
of 600–1250 K, and pressure range of 0.5–4 MPa. The ignition-delay times of the five
surrogate-fuel models calculated using the selected mechanism are given in Figure 4.
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fuels, the ignition laws are investigated at different temperatures with different cyclohex-
ane concentrations. Figure 5 analyzes the ignition of fuel 1 and fuel 5 at initial pressures 
of 1–10 MPa, where fuel 1 is a four-component surrogate fuel without cyclohexane and 
fuel 5 is the surrogate fuel with the largest volume fraction of cyclohexane constructed in 

Figure 4. Ignition-delay time of fuels 1–5 under different pressures, equivalence ratio of 0.5, and
temperature range of 600–1250 K.

As can be seen in Figure 4, at higher initial temperatures (T > 1000 K), the differences
in ignition-delay times of the five fuels are not significant and maintained a consistent
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trend with temperature changes. However, at higher pressures (2 MPa or 4 MPa), the
differences in ignition-delay times of the five fuels increase, and the more surrogate fuels
containing cyclohexane content, the smaller the ignition-delay times. When the initial
temperature is small (T < 715 K), the ignition-delay times of the five surrogate fuels are
gradually separated, with fuel 1, which does not contain cyclohexane, being the most
affected by the temperature, indicating that the addition of cyclohexane reduces the ignition
delays of the surrogate fuels in the low-temperature reaction stage. The largest difference
occurs in the initial temperature range of 715–1000 K. At lower pressures, fuel 1 without
cyclohexane still lags behind the other fuels. As the pressure increases, the ignition-delay
times of fuels 2–5 are relatively higher than those of fuel 1, with fuel 5, which contains the
largest volume fraction of cyclohexane, exhibiting the least pronounced NTC (Figure 4d),
suggesting that the addition of cyclohexane suppresses the negative temperature behavior
of the surrogate fuels in the midtemperature region and becomes more pronounced as the
pressure increases.

In order to further study the effect of initial pressure on the ignition laws of surrogate
fuels, the ignition laws are investigated at different temperatures with different cyclohexane
concentrations. Figure 5 analyzes the ignition of fuel 1 and fuel 5 at initial pressures of
1–10 MPa, where fuel 1 is a four-component surrogate fuel without cyclohexane and fuel 5
is the surrogate fuel with the largest volume fraction of cyclohexane constructed in this
paper. Three representative temperatures are selected according to Figure 5, 600 K for the
low-temperature region, 800 K for the medium-temperature region, and 1100 K for the
high-temperature region.
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The results shown in Figure 5 indicate that the difference in ignition-delay time
between fuel 1 and fuel 5 at 600 K and 1100 K increases with increasing pressure, which
explains the phenomenon in Figure 4 that the difference in ignition-delay time between
different fuels at low and high temperatures increases with increasing pressure. In addition,
the gap in ignition-delay time between the two surrogate mixtures is the largest at 600 K.
Based on the previous analysis, this is because the chemical reaction rate in the low-
temperature phase is more dependent on the oxidation of the fuel macromolecules. At
800 K, it can be seen that the ignition-delay time of fuel 1 is not always higher than that of
fuel 5, and both shift at a pressure of 2.25 MPa, as shown in Figure 5b. It can be seen that the
addition of cyclohexane changes the ignition pattern of the four-component surrogate fuels
in the midtemperature region. The ignition delay of the fuel containing cyclohexane in the
midtemperature phase is less dependent on pressure, which affects the NTC behavior of
the surrogate fuel in this region.

The root causes of the different surrogate fuels showing different ignition patterns
are further analyzed at the microscopic level by chemical kinetics. For the two fuels (fuel
1 and fuel 5) with the largest difference in cyclohexane content, sensitivity analyses are
performed at low (690 K), medium (800 K), and high (1200 K) temperatures at an initial
pressure of 2 MPa and an equivalence ratio of 0.5, and the top ten most-sensitive reactions
are selected.

The sensitivity reactions of the fuel ignition process for fuel 1 and fuel 5 at an initial
temperature of 690 K are shown in Figure 6. At low temperatures, the sensitivity of the fuel
ignition process is dominated by macromolecular reactions.

R7. C7H16 + OH => C7H15-2 + H2O

R36. IC8H18 + OH => AC8H17 + H2O

R37. OC8H15OOH => OC8H15O + OH

R127. cC6H11O2 = cC6H10O2H-2

R358. CH2O + OH = HCO + H2O
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production for the five fuels remained at a consistent level. The corresponding ignition-
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Among them, for fuel 1, R7 and R36 are the reactions of straight and heterochain alka-
nes with OH radicals to remove a hydrogen atom to form the corresponding alkyl radical,
and R37 is the further decomposition of hydroperoxyalkyl radicals (QOOH); for fuel 5, R36
is the same as the dehydrogenation of chain alkanes, and R127 is the isomerization of cyclo-
hexane oxide cC6H12O2, which in fuel 5, the surrogate-fuel ignition process showed higher
sensitivity; in addition, the small molecule reaction R358. CH2O + OH = HCO + H2O ex-
hibits a greater sensitivity during fuel 1 ignition, which indicates that the depletion of
OH radicals in the R358 reaction reduces the reactivity of fuel 1 fuel. The above analysis
illustrates that the fuel ignition process in the low-temperature region is controlled to a
great extent by the initial oxidation and dehydrogenation reactions of fuel macromolecules,
and the cyclohexane molecules of fuel 5 are the first to react, and the accumulation of OH
radicals drives the early ignition of fuel 5.

