

Review

Recent Advances in Synthetic Drugs and Natural Actives Interacting with OAT3

Ying Chen ^{1,2}, Hongyan Li ^{1,2}, Ke Wang ^{1,2} and Yousheng Wang ^{1,2,*}

- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; chenying@btbu.edu.cn (Y.C.); lhy@st.btbu.edu.cn (H.L.); wangke9509@163.com (K.W.)
- ² Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
- * Correspondence: wangys@btbu.edu.cn; Tel.: +86-10-68984905

Abstract: Organic anion transporter 3 (OAT3) is predominantly expressed in the kidney and plays a vital role in drug clearance. Consequently, co-ingestion of two OAT3 substrates may alter the pharmacokinetics of the substrate. This review summarizes drug–drug interactions (DDIs) and herbal–drug interactions (HDIs) mediated by OAT3, and inhibitors of OAT3 in natural active compounds in the past decade. This provides a valuable reference for the combined use of substrate drugs/herbs for OAT3 in clinical practice in the future and for the screening of OAT3 inhibitors to avoid harmful interactions.

Keywords: organic anion transporter 3; drug–drug interactions; herb–drug interactions; natural active compounds; inhibitors

1. Introduction

The two primary superfamilies, ATP binding cassette (ABC) and solute carrier (SLC), play a crucial role in the absorption, distribution, and elimination of various endogenous substances such as hormones and signal molecules, as well as exogenous substances and drugs [1,2]. Generally, SLC transporters mediate the influx of substances from the blood into the epithelium, while ABC transporters mediate the efflux of substances [3–5]. The SLC22 family comprises six primary subfamilies: organic anion transporter (OAT), OAT-like, OAT-related, organic cation transporter (OCT), organic cation and carnitine transporter (OCTN), and OCT/OCTN-related [6,7].

OAT3 is considered the primary transporter in OAT due to its broad substrate specificity. OAT3 (encoded by SLC22A8) is widely distributed in the kidney, liver, choroid plexus [8], olfactory mucosa, brain [9], retina, and placenta [10], but it is pre-dominantly expressed on the basolateral membrane of renal tubular cells [11,12]. OAT3 utilizes dicarboxylate (e.g., α -Ketoglutarate) to exchange organic anions, with the concentration gradient as the driving force [13]. It first transports organic anions (OAs) from the blood to the proximal tubules through the basolateral membrane and then discharges OAs into the urine through the apical membrane of tubular epithelial cells, reabsorbing specific compounds in the glomerular filtrate back into the internal circulation [14,15].

OAT3 plays a crucial role in the uptake, distribution, and excretion of various endogenous/exogenous substances, but current research has primarily focused on the interactions between OAT3 and clinical drugs [16–18]. When two or more drugs are taken simultaneously, OAT3 becomes a target of drug competition [19,20], potentially altering the toxicity [21], pharmacokinetics [22], and function of these drugs and resulting in potential drug—drug interactions (DDIs) [23,24]. However, when herbal medicines and OAT3 substrate drugs are taken together, they may lead to severe herbal drug interactions (HDIs), such as liver injury [25], increased clotting time, headache, insomnia, and even coma and

Citation: Chen, Y.; Li, H.; Wang, K.; Wang, Y. Recent Advances in Synthetic Drugs and Natural Actives Interacting with OAT3. *Molecules* 2023, 28, 4740. https://doi.org/10.3390/molecules28124740

Received: 18 May 2023 Revised: 3 June 2023 Accepted: 10 June 2023 Published: 13 June 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Molecules **2023**, 28, 4740 2 of 16

death [26,27]. Research has shown that not all of the interactions mentioned above are negative. For example, enalaprilat and quinaprilat are two types of antihypertensive drugs. When used in combination with some synthetic drugs or flavonoids, their transport through OAT3 is inhibited, leading to synergistic blood pressure reduction [28,29]. OAT3 has a significant role in DDIs and HDIs [13], with effects that can be either beneficial or adverse. In this review, we summarize the DDIs and HDIs mediated by OAT3, as well as OAT3 inhibitors in natural products over the past decade. Through this review, we can predict and avoid DDIs/HDIs mediated by OAT3.

2. OAT3 and Synthetic Drug-Drug Interactions

The kidney is primarily responsible for drug clearance after administration [22]. Kidney drug transporters play a crucial role in drug transport between the blood and lumen [30], including antibiotics, diuretics, proton pump inhibitors, non-steroidal anti-inflammatory drugs, antiviral drugs, and anticancer drugs [31,32]. Simultaneous administration of multiple drugs can result in changes in drug levels compared to a single administration [33]. DDIs can cause higher or lower levels of drugs, thereby altering their toxicity or efficacy (Table 1) [5,34]. Table 1 summarizes the DDIs mediated by OAT3 reported in the last decade.

Table 1. OAT3 and synthetic drug-drug interactions (DDIs).