Among the above reactions with large, normalized sensitivity coefficients, OH radicals
are found to appear more often, which indicates that OH radicals have a greater influence
on the ignition and combustion of the system. The OH radical molar fraction curves for the
fuels in Table 7 are plotted in Figure 7 at an initial temperature of 690 K, an initial pressure
of 2 MPa, and an equivalence ratio of 0.5, and the corresponding ignition-delay times of
the fuels are compared in the figure. The peak appearance of OH radicals for fuel 1 fuel
is different from the other four fuels by about 10 ms, and the final OH radical production
for the five fuels remained at a consistent level. The corresponding ignition-delay times
indicate that the peak moments of OH radicals can correspond to the ignition-delay times
of their fuels one by one.

Molecules 2023, 28, x FOR PEER REVIEW 14 of 30 
 

 

0.05 0.06 0.07 0.08

0.0000

0.0005

0.0010

0.0015

62.073

52.314 50.462 49.301 48.471

0

10

20

30

40

50

60

70

80
Ignition delay time (ms)

Fuel 1     Fuel 2      Fuel 3     Fuel 4     Fuel 5

M
ol

e 
fr

ac
tio

n 
of

 O
H

Time (s)

 Fuel 1
 Fuel 2
 Fuel 3
 Fuel 4
 Fuel 5

 
Figure 7. OH mole fraction and corresponding ignition-delay time of five surrogate fuels at low 
temperature 690 K. 

Next, the sensitivity of the ignition characteristics of fuel 1 and fuel 5 at a medium 
temperature of 800 K is analyzed. Unlike the low-temperature region, the temperature 
sensitivities calculated for the two surrogate-fuel ratios in the medium-temperature re-
gion appear significantly different. This is shown in Figure 8. 

R14. C7H15OO => C7H14OOH 

R36. IC8H18 + OH => AC8H17 + H2O 

R38. AC8H17 + O2 = JC8H16 + HO2 

R127. cC6H11O2 = cC6H10O2H-2 

R128. cC6H11O2 = cC6H10 + HO2 

R358. CH2O + OH = HCO + H2O 

R406. OH + HO2 = H2O + O2 

R409. H2O2 + M = OH + OH + M 

 

R7

R12

R13

R14

R21

R36

R38

R358

R406

R409

−1.0  −0.8  −0.6  −0.4  −0.2     0      0.2    0.4    0.6     0.8    1.0

Fuel 1

C7H15OO=>C7H14OOH

C7H15OO=>C7H15-2+O2

AC8H17+O2=JC8H16+HO2

H2O2+M=OH+OH+M

OH+HO2=H2O+O2

CH2O+OH=HCO+H2O

C7H15-2=>PC4H9+C3H6

C7H15-2+O2=>C7H15OO

IC8H18+OH=>AC8H17+H2O

C7H16+OH=>C7H15-2+H2O

Normalized temperature sensitivity

800 K

 

R7

R13

R14

R36

R74

R127

R128

R406

R409

R413

−1.0  −0.8  −0.6   −0.4   −0.2     0      0.2     0.4     0.6     0.8     1.0

Fuel 5

IC8H18+OH=>AC8H17+H2O

C7H15OO=>C7H14OOH

H2O2+OH=H2O+HO2

H2O2+M=OH+OH+M

OH+HO2=H2O+O2

cC6H11O2=cC6H10+HO2

cC6H11O2=cC6H10O2H-2

JC8H16+OH=JC8H15-A+H2O

C7H15OO=>C7H15-2+O2

C7H16+OH=>C7H15-2+H2O

Normalized temperature sensitivity

800 K

 
(a) Fuel 1  (b) Fuel 5  

Figure 8. Temperature sensitivity at 800 K. 

Figure 7. OH mole fraction and corresponding ignition-delay time of five surrogate fuels at low
temperature 690 K.

Next, the sensitivity of the ignition characteristics of fuel 1 and fuel 5 at a medium
temperature of 800 K is analyzed. Unlike the low-temperature region, the temperature
sensitivities calculated for the two surrogate-fuel ratios in the medium-temperature region
appear significantly different. This is shown in Figure 8.

R14. C7H15OO => C7H14OOH

R36. IC8H18 + OH => AC8H17 + H2O

R38. AC8H17 + O2 = JC8H16 + HO2

R127. cC6H11O2 = cC6H10O2H-2
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R128. cC6H11O2 = cC6H10 + HO2

R358. CH2O + OH = HCO + H2O

R406. OH + HO2 = H2O + O2

R409. H2O2 + M = OH + OH + M
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For fuel 1, the reactions with larger normalized sensitivity coefficients shift from
macromolecular reactions to small molecular reactions (R358, R406, and R409), and the
small molecular reaction R409 has the largest normalized sensitivity coefficient. H2O2 is
decomposed into two OH radicals under the action of the third body, which increases the
system temperature and reduces the ignition-delay time, leading to the formation of the
NTC region of the fuel. However, the reactivity of fuel 1 in the middle-temperature region is
still lower than that in the high-temperature region, because some macromolecular reactions
(R14, R36, and R38) have large, normalized sensitivity coefficients. From Figure 8b, it can
be seen that the fuel sensitivity of fuel 5 is still dominated by macromolecular reactions
(R127 and R128), which are isomerization and decomposition reactions of cyclohexane
oxide cC6H12O2, respectively. In contrast, the small molecular reaction R409 only occupies
a small proportion. This explains the phenomenon that fuel 2~5 inhibit the NTC effect in
Figure 4d.

The OH radical generation curves for the five surrogate fuels in Table 7 are calculated.
The calculation conditions are 800 K initial temperature, 2 MPa pressure, and 0.5 equiv-
alence ratio. Figure 9 gives the OH radical generation curves and the corresponding
ignition-delay times for the five surrogate fuels. It can be seen that the OH radical molar
fraction of the five surrogate fuels peaks at 17–18.5 ms, and the OH radical peak of fuel
1 peaks earlier than that of fuel 2 and fuel 3, while the ignition-delay time of fuel 1 decreases
correspondingly. This fully illustrates that the addition of cyclohexane has a great influence
on the fuel NTC effect.

Finally, the sensitivities of the ignition characteristics of fuel 1 and fuel 5 at high tem-
peratures of 1200 K are analyzed. Comparing the high-temperature normalized sensitivity
coefficients in Figure 10a,b, it can be seen that fuel 1 and fuel 5 basically contain the same
high-temperature sensitivity responses, and although the top ten responses of sensitivity
are not identical, several important primitive responses of greater sensitivity are consistent.

R100. IC4H7 + H(+M) = IC4H8(+M)
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R391. H + O2 = O + OH

R406. OH + HO2 = H2O + O2
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Among them, the isobutylene radical hydrogenation reaction represented by the
radical reaction R100 has a large, negative temperature-sensitivity coefficient, and the
consumption of H radicals suppresses the elevation of the system temperature. In addition
to exhibiting a large negative temperature sensitivity coefficient is the radical reaction
R406, and the absolute value of the sensitivity coefficient is the largest for this radical
reaction, which is a depletion reaction of OH radicals, and the unstable intermediate
product, peroxyhydroxyl radical HO2, generates water and oxygen molecules with OH
radicals. Although the depletion of the active molecule OH radical has an inhibitory effect
on the system ignition, the oxygen molecules generated by the reaction provide the oxidant
for the subsequent fuel reaction. The radical reaction R391 shows the greatest positive
sensitivity, which is a branching reaction of the chain, consisting of H radicals colliding
with O2 molecules to generate active OH radicals and O radicals, while O radicals continue
to collide with H2 molecules parametrically OH radicals, increasing the concentration of
OH radicals in the system, raising the system temperature and prompting the fuel to reach
ignition in a short time.
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The small difference in ignition-delay time between the two fuels at high temperatures
is mainly attributed to the same reactivity of the small molecule reactions controlling
the reaction progression. It can also be seen from Figure 10 that the earlier ignition of
fuel 5 compared to fuel 1 is due to the inclusion of more small molecule reactions in the
high-temperature positive sensitivity of Fuel 5.

The OH radical generation curves at high temperatures in Figure 11 again explain the
above point, as the OH radical peaks of the five surrogate fuels do not differ by more than
0.1 ms, and the reaction proceeds quite rapidly. This shows that the ignition characteristics
of the five surrogate fuels remain the same at high temperatures, with a small difference
due to the role of cyclohexane, which is more prevalent at higher concentrations.
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The effect of cyclohexane on the ignition-delay time of surrogate fuels was analyzed
in the temperature range of 600–1250 K, pressure of 0.1–4 MPa, and lean conditions with
an equivalence ratio of 0.5. The addition of cyclohexane inhibits the occurrence of fuel
NTC, especially at higher pressures. At low and high temperatures, the addition of cy-
clohexane shortens the ignition time of the fuel, and this effect is most obvious in the
low-temperature region. Based on this influence pattern, the ignition pattern of gaso-
line containing naphthenic hydrocarbons can be analyzed for the subsequent gasoline
containing naphthenic hydrocarbons.