Victim Drug	Perpetrator Drug	Model	IC_{50} (μM)	Effects	Reference
Imipenem	Cilastatin	Intravenous with cilastatin and imipenem 45 mg/kg in rats	-	$AUC_{0\rightarrow\infty}\uparrow,T_{1/2\beta}\uparrow,CL_{p}\downarrow,CL_{R}\downarrow$	[35]
Diclofenac	Cilastatin	hOAT3-HEK293 cells Diclofenac-induced acute kidney injury in mice	411	- $AUC_{0-12h} \uparrow, CL_p \downarrow, t_{1/2} \uparrow$	[36] [36]
Diclofenac acyl glucuronide	Cilastatin	hOAT3-HEK293 cells Diclofenac-induced acute kidney injury in mice	813	AUC _{0-12h} \uparrow , $t_{1/2}$ \uparrow	[36] [36]
	Proton pump inhibitors	hOAT3-HEK293 cells	0.4–5.5	-	[37]
	Rhein	hOAT3-HEK293 cells Intravenous with MTX 5 mg/kg and/or rhein	0.77	- $C_{max} \uparrow$, AUC \uparrow , $t_{1/28} \uparrow$, $CL_P \downarrow$	[38] [38]
MEN	Diclofenac-Glu	1 mg/kg in rats hOAT3-HEK293 cells hOAT3-HEK293 cells	3.17		[39]
MTX	R-Ibuprofen-Glu S-Ibuprofen-Glu R-Flurbiprofen-Glu	hOAT3-HEK293 cells hOAT3-HEK293 cells hOAT3-HEK293 cells	60.1 57.0 19.4	- -	[39] [39] [39]
	S-Flurbiprofen-Glu R-Naproxen-Glu	hOAT3-HEK293 cells hOAT3-HEK293 cells	31.7 129	- -	[39] [39]
	S-Naproxen-Glu Tranilast	hOAT3-HEK293 cells Oral administration of MTX 5 mg/kg and tranilast 10 mg/kg in rats	51.4	- $C_{max}\uparrow, AUC_{0-24h}\uparrow, CL_{z/f}\downarrow, V_{z/f}\downarrow$	[39] [40]
	Benzbromarone	hOAT3-HEK293 cells	0.14	-	[29]
	Glimepiride Febuxostat	hOAT3-HEK293 cells hOAT3-HEK293 cells	0.37 0.41	- -	[29] [29]
Enalaprilat	Verinurad Lesinurad	hOAT3-HEK293 cells hOAT3-HEK293 cells	0.80 0.80	-	[29] [29]
1	Telmisartan Valsartan Sulfinpyrazone	hOAT3-HEK293 cells hOAT3-HEK293 cells hOAT3-HEK293 cells	0.86 0.90 0.95	- -	[29] [29] [29]
	Repaglinide Gemfibrozil	hOAT3-HEK293 cells hOAT3-HEK293 cells	2.10 3.50	- - -	[29] [29]
Enalaprilat	Probenecid Diclofenac sodium	hOAT3-HEK293 cells hOAT3-HEK293 cells	5.12 6.13	-	[29] [29]
	Gemcabene	hOAT3-HEK293 cells rOat3-HEK293 cell	35 48	-	[28]
		Oral administration of quinapril 3 mg/kg and gemcabene (30 mg/kg reduced to 10 mg/kg at day 3) in rats	-	$AUC_{0-24h}\uparrow,CL_{R}\downarrow$	[28]
Quinaprilat	Gemcabene	hOAT3-HEK293 cells rOat3-HEK293 cell	197 133	-	[28]
	acylglucuronide	Oral administration of quinapril 3 mg/kg and gemcabene (30 mg/kg reduced to 10 mg/kg at day 3) in rats	-	$AUC_{024h}\uparrow,CL_{R}\downarrow$	[28]
Bezafibrate	Mizoribine	Oral administration/intravenous with bezafibrate 20 mg/kg and/or mizoribine 15 mg/kg in rats	-	AUC \uparrow ; $t_{1/2\beta} \uparrow$, $CL_R \downarrow$	[41]

Molecules **2023**, 28, 4740 3 of 16

Table 1. Cont.

Victim Drug	Perpetrator Drug	Model	IC ₅₀ (μM)	Effects	Reference
Acyclovir	Benzylpenicillin	Intravenous with acyclovir 30 mg/kg and benzylpenicillin 30 mg/kg in rats	-	$CL_R\downarrow,t_{1/2\beta}\uparrow$	[42]
Tazobactam	pactam Piperacillin Intravenous with tazobactam 26.25 mg/kg and piperacillin 210 mg/kg in rats		-	$CL_p\downarrow$, $CL_R\downarrow$, $AUC\uparrow$, $t_{1/2\beta}\uparrow$, and $k_m\uparrow$	[43]

Total body clearance (CL/F); area under the concentration–time curve (AUC); maximum serum concentration (C_{max}); plasma clearance (CL $_{p}$); plasma/serum concentration half-time ($t_{1/2\beta}$); renal clearance (CL $_{p}$); \downarrow , reduced level; \uparrow , increased level; -, data were not reported.

Imipenem is an antibiotic with antibacterial effects, but when administered alone, it is rapidly degraded by dehydropeptidase-1 or renal dipeptidase (also termed DPEP1) [44]. Cilastatin and imipenem are both substrates of OAT3. When administered together intravenously, the plasma concentration–time curve (AUC) for imipenem is significantly increased by 1.65-fold, while the plasma/serum concentration half-time ($t_{1/2\beta}$) of imipenem increased by 2.35-fold. Cilastatin also inhibits the uptake of imipenem mediated by OAT3 in the kidney, thereby reducing the hydrolysis of and acting as a complement to imipenem [35,45,46].