3.2. Effect of Cyclohexane on Laminar Flame Speed

As mentioned in the previous validation of the mechanism, applying the chemical
kinetic model to the numerical simulation of in-cylinder combustion, besides focusing on
the ignition characteristics of the fuel, flame propagation is also an extremely important
combustion characteristic, which is related to the normal propagation of the fuel flame
during in-cylinder combustion and the study of in-cylinder detonation problems. Therefore,
this paper investigates the effect of adding cyclohexane to gasoline surrogate fuels on the
laminar flame speed of the overall mixture.

Atmospheric pressure and lower initial-temperature conditions are commonly used to
study the laminar flame speed of fuels, and an initial temperature of 298 K and an initial
pressure of 0.1 MPa are the general conditions under which the laminar flame speed of fuels
is studied into the burner, and the experimental data obtained from different laboratories
using different experimental methods can be easily compared at this condition. They can
also be used as reference values for analyzing the pressure and temperature dependence of
laminar and turbulent flames [40]. In addition, the laminar flame speed of the fuel obtained
at higher initial temperature and pressure conditions can carry out the combustion of the
gasoline when it is ignited before the top dead center of in-cylinder compression, and this
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initial temperature and pressure will continue to increase for gasoline compression-ignition
engines. In this study, the corresponding laminar flame speeds were also calculated in the
premixed laminar flame-speed calculation model [41] using surrogate fuels consisting of
five different proportions of components, as shown in Table 7. Two calculation conditions
were chosen to represent the above two cases: an initial temperature of 298 K and an initial
pressure of 0.1 MPa; and an initial temperature of 500 K and an initial pressure of 2 MPa.
In addition, two comparison conditions were also used to better compare the effects of
temperature and pressure: an initial temperature of 298 K and an initial pressure of 2 MPa;
and an initial temperature of 500 K and an initial pressure of 0.1 MPa. The composition of
the air is 79% N2 and 21% O2.

Figure 12 shows the calculated laminar flame speed for the five surrogate fuel mixtures
at four operating conditions. It can be seen that the laminar flame speed of the fuels shows
a trend of increasing and then decreasing in covering all the range of equivalent ratios, with
the peak occurring near an equivalent ratio of 1.1. This is the same as most of the literature
studies [14,38,40,42–44], where the chemical-reaction rate is influenced by the fuel-vapor
concentration under lean conditions; the higher the equivalent ratio, the higher the laminar
flame speed. Under fuel-rich conditions, the chemical reaction rate is mainly affected by
the air concentration, and the effect of the equivalent ratio on the laminar flame speed is
smaller than that of the specific heat capacity and density of the gas mixture, the larger the
equivalent ratio, the smaller the laminar flame speed. The equilibrium between the two is
reached near the equivalence ratio of 1.1 to obtain the maximum laminar flame speed.
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From the calculated results of the four working conditions, the trend and magnitude
of the laminar flame speed changes are similar for the five surrogate fuels, but by the
local enlargement in Figure 12, fuel 5 has the largest calculated result while fuel 1 has the
smallest, and this change increases with the comparative increase of cyclohexane in the
fuel. This difference can be explained by the fact that the addition of cyclohexane dilutes
the proportion of chain alkanes and aromatic hydrocarbons in the mixture. According
to the laminar flame speed verification of pure component fuels in previous work [30],
the approximate order of magnitude of the laminar flame speed of several components is
n-heptane > cyclohexane > isooctane > diisobutene > toluene, which, from a microscopic
point of view, is the difference in the concentration of reactive radicals such as H and OH
generated by each component. The C-C and C-H bonds in toluene are more stable than
the other hydrocarbons, so the addition of cyclohexane increases the laminar flame speed
of the fuel mixture, and the small difference is attributed to the proportion of n-heptane,
which has a larger flame speed, being reduced accordingly.

The results of the initial temperature and pressure effects on the laminar flame speed
can be observed in the calculated results of the four working conditions. From Figure 12a,b,
it can be seen that the initial temperature increases from 298 K to 500 K, the laminar flame
speed increases significantly, and the location where the peak laminar flame speed appears
moves toward the fuel-rich direction, indicating that the laminar flame vs. speed of the
fuel with increasing temperature is more dependent on the fuel concentration; while from
Figure 12a,c, it can be seen that the initial pressure increases from 0.1 MPa to 2 MPa, the
laminar flame speed decreases significantly and the peak laminar flame speed appears in
the air-rich direction, indicating that the laminar flame speed of the fuel with increasing
pressure is more dependent on the concentration of air.

In order to better understand the above phenomenon, the laws of laminar flame speed
with temperature and pressure are analyzed in Figure 13, respectively, when the ratio of
surrogate-fuel components is varied. The calculated temperature range is 298–900 K and the
pressure range is 0.1–7 MPa. From the figures, it can be seen that the laminar flame speed
increases with increasing temperature at constant pressure (Figure 13a,b). At a pressure
of 1 MPa, the laminar flame speed decreases significantly, but the effect of temperature is
also more obvious, and the laminar flame speed increases rapidly after the temperature
exceeds 800 K. The effect of fuel components is mainly reflected in the higher-pressure
condition (1 MPa), where the simulated flame speed of fuel 1 is the smallest and fuel 5 is the
largest. The laminar flame speeds calculated for the five surrogate fuels at an equivalence
ratio of one at a constant temperature maintained a consistent trend and decreased with
increasing pressure.