In addition to its role in DDIs, OAT3 inhibition has been shown to have a renoprotective effect against nephrotoxic drugs [47]. For example, diclofenac [48], a commonly used nonsteroidal anti-inflammatory drug (NSAID), can cause kidney damage [49]. However, when diclofenac is co-administered with cilastatin, an OAT3 inhibitor, the AUC_{0-12h} of diclofenac increases by 35.4% and its plasma clearance (CL_p) significantly decreases. Co-administration of cilastatin with diclofenac acyl glucuronide, a metabolite of diclofenac, leads to an increase in the concentration of diclofenac acyl glucuronide in the plasma by 46.7%, but a slight decrease in AUC_{0-12h} of diclofenac acyl glucuronide in the kidney by 18.0%. Moreover, diclofenac acyl glucuronide but not diclofenac exhibited OAT-dependent cytotoxicity and was identified as an OAT1/3 substrate. The accumulation of diclofenac acyl glucuronide in primary proximal tubule cells (RPTCs) is reduced, and the cytotoxicity caused by diclofenac acyl glucuronide is also reduced [36].

Methotrexate (MTX) is a drug used for the high-dose treatment of various malignant tumors or the low-dose treatment of rheumatoid arthritis and psoriasis [50,51]. Delayed elimination of MTX can lead to severe toxicity, such as bone marrow suppression, mucositis, and kidney damage [37]. Kidney clearance is the main pathway for MTX clearance (65–80%). Proton pump inhibitors (PPIs) inhibit the hOAT3-mediated uptake of MTX with IC_{50} values of 0.40–5.5 μ M [37]. Rhein, the main metabolite of diacerein, markedly inhibited MTX accumulation in rat kidney slices and hOAT3-HEK293 cells, indicating that OAT3 is involved in DDIs in the kidney. When the two drugs were co-administered orally, the maximal plasma/serum concentration (C_{max}) and AUC of MTX were increased by 2.5- and 4.4-fold, respectively, and the CL of MTX was decreased by 66.7%. When the two drugs were co-administered intravenously, the $t_{1/2\beta}$ of MTX was prolonged by 86.7%, the CLP was decreased by 57.6%, and the AUC was increased by 183.4%. Rhein alleviated MTXinduced renal toxicity in vivo mainly by inhibiting OAT3 to reduce the renal clearance of MTX [38]. Masahiro Iwaki et al. found that seven NSAIDs-Glu exhibit a concentrationdependent inhibitory effect on MTX uptake through OAT3, with diclofenac-Glu having the most effective inhibitory ability (IC₅₀ = $3.17 \mu M$) [39]. In addition to the above-mentioned drugs, tranilast, an anti-allergic drug, can inhibit MTX transport.

OAT3 renal sections and HEK293T-OAT3 cell uptake experiments have shown that tranilast can inhibit MTX uptake by OAT3. Pharmacokinetic studies in rats have shown that when MTX (5 mg/kg) is administered orally alongside tranilast (10 mg/kg), the $C_{\rm max}$ and AUC_{0-24h} of MTX increased to 2.14- and 1.46-fold, respectively, while $CL_{\rm z/f}$ and $V_{\rm z/f}$ decreased by 24.90% and 39.23%, respectively [40].

Quinapril is an angiotensin-converting enzyme (ACE) inhibitor used to treat hypertension and congestive heart failure. In a pharmacokinetic study on rats, co-administration of quinapril (3 mg/kg) with gemcabene (30 mg/kg) resulted in a 40% decrease in the

Molecules 2023, 28, 4740 4 of 16

> urinary excretion of quinaprilat (quinaprilat, the metabolite of the quinapril, is also the substrate of OAT3) and a 53% increase in the AUC_{0-24h} of quinaprilat, leading to a reduction in blood pressure. Subsequent studies discovered that gemcabene inhibited quinaprilat uptake by hOAT3 and rOat3 at IC₅₀ values of 35 and 48 μM. Moreover, gemcabene acylglucuronide, the major metabolite of gemcabene glucuronidation, also inhibited the hOAT3and rOat3-mediated uptake of quinaprilat at IC₅₀ values of 197 and 133 μ M, respectively. This indicated the mechanism by which concomitant intake of gemcabene with quinapril can reduce blood pressure [28]. In another study, Ni et al. investigated the effects of several common drugs on the OAT3-mediated uptake of enalaprilat (another oral ACE). Benzbromarone was found to be the most effective inhibitor of OAT3 (IC₅₀ = 0.14 μ M), while diclofenac sodium was the weakest inhibitor (IC₅₀ = 6.13 μ M) [29].

> One study showed that concurrent treatment with mizoribine and bezafibrate can result in rhabdomyolysis. It was suggested that both bezafibrate and mizoribine are substrates of OAT3, and when bezafibrate was co-administered orally with mizoribine, the $t_{1/2\beta}$ of bezafibrate increased to 1.39-fold, and the renal clearance (CL_r) decreased to 0.81-fold. However, when bezafibrate was co-administrated with mizoribine intravenously, the AUC and $t_{1/28}$ of bezafibrate increased to 1.29- and 1.25-fold, respectively. This study also suggested that mizoribine can competitively inhibit the uptake of bezafibrate by OAT3 [41].