The variability of the surrogate-fuel laminar flame speeds was further analyzed in
chemical kinetics. The sensitivity of fuel 1 and fuel 5 was calculated in Figure 14 at two
operating conditions. Ambient temperature and pressure (298 K, 0.1 MPa) and higher
temperature and pressure (500 K, 2 MPa), respectively. The results show that fuel 1 and
fuel 5 exhibit the same sensitivity at both operating conditions. The reactions with larger
sensitivity coefficients are mainly small molecule reactions.

R62. C6H5O + H = C6H5OH

R389. CO + OH = CO2 + H

R391. H + O2 = O + OH

Among them, R62 exhibits the largest negative sensitivity because the reaction drives
the consumption of H radicals. The reaction with the largest positive sensitivity, R391,
which was introduced in the previous kinetic analysis of ignition characteristics, generates
a large number of active OH radicals and O radicals that initiate the next chain reaction,
which greatly increases the chemical reaction rate. R389, which first appeared in the
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sensitivity analysis, is an oxidation reaction of CO The reaction of CO and OH radicals
produces CO2 and one H radical, which releases heat and raises the system temperature,
and the generated H radicals promote the reaction R391. Therefore, the same sensitivity
reaction and sensitivity coefficients of Fuel 1 and Fuel 5 under two working conditions can
explain the reason why the laminar flame speed shows the same trend.
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Figure 13. Laminar flame speed of fuels 1–5 in different temperature and pressure ranges when 
equivalence ratio is 1. 
Figure 13. Laminar flame speed of fuels 1–5 in different temperature and pressure ranges when
equivalence ratio is 1.
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Furthermore, all the radical reactions with large sensitivity coefficients in Figure 14
involve the production and consumption of OH and H radicals, suggesting a close associa-
tion between OH, H radicals, and the laminar flame speed of the fuel. This phenomenon
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was also reported in a study by Kelley [45], and the similarity of OH and H radicals pro-
vides support for the fuel similarity observed in the laminar flame speed. In this study,
the similarity between OH and H radical concentrations and laminar flame speed were
compared to investigate the relationship between laminar flame speed and OH and H
radicals for different component fuels.

Figures 15 and 16 show the laminar flame-speed curves and the corresponding OH,
H, and OH + H molar fraction curves for fuel 1 and fuel 5 surrogate fuels at two different
operating conditions in the range of 0.5–1.5 equivalence ratios, respectively. It is clear that
the molar fraction curves of OH radicals or H radicals alone do not show any similarity
with the laminar flame speed, while the sum of molar fractions of OH and H radicals
and OH + H show consistency with the laminar flame speed in terms of peak equivalence
ratio and curve shape. At room temperature and pressure (298 K, 0.1 MPa), the difference
between the peak molar fraction of OH radicals and H radicals is not significant, while at
higher temperature and pressure (500 K, 2 MPa), the peak molar fraction of OH radicals
is more than twice that of H radicals, indicating that the laminar flame speed is more
dependent on OH radicals at higher temperature and pressure. The effect of cyclohexane
addition on the surrogate-fuel laminar flame speed and for OH radicals and H radical
molar fraction was smaller for both operating conditions.
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3.3. Effect of Cyclohexane on the Combustion Characteristics of HCCI

In addition to ignition and flame propagation characteristics, fuel combustion in the
cylinder is also a major characteristic. In HCCI engines, the mixture reaches the autoignition



Molecules 2023, 28, 4273 21 of 29

temperature almost simultaneously in the cylinder while exothermic reactions occur, which
can be carried out in a thinner mixture, significantly reducing the generation of NOX
and carbon smoke. To investigate the effect of cyclohexane addition on the in-cylinder
combustion of surrogate fuels, the phase combustion of four- and five-component surrogate
fuels in HCCI engines under lean conditions was investigated. The effect of cyclohexane
on fuel autoignition was studied and explained from the perspective of fuel chemistry
kinetics. In addition, the effects of engine speed, fuel/air ratio, and intake air temperature
are analyzed.

Sjöberg [46] investigated the intake air temperature required for the combustion timing
of gasoline (RON = 90.8, MON = 83.4) in a Cummins B-series engine with 102 mm bore,
120 mm stroke, and 192 mm connecting rod length, with fuel ignition by compression.
The HCCI model with a zero-dimensional single-zone homogeneous compression ignition
was used for the calculations, starting at −180 ◦CA. Four-component fuel (fuel 1) and
five-component fuel (fuel 5) from Table 7 were chosen as surrogate fuels. The combustion
phase was defined as the moment when the CO molar fraction reached its peak. The three
engine speeds were 600 rpm, 1200 rpm, and 1800 rpm, respectively, and the compression
ratio increased with increasing speed, due to the consideration of heat loss during the
calculation [27]. It was performed with natural intake and an intake pressure of 0.1 MPa.