> Similarly, in a study in which benzylpenicillin and acyclovir were co-administered intravenously in rats, the cumulative urinary excretion of acyclovir decreased by 45% and CL_R decreased by 44%, while the $t_{1/2\beta}$ of acyclovir increased by 1.9-fold. This indicates that benzylpenicillin can inhibit the renal excretion of acyclovir by inhibiting OAT3 [42].

> Wen et al. found that when piperacillin and tazobactam were administered simultaneously, both CL_p and CL_R of tazobactam were decreased, and the AUC, $t_{1/2\beta}$, and k_m of tazobactam were increased to 2.15-, 1.24-, and 1.56-fold, respectively. Moreover, piperacillin can competitively inhibit the uptake of tazobactam mediated by OAT3 [43].

3. OAT3 and Herb-Drug Interactions (HDIs)

Natural medicines containing flavonoids and other functional components, particularly polyphenols, are increasingly used in clinical therapy [52]. In the elderly population with chronic diseases such as hypertension, hyperlipidemia [53], and hyperuricemia, it is common to use prescription drugs, over-the-counter drugs, and natural products simultaneously [47,54]. A survey showed that 78% of elderly respondents take both prescription drugs and dietary supplements, and 32.6% of them experience potential adverse drug reactions when they were taking a combination of herbs and other drugs [55]. Some herbs may directly cause organ toxicity, alter the pharmacokinetics or efficacy of prescription drugs mediated by OAT3, or inhibit enzymes involved in drug metabolism [26].

Purarin (PUR) is an isoflavone component extracted from *Pueraria lobata* [56]. When PUR and MTX are orally administered in combination, the C_{max} , AUC, and $t_{1/2\beta}$ of MTX are increased by 79%, 74%, and 70%, respectively. When PUR and MTX are co-administered intravenously, the AUC and $t_{1/2\beta}$ of MTX increase by 59% and 37%, respectively, and a 37% decrease in CL_p was observed. PUR also simultaneously inhibits MTX uptake in rat kidney slices and HEK293-OAT3 cells. Therefore, the combined administration of PUR can inhibit OAT3 and enhance MTX exposure (Table 2) [57].

			ŭ
Drug	Herb	Indications for Herb	Model

Drug	Herb	Indications for Herb	Model	IC_{50} (μM)	Effects	Reference
MTX	Puerarin	Hypertension, hyperlipidemia	hOAT3-HEK293 cells; Oral administration of MTX 5 mg/kg and PUR 50 mg/kg in rats	27.9 -	$C_{max} \uparrow AUC \uparrow$, $t_{1/2\beta} \uparrow$; $CL_p \downarrow$	[57]
Telmisartan	Steviol glucuronide	Hyperglycemia, — hypertension, diabetes, inflammation —	hOAT3-HEK293 cells	2.92	-	[58]
Diclofenac	Steviol glucuronide		hOAT3-HEK293 cells	8.01	-	[58]
Mulberrin	Steviol glucuronide		hOAT3-HEK293 cells	9.97	-	[58]

Table 2. OAT3 and herb-drug interactions.

Molecules **2023**, 28, 4740 5 of 16

Table 2. Cont.

Drug	Herb	Indications for Herb	Model	IC ₅₀ (μM)	Effects	Reference
	Ctorrio1 a av1	Thursday 2.1.4	hOAT3-HEK293 cells rOat3-HEK293 cells	4.9 2.3	-	[59]
Probenecid	Steviol acyl glucuronide	Hypertension, diabetes, inflammation	Oral administration of rebaudioside A 15 mg/kg and probenecid 20 mg/kg/glimepiride 5 mg/kg in rats	-	$C_{max}\uparrow$, $AUC_{6-8h}\uparrow$	[59]
	Steviol acyl	Hyperglycemia,	hOAT3-HEK293 cells rOat3-HEK293 cells	0.81 0.77	-	[59]
Glimepiride	glucuronide	hypertension, diabetes, inflammation	Oral administration of rebaudioside A 15 mg/kg and probenecid 20 mg/kg/glimepiride 5 mg/kg in rats	-	$C_{max} \uparrow$; AUC _{6-8h} \uparrow	[59]
		Vival infactions	hOAT3-HEK293 cells;	2.29	-	[60]
Imipenem	Apigenin	Viral infections, inflammation	Intravenous with imipenem 200 mg/kg and apigenin 10 mg/kg in rabbits	-	$\begin{array}{c} AUC_{0\text{-}6h}\uparrow, CL_p\\ \downarrow, CL_r\downarrow \end{array}$	[60]
	Galangin	Hyperlipidemia, atherosclerosis, diarrhea	hOAT3-HEK293 cells	0.030	-	[29]
	Chrysin	Hyperlipidemia, diabetes, hypertension	hOAT3-HEK293 cells	0.044	-	[29]
Enalaprilat	Kaempferol	Atherosclerosis, diabetes, inflammation	hOAT3-HEK293 cells	0.088	-	[29]
	Oroxylin A	Inflammation	hOAT3-HEK293 cells	0.22	-	[29]
	Wogonin	Inflammation	hOAT3-HEK293 cells	0.24	-	[29]
	Apigenin	Viral infections, inflammation	hOAT3-HEK293 cells	0.33	-	[29]
	Luteolin	Cardiovascular disease, hyperuricemia	hOAT3-HEK293 cells	0.66	-	[29]
	Gossypetin	Atherosclerosis	hOAT3-HEK293 cells	0.71	-	[29]
	Quercetin	Hypertension, hyperlipidemia	hOAT3-HEK293 cells	0.75	-	[29]
	Mulberrin Eriodictyol	Liver Fibrosis Inflammatory	hOAT3-HEK293 cells hOAT3-HEK293 cells	1.22 1.48	-	[29] [29]
	Fisetin	Liver cancer,	hOAT3-HEK293 cells	3.82	_	[29]
	risetin	inflammation	IIOA15-HER293 Cells	3.62	-	[29]
	Daidzein	Hypertension, ischemic cerebrovascular disease, hyperlipidemia	hOAT3-HEK293 cells	5.80	-	[29]
Enalaprilat	Taxifolin	Cardiovascular disease, inflammatory	hOAT3-HEK293 cells	7.02	-	[29]
	Apigetrin	Oxidative stress	hOAT3-HEK293 cells	7.80	-	[29]
	Isoquercetin	Tumor, hypertension, hyperlipidemia, inflammation	hOAT3-HEK293 cells	11.71	-	[29]
	Wogonoside	Inflammatory	hOAT3-HEK293 cells	11.73	-	[29]
	Myricetin	Diabetes, cardiovas- cular disease	hOAT3-HEK293 cells	22.58	-	[29]
	Juncus effusus	Oedema, urinary discomfort	Oral administration of <i>Juncus effusus</i> extract 100 mg/kg and furosemide 10 mg/kg in rats	-	AUC _{0−t} ↑	[61]
FS	Rhubarb	Hepatitis, abdominal pain, constipation	Oral administration of rhubarb extract 5 g crude drug/kg/day and furosemide 10 mg/kg for 7 days in rats	-	$AUC_{0\text{t}}\uparrow$	[62]