Figure 17 shows the inlet gas temperatures required for fuel 1 and fuel 5 to burn at
positive ignition times in HCCI with equivalent ratios ranging from 0.1 to 0.5, with gasoline
experimental data from Sjöberg [46]. The results of the model calculations are recorded in
Table 8.
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Table 8. Required intake temperatures at an intake pressure of 0.1 MPa to phase combustion at TDC
in an HCCI engine (K).

Equivalence
Ratio

Fuel 1 Fuel 5

600 rpm 1200 rpm 1800 rpm 600 rpm 1200 rpm 1800 rpm

0.1 430 450 451 428 450 448
0.15 409 428 431 407 426 428
0.2 395 415 417 391 410 412

0.25 381 405 407 378 398 400
0.3 368 399 402 369 389 392

0.35 358 394 399 361 383 386
0.4 351 391 396 355 379 382

0.45 346 389 394 351 376 379
0.5 340 387 391 348 373 377

As can be seen from Figure 17, the predictions for both fuel 1 and fuel 5 are higher than
the experimental values for very lean conditions with equivalence ratios less than 0.2. This
indicates that the model selected in this paper is applicable in the region where the lean limit
is above the equivalent ratio of 0.2, which is obviously sufficient for the gasoline engine
developed so far. In Figure 17a, there is little difference between the inlet temperatures
required for fuel 1 and fuel 5 to reach ignition at the top stop of compression (TDC) at
600 rpm, and fuel 5 predicts higher inlet temperatures than fuel 1 after the equivalence ratio
is greater than 0.3. However, at higher speeds of 1200 rpm and 1800 rpm (Figure 17b,c),
fuel 5, a five-component surrogate fuel containing cyclohexane, shows a better predictive
trend, while fuel 1 requires a higher intake temperature to achieve positive ignition at
higher engine speeds. This can be explained in the sensitivity analysis of the two fuels in
Figure 6. At lower temperatures, the macromolecular reactions of the fuel dominate, while
cyclohexane molecules are more likely to shed H atoms in the low-temperature region, and
H radicals collide with O2 molecules to produce a large number of OH radicals, making
fuel 5 the first to ignite at the same intake temperature. In other words, fuel 5 requires a
lower intake temperature than fuel 1 for ignition timing. In addition, the easier ignition of
fuel 1 at low rpm (600 rpm) is attributed to the accelerated conversion of fuel molecules
during the low-temperature stall phase (cold-flame phase) of the four-component fuel,
which releases heat and leads to system temperature rise, as will be further discussed in
the later analysis.

Figures 18 and 19 show the variation in temperature, CO molar fraction, and conver-
sion of various surrogate-fuel components calculated for fuel 1 and fuel 5 surrogate fuels
at two different engine speeds. Considering the maximum observation of the differences
exhibited by the two fuels, two equivalent ratios (0.25, 0.5) were chosen for the calculations,
and the intake air temperature was chosen to correspond to the intake air temperature at
the fuel 5 ignition timing.

In Figure 18, the temperatures of fuel 1 and fuel 5 increase with an increasing crankshaft
rotation angle at an engine speed of 600 rpm, reaching a maximum at the compression
upper stop, followed by a slow decrease in temperature as the mixture expands and does
work by combustion, and the peak CO molar fraction also occurs near the compression
upper stop and then decreases rapidly (Figure 18a,b). The fuel conversion rate shows that
cyclohexane is the fastest, n-heptane is faster than isooctane, and toluene is the smallest
(Figure 18c,d). At smaller equivalent ratios (ϕ = 0.25) the peak CO molar fraction and the
moment of maximum temperature gradient for fuel 1 and fuel 5 are not very different
(2 ◦CA), and the inlet temperature of the fuel 5 ignition timing combustion makes the
fuel 1 delayed ignition. The reason for this can be found in Figure 18c, although fuel 1
has cold-flame combustion in the crankshaft rotation angle range of −22.5~20 ◦CA, the
conversion of n-heptane and isooctane fuel molecules is not driven at this small equivalent
ratio, and the rapid conversion of fuel 5 fuel molecules leads to a delayed ignition of
fuel 1 relative to fuel 5. Negative conversion of DIB fuel is also observed in Figure 18c
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in the −20–8 ◦CA cranking angle range, which is attributed to the crossover reaction
R38. AC8H17 + O2 = JC8H16 + HO2 generated by the isooctane submechanism and the
diisobutene submechanism. The conversion of isooctane in the cold-flame stage results
in a net production of DIB. The negative conversion of DIB is more pronounced for fuel
5 because the conversion of isooctane in fuel 5 increases rapidly after −15 ◦CA. When
the volume ratio increases to 0.5, a shift in the ignition sequence of fuel 1 and fuel 5 can
be observed, and the inlet air temperature of fuel 5 burning at the right time of ignition
causes fuel 5 fuel to ignite earlier. The n-heptane and isooctane conversion rates of fuel 1 in
Figure 18d explain this change. After the equivalent ratio increases to 0.5, fuel 1 has a large
cold-flame combustion phase, which leads to the conversion of a large amount of n-heptane
and isooctane, and the OH and H radicals generated drive the system temperature up and,
eventually, fuel 1 fuel ignites early. In addition, it can be clearly found that the negative
conversion of DIB is suppressed at an equivalence ratio of 0.5, which is due to the sufficient
oxidant to promote the conversion of DIB.
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(a) φ = 0.25, Temperature and CO concentration curves (b) φ = 0.5, Temperature and CO concentration curves 
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fuel 5 at 1200 rpm engine speed.