Total body clearance (CL/F); area under the concentration–time curve (AUC); maximum serum concentration (C_{max}); plasma clearance (CL $_{p}$); plasma/serum concentration half-time ($t_{1/2\beta}$); renal clearance (CL $_{R}$); \downarrow , reduced level; \uparrow , increased level; -, data were not reported.

Steviol glucuronide is the major metabolite of steviol, and its uptake is primarily mediated by OAT3 (Wang et al.). Inhibition studies have shown that three drugs (with IC50 values between 2.92 and 9.97 μM) can inhibit steviol glucuronide uptake mediated by OAT3 in a concentration-dependent manner, and may also alter its renal clearance [58]. Steviol acyl glucuronide, the main circulating metabolite of steviol glycosides after oral administration, is also a substrate of OAT3 [63]. Therefore, if the activity of OAT3 is inhibited, it may alter the pharmacokinetic characteristics of steviol acyl glucuronide. Zhou et al. showed that probenecid and glimepiride inhibit hOAT3/rOat3-mediated steviol acyl glucuronide transport in a concentration-dependent manner (IC50 < 5 μM) (Table 2). When administered in combination with probenecid or glimepiride, the C_{max} of steviol acyl glucuronide was increased to 10.8- or 9.7-fold, respectively. The AUC6-8h of steviol acyl glucuronide was increased to 2.9- or 2.5-fold, respectively. Therefore, people with impaired renal function should be cautious when taking steviol glycoside products [59].

The increased renal transport of imipenem mediated by OAT3 can lead to certain renal toxicity. Apigenin, a flavonoid compound widely distributed in traditional Chinese

Molecules **2023**, 28, 4740 6 of 16

medicine, is a potent OAT3 inhibitor [64]. In cases with the combined administration of apigenin and imipenem, the survival rate of hOAT3-HEK93 cells significantly increased, and the IC $_{50}$ value of imipenem within the cells increased to 8.1-fold. At the same time, the AUC $_{0-6h}$ of imipenem increased by 46%, while the CL $_{p}$ and CL $_{r}$ of imipenem decreased by 29% and 52%, respectively. The intracellular accumulation of imipenem decreased, thereby partially reducing the cytotoxicity of imipenem. These results indicate that the inhibition of apigenin on hOAT3 can protect the cytotoxicity induced by imipenem in vitro. Therefore, apigenin can be used as a potential clinical drug to alleviate adverse renal reactions caused by imipenem [60].

Natural drugs containing flavonoids are often taken concomitantly with prescribed or over-the-counter drugs, which may lead to potential interactions [65]. For instance, Ni et al. reported the inhibitory effects of various flavonoids with distinct structures on the activity of OAT3 transport drugs [66]. Among these flavonoids, galangin exhibited the strongest inhibitory effect on the activity of OAT3 with an IC $_{50}$ value of 0.03 μ M, while myricetin exhibited the weakest inhibitory effect, with an IC $_{50}$ value of 22.58 μ M (Table 2) [29].

Lu et al. [61] reported that dichloromethane extract from *Juncus effusus* can alter the pharmacokinetics of furosemide (FS), an OAT3 substrate drug, in rats. The AUC_{0-t} of FS was increased by 80% and 55% after oral or intravenous administration of *Juncus effusus* (D), respectively. Therefore, caution is needed to avoid potential side effects resulting from the interaction between OAT3 substrate drugs and *Juncus effusus* (D). Ma et al. observed a 32% and 52% increase in the AUC_{0-t} of FS following single or multiple dose co-administration of FS and rhubarb extract, respectively [62].

4. Natural Bioactive Inhibitors of OAT3

Many natural bioactive compounds, including flavonoids and their metabolites such as sulfates and glucuronides, have been identified as potent inhibitors and/or substrates of OAT3 [67,68]. The study of OAT3 inhibitors can help us predict and avoid potential OAT3-mediated DDIs/HDIs [69], and these inhibitors may also have potentially beneficial effects on renal diseases, such as AAI-induced kidney disease [70]. Table 3 summarizes the natural bioactive compounds identified as OAT3 inhibitors in the last decade. These compounds are classified into nine groups: phenolic acids, flavonoids, alkaloids, anthraquinones, phenols, phenylpropanoids, terpenoids, phenanthrenoids, and others.

Table 3. Natural active compounds with OAT3 inhibi	tory activity.
---	----------------

Category	Natural Active Compound	Source	Model	OAT3 Activity	Reference
		-	rOat3-HEK293 cells (17.5 nM [³ H]-Estrone sulfate as substrate)	$IC_{50} = 5.4 \ \mu M$	
Phenolic acids	Caffeic acid		Intravenous with caffeic acid at 5 mg/kg (25 mg/kg phenolsul fonphthalein as substrate) in rats	$\begin{array}{c} \text{phenolsul} \\ \text{fonphthalein CL}_r \downarrow \end{array}$	[71]
	Baicalein	Scutellaria Baicalensis	hOAT3-HEK293 cells (300 nM [³ H]-Estrone sulfate as substrate)	$IC_{50} = 2.4 \mu M$	[72]
	Baicalin	Scutellaria Baicalensis	hOAT3-HEK293 cells (300 nM [³ H]-Estrone sulfate as substrate)	$IC_{50}=13.0~\mu M$	[72]
	Wogonin	Scutellaria Baicalensis	hOAT3-HEK293 cells (300 nM [³ H]-Estrone sulfate as substrate)	$IC_{50} = 1.3 \ \mu M$	[72]
Flavonoids		Leaves of	hOAT3-HEK293 cells (10 μM 6-CF as substrate)	$IC_{50} = 2.35 \mu M$	
	Wogonin	Nelumbo nucifera Gaertn.	AAN model mice induced by AAI: intravenous with 5 mg/kg AAI and 100 mg/kg wogonin	AAI AUC _{0-2h} \uparrow , $C_{max} \uparrow CL/F \downarrow$	[73]
	Eugenin	Drynaria fortunei (Kunze) <i>J. Sm.</i>	hOAT3-HEK293 cells (10 µM 6-CF as substrate)	$IC_{50} = 10.77 \ \mu M$	[73]
	Calycosin	- '	hOAT3-HEK293 cells (10 μ M 6-CF as substrate)	$IC_{50} = 11.44 \mu M$	[73]
	Oroxylin A	Nelumbo nucifera Gaertn.	hOAT3-HEK293 cells (10 μM 6-CF as substrate)	$IC_{50} = 1.68 \ \mu M$	[73]
	Luteolin	Eclipta prostrata L.	hOAT3-HEK293 cells (10 μM 6-CF as substrate)	$IC_{50} = 4.20 \mu M$	[73]
	Quercetol	Eclipta prostrata L.	hOAT3-HEK293 cells (10 μM 6-CF as substrate)	$IC_{50} = 7.27 \mu M$	[73]
Flavonoids	3,5,7,4'-Tetra-O-methyl- kaempferol	Epimedium brevicornu Maxim.	hOAT3-HEK293 cells (10 μ M 6-CF as substrate)	$IC_{50} = 14.77 \ \mu M$	[73]
	Viscidulin III	Nelumbo nucifera Gaertn.	hOAT3-HEK293 cells (10 μ M 6-CF as substrate)	$IC_{50} = 1.51 \ \mu M$	[73]
	Scullcapflavone II	Eclipta prostrata L.	hOAT3-HEK293 cells (10 μ M 6-CF as substrate)	$IC_{50} = 6.70 \ \mu M$	[73]

Molecules **2023**, 28, 4740 7 of 16

Table 3. Cont.