In Figure 19, the temperature curves and molar fraction curves for fuel 1 and fuel 5 at
1200 rpm engine speed follow similar trends to the 600 rpm engine speed, with the same
moments of peak temperature and peak CO molar fraction, and the fuel-conversion rates
show that cyclohexane converts the fastest, n-heptane converts faster than isooctane, and
toluene converts the least. Comparing the calculated results for the two surrogate fuels at
different equivalence ratios, there are significant differences in the fuel ignition timing and
conversion curves. The conversion curves of fuel components showed that the conversion
rate of each component in fuel 5 fuel was higher than that of fuel 1 until the compression
stop, and the addition of cyclohexane reduced the amount of TRF in the surrogate fuel,
especially toluene, which had the lowest conversion rate, making fuel 5 to burn at the right
time of ignition. No cold flame combustion region was found for fuel 5 in all operating
conditions, as also observed in Figure 18, due to the increased reactivity of the fuel by the
addition of cyclohexane. These phenomena indicate that the addition of the cyclohexane
component has a great influence on the combustion characteristics of the surrogate fuel
in HCCI.

In addition to the effect of cyclohexane, the effects of engine speed, equivalence ratio,
and intake temperature were analyzed by comparing Figures 18 and 19. For different
engine speeds, it is clearly observed that higher intake air temperature is required for the
fuel mixture to achieve ignition timing combustion at higher engine speeds. In addition,
increasing engine speed inhibited the cold flame behavior of the fuel 1 four-component
surrogate fuel because the fuel residence time was reduced at higher speeds and the
response in the low-temperature region could not be maintained. For the equivalence ratio,
increasing the equivalence ratio is more favorable for the ignition timing combustion of the
fuel, which can be compared with Figure 17. The required intake-gas temperature for the
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ignition timing of the fuel decreases with increasing the equivalence ratio, and the increase
of the oxidizer can promote the oxidation of the fuel in the lean condition. For the effect of
inlet gas temperature, it is mainly reflected in the ignition timing of fuel 1 and fuel 5; the
higher the inlet gas temperature, the easier the fuel ignites.

Finally, to investigate the emissions of both fuel 1 and fuel 5 surrogate fuels in the
HCCI engine, the molar fraction production of some important carbon-soot precursors
was analyzed at an inlet temperature of 373 K, an inlet pressure of 0.1 MPa, an equivalent
ratio of 0.5, and an engine speed of 1200 rpm, as shown in Figure 20. The production of
acetylene (C2H2), ethylene (C2H4), propylene (C3H6), 1, 3-butadiene (C4H6), and benzene
(C6H6) were included.
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Figure 20. Partial intermediate product mole fractions calculated for fuel 1 and fuel 5 at 1200 rpm.

As seen in Figure 20, the fuel 1 and fuel 5 calculations for ethylene, acetylene, and
propylene are the same, and the difference in the corresponding peaks is due to the different
moments of ignition for the two fuels at 373 inlet temperatures. In Figure 20b, the C2H4 and
C3H6 curves calculated for the two fuels differ, with the molar fraction curves for ethylene
and propylene calculated by fuel 5 being more concentrated in front of the compression
upper stop, while the curves calculated by fuel 1 are more dispersed, due to the cold-flame
behavior of fuel 1. The molar fraction curves for C4H6 and C6H6 calculated by fuel 5
are clearly different from those of fuel 1 (Figure 20c,d), the 1,3 butadiene molar fraction
experienced a rapid increase and then leveled off before growing to a peak, which was not
observed in fuel 1. In addition, the peak molar fraction of C6H6 calculated in fuel 5 was
twice as high as that calculated in fuel 1.
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The analysis of the rate of production (ROP) was further analyzed for C4H6 and C6H6
at this working condition, as shown in Figure 21.
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Figure 21a,b shows the first ten reactions with faster chemical reaction rates for C4H6 
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Figure 21a,b shows the first ten reactions with faster chemical reaction rates for C4H6
calculated for the surrogate fuels fuel 1 and fuel 5, where a positive reaction rate indicates
fuel production and vice versa for consumption. It can be seen that among the first ten
radical reactions calculated for the latter, R136; cC6H10 = C4H6 + C2H4 is the added reaction,
which produces a 1, 3 butadiene molecule and an ethylene molecule from the decomposition
reaction of cyclohexene C-C bond breakage. In addition, the reaction rate of the radical
reaction R196. C4H7 + O2 = C4H6 + HO2 was increased in the fuel 5 calculations, and
the R136 and R196 reactions together contributed to the higher molar fraction of C4H6
calculated for fuel 5. Figure 21c,d shows the first ten reactions with faster chemical reaction
rates for the surrogate fuels fuel 1 and fuel 5 calculated for C6H6. It is observed that the
addition of cyclohexane greatly increases the chemical reaction rate for the radical reaction
R150. SAXcC6H7 = C6H6 + H. The removal of an H atom from SAXcC6H7 to form C6H6 is
what leads to the increase in the molar fraction of C6H6 in fuel 5.