Category	Natural Active Compound	Source	Model	OAT3 Activity	Reference
	Camptothecin	Camptotheca acuminate Decne.	hOAT3-HEK293 cells (300 nM [³ H]-Estrone sulfate as substrate)	$IC_{50} = 3.5 \mu M$	[74]
	10-hydroxycamptothecin	Camptotheca acuminate Decne.	hOAT3-HEK293 cells (300 nM [³ H]-Estrone sulfate as substrate)	$IC_{50}=4.6~\mu M$	[74]
Alkaloids	10-methoxycamptothecin	Camptotheca acuminate Decne.	hOAT3-HEK293 cells (300 nM [³ H]-Estrone sulfate as substrate)	$IC_{50}=4.8~\mu M$	[74]
	9-nitrocamptothecin	Camptotheca acuminate Decne.	hOAT3-HEK293 cells (300 nM [³ H]-Estrone sulfate as substrate)	$IC_{50}=2.8~\mu M$	[74]
	Tryptanthrin	-	hOAT3-HEK293 cells (300 nM [³ H]-Estrone sulfate as substrate)	$IC_{50} = 0.93 \ \mu M$	[70]
	Rhein	Rhubarb	hOAT3-HEK293 cells (ranging from 0.5 μ M to 200 μ M Fluo as substrate)	$IC_{50} = 0.08 \ \mu M$	[62]
Anthraquinone	Emodin	Rhubarb	hOAT3-HEK293 cells (ranging from 0.5 μ M to 200 μ M Fluo as substrate)	$IC_{50} = 1.22 \ \mu M$	[62]
Antinaquinone	Aloe-modin	Rhubarb	hOAT3-HEK293 cells (ranging from 0.5 μ M to 200 μ M Fluo as substrate)	$IC_{50} = 5.37 \ \mu M$	[62]
	Obtusifolin Aurantio-obtusin	Semen cassiae Semen cassiae	hOAT3-HEK293 cells (5 μ M 6-CF as substrate) hOAT3-HEK293 cells (5 μ M 6-CF as substrate)	$IC_{50} = 1.71 \mu M$ $IC_{50} = 1.23 \mu M$	[75] [75]
	Emodin	Semen cassiae	hOAT3-HEK293 cells (5 μM 6-CF as substrate)	$IC_{50} = 2.06 \ \mu M$	[75]
Anthraquinone	1,2,7-trihydroxy-8-methoxy- 6-methy1-9,10-	Semen cassiae	hOAT3-HEK293 cells (5 μ M 6-CF as substrate)	$IC_{50} = 3.44 \ \mu M$	[75]
•	anthraquinone Chrysophanol Chryso-obtusin	Semen cassiae Semen cassiae	hOAT3-HEK293 cells (5 μ M 6-CF as substrate) hOAT3-HEK293 cells (5 μ M 6-CF as substrate)	$IC_{50} = 6.20 \ \mu M$ $IC_{50} = 7.46 \ \mu M$	[75] [75]
	2-O-methyl-9-		hOAT3-HEK293 cells (5 μM 6-CF as substrate)	$IC_{50} = 7.14 \mu M$	[75]
	dehydroxyeurotinone 9-dehydroxyeurotinone	Semen cassiae Semen cassiae	hOAT3-HEK293 cells (5 μM 6-CF as substrate) hOAT3-HEK293 cells (5 μM 6-CF as substrate),	$IC_{50} = 7.35 \mu M$ $K_i = 162 \mu M$	[75]
Phenols	(-)-epigallocatechin-3- gallate(EGCG)	Green tea	rOat3 -HEK293 cells (5 μ M 6-CF as substrate) Intravenous with 6-CF 1 mg/kg and EGCG 60 mg/kg in rats	$\begin{array}{c} K_i = 56.5 \; \mu M \\ \text{6-CF AUC}_{0-60 \text{min}} \uparrow, \\ \text{CLr} \downarrow, \\ \text{BNU} \uparrow \end{array}$	[76]
	2,4,6-Trichloro-3-methoxy-5- methylphenol	-	hOAT3-HEK293 cells (10 μ M 6-CF as substrate)	$IC_{50} = 3.93 \ \mu M$	[73]
Phenylpropanoids	Dioscorealide B	Dioscorea septemloba Thunb.	hOAT3-HEK293 cells (10 μ M 6-CF as substrate)	$IC_{50} = 7.73 \ \mu M$	[73]
	Wedelolactone	Eclipta prostrata L.	hOAT3-HEK293 cells (10 μM 6-CF as substrate)	$IC_{50} = 7.09 \ \mu M$	
Terpenes -	3-Oxo-16α-hydroxy-olean- 12-en-28β-oic acid	-	hOAT3-HEK293 cells (10 μM 6-CF as substrate)	$IC_{50} = 8.05 \ \mu M$	[73]
respends	Ursolic acid	Pomegranate	hOAT3-HEK293 cells (300 nM [³ H]-Estrone-3-sulfate as substrate)	$IC_{50} = 18.9 \ \mu M$	[77]
Others	Anchusa azurea (A) Anchusa azurea (B) Symphytum asperum (B)	- - -	hOAT3-HEK293 cells ($10~\mu M$ 6-CF as substrate) hOAT3-HEK293 cells ($10~\mu M$ 6-CF as substrate) hOAT3-HEK293 cells ($10~\mu M$ 6-CF as substrate)	$\begin{split} &IC_{50} = 3.836~\mu g/mL\\ &IC_{50} = 0.343~\mu g/mL\\ &IC_{50} = 0.406~\mu g/mL \end{split}$	[61] [61] [61]
	Echium russicum(B)	-	hOAT3-HEK293 cells (10 μM 6-CF as substrate) hOAT3-HEK293 cells (10 μM 6-CF as substrate)	$IC_{50} = 0.460 \ \mu g/mL$	[61]
	Juncus effusus (D) Polygonum hydropiper (D)	-	hOAT3-HEK293 cells (10 μM 6-CF as substrate)	$IC_{50} = 1.210 \mu g/mL$ $IC_{50} = 1.296 \mu g/mL$	[61] [61]
	Geranium tuberosum (B)	-	hOAT3-HEK293 cells (10 μ M 6-CF as substrate)	$IC_{50} = 1.878 \ \mu g/mL$	[61]
Od	Primula macrocalyx (D) Glycyrrhiza glabra (D)	-	hOAT3-HEK293 cells (10 μM 6-CF as substrate)	$IC_{50} = 2.081 \mu g/mL$	[61]
Others	Polygonum hydropiper (D)	-	hOAT3-HEK293 cells (10 μM 6-CF as substrate) hOAT3-HEK293 cells (10 μM 6-CF as substrate)	$IC_{50} = 2.399 \mu g/mL$ $IC_{50} = 2.966 \mu g/mL$	[61] [61]
	Juniperus oblonga (LF + FR) (D)	<u>-</u>	hOAT3-HEK293 cells (10 µM 6-CF as substrate)	$IC_{50} = 3.047 \mu g/mL$	[61]
	Juniperus oblonga (LF + FR) (B)	-	hOAT3-HEK293 cells (10 μM 6-CF as substrate)	$IC_{50} = 1.117 \mu g/mL$	[61]
	Astracantha microcephala (D) Chaerophyllum bulbosum (H)	- -	hOAT3-HEK293 cells (10 μM 6-CF as substrate) hOAT3-HEK293 cells (10 μM 6-CF as substrate)	$IC_{50} = 4.619 \mu g/mL$ $IC_{50} = 4.791 \mu g/mL$	[61] [61]
	7-carboxy-2- hydroxy-1-methyl-6-vinyl- 9,10-dihydrophenanthrene	Juncus effusus.	hOAT3-HEK293 cells (4 μ M 6-CF as substrate)	$IC_{50} = 1.3 \ \mu M$	[78]
	7-carboxy-2- hydroxy-1-methyl-8-vinyl- 9,10-dihydrophenanthrene 6-carboxy-2-hydroxy-1-	Juncus effusus.	hOAT3-HEK293 cells (4 μ M 6-CF as substrate)	$IC_{50} = 1.1 \ \mu M$	[78]
Phenanthrenoids	methyl-8- vinyl-9,10- dihydrophenanthrene 7-carboxy-2-hydroxy-1-	Juncus effusus.	hOAT3-HEK293 cells (4 μ M 6-CF as substrate)	$IC_{50} = 2.8 \ \mu M$	[78]
	methyl-5-vinyl-9,10-dihy- drophenanthrene	Juncus effusus.	hOAT3-HEK293 cells (4 μ M 6-CF as substrate)	$IC_{50} = 1.1 \ \mu M$	[78]
	4,4'-dihydroxy-3,3'- dimethoxybenzophenone	Juncus effusus.	hOAT3-HEK293 cells (4 μ M 6-CF as substrate)	$IC_{50} = 2.3 \ \mu M$	[78]