From the above analysis, it is evident that the addition of cyclohexane has different
effects on the surrogate-fuel ignition, flame propagation, and combustion characteristics
in the HCCI cylinder. In the low-temperature reaction stage, the ignition-delay time
of the fuel decreased gradually as the proportion of cyclohexane in the surrogate fuel
increased, which was caused by the early oxidation and decomposition of cyclohexane
molecules to produce more OH-active molecules. In the medium-temperature reaction



Molecules 2023, 28, 4273 27 of 29

stage, the addition of cyclohexane suppressed the negative temperature behavior of the
surrogate fuels and became more pronounced with increasing pressure because the fuels
containing cyclohexane were still dominated by macromolecular reactions in the medium-
temperature stage and their ignition delay was less dependent on pressure, which affected
the NTC behavior of the surrogate fuels in this region. The role of cyclohexane becomes
less pronounced as the combustion characteristics in the high-temperature reaction phase
are controlled by the small molecule reactions.

The coupling mechanism considers H2/CO/C1 as the core mechanism, which re-
sponds to the laminar flame speed of the fuel so that the laminar flame speeds of surrogate
fuels with different cyclohexane ratios are similar. The small difference is attributed to the
fact that the proportion of n-heptane, which has a larger flame speed, is reduced with the
addition of cyclohexane.

HCCI engine tests showed that the five-component surrogate fuel containing cyclo-
hexane required lower intake-gas temperature to achieve ignition timing at higher engine
speed, and was closer to the in-cylinder ignition of real gasoline. In addition, the addition
of cyclohexane results in higher concentrations of 1, 3-butadiene and benzene at ignition
timing than in the four-component fuel.

4. Materials and Methods

We have described all the materials and methods we used in our previous work. If
you want to know more, you can read this literature [30].

5. Conclusions

In this study, the effect of cyclohexane addition on the ignition and combustion
performance of surrogate fuels are analyzed based on three aspects: ignition delay, laminar
flame speed, and in-cylinder combustion characteristics of HCCI engines. The main
findings are as follows.

(1) Based on extensive experimental data of real gasoline, our previously constructed
simplified kinetic model of CDTRF five-component gasoline surrogate fuel shows
good predictive performance in three aspects of fuel ignition delay, laminar flame
speed, and in-cylinder combustion characteristics of HCCI engines.

(2) As the proportion of cyclohexane in the surrogate fuel increases, the ignition-delay
time of the fuel gradually decreases at low and high temperatures. While at the
medium-temperature reaction stage, the isomerization and decomposition reactions
of cyclohexane oxide cC6H12O2 dominate the temperature sensitivity of the ignition
delay due to the addition of cyclohexane, which affects the small molecule reactions
that promote the formation of reactive radicals such as OH molecular reactions, thus
inhibiting the NTC behavior of surrogate fuels. This trend becomes more and more
obvious with the increase in pressure.

(3) The laminar flame speed of the surrogate fuels increases with the increase of the
cyclohexane ratio. This is due to the fact that the laminar flame speed of cyclohexane is
higher than that of chain and aromatic hydrocarbons, and the addition of cyclohexane
dilutes the proportion of chain and aromatic hydrocarbons in the mixture. From a
microscopic point of view, the concentration of reactive radicals such as H and OH
generated by each component varies. The C-C and C-H in toluene are more stable
than other hydrocarbons, so cyclohexane addition increases the laminar flame speed
of the fuel mixture.

(4) Engine simulation studies show that at relatively high engine speeds, the five-component
surrogate fuels containing cyclohexane require lower intake-gas temperatures to
achieve ignition timing and are closer to the in-cylinder ignition of real gasoline; the
addition of cyclohexane results in higher concentrations of 1,3-butadiene and benzene
at ignition timing than the four-component fuels.

In this paper, some discussions on the effects produced by cyclohexane in gaso-
line components are made at the kinetic mechanism level. In future research, the five-
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component gasoline kinetic model constructed by our group will be considered for the
three-dimensional numerical simulation of engines. The effect of the cyclohexane compo-
nent in the five-component gasoline surrogate fuel on engine combustion and emissions
will be studied in a wider range and compared with existing studies.
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