Total body clearance (CL/F), area under the concentration—time curve (AUC), maximum serum concentration (C_{max}), plasma clearance (CL_p), plasma/serum concentration half-time ($t_{1/2\beta}$), renal clearance (CL_R), \downarrow reduced level, \uparrow increased level. H represents hexane extract, D for dichloromethane extract, B for n-Butanol extract, and A for aqueous phase extract.

Molecules **2023**, 28, 4740 8 of 16

4.1. Phenolic Acids

Salvia miltiorrhiza has been used to treat cardiovascular diseases, but its biochemical mechanisms are still unclear. However, studies by Wang et al. have shown that six hydrophilic components from Salvia miltiorrhiza, tanshinol, rosmarinic, lithospermic acid, salvianolic acid A, salvianolic acid B, and protocatechuic acid (Figure 1), have significant inhibitory effects on substrate uptake mediated by mOAT3. Among these, lithospermic acid ($K_i = 31.3 \ \mu M$), rosmarinic ($K_i = 4.3 \ \mu M$), and salvianolic acid A ($K_i = 21.3 \ \mu M$) produce virtually complete inhibition [79].

Figure 1. Structural diagram showing OAT3 inhibitors of phenolic acids.

Previous studies have demonstrated that caffeic acid from coffee, fruits, and vegetables significantly inhibits OAT3 (IC $_{50}$ = 5.4 μ M) [71]. Yuichi et al. uncovered that caffeic acid inhibits substrate uptake by OAT3 in a concentration-dependent manner (IC $_{50}$ < 10 μ M) (Table 3) [80].

Wang et al. investigated the effects of nine compounds extracted from natural diets and herbs on hOAT3-mediated uptake. The results indicated that four of them significantly inhibited the transport of hOAT3, with 1,3-dicaffeoylquinic acid and ginkgolic acid (17:1)

Molecules **2023**, 28, 4740 9 of 16

exhibiting 41% inhibition, while a 30–35% reduction in hOAT3 mediated uptake was observed in response to 1,5-dicaffeoylquinic acid and ginkgolic acid (15:1) [72].

4.2. Flavonoids

In Chinese herbal medicine, *Scutellaria baicalensis* is used to treat inflammation and hypertension. Research by Xu found that three main bioactive substances in *Scutellaria baicalensis* exhibit OAT3 inhibition. Baicalin can effectively inhibit the influx of OAT3 substrate (IC $_{50} = 13.0 \, \mu M$), and baicalein (IC $_{50} = 2.4 \, \mu M$) and wogonin (IC $_{50} = 1.3 \, \mu M$) can also inhibit OAT3 significantly (Figure 2) [70].

Figure 2. Structural diagram showing OAT3 inhibitors of flavonoids.

Li et al. extracted 270 substances from Chinese herbal medicine to screen OAT3 inhibitors and found 10 flavonoids that can significantly inhibit OAT3 (IC $_{50}$ between 1.51 and 14.77 μ M). Among them, eugenin, calycosin, wogonin, luteolin, quercetol, and scullcapflavone II had noncompetitive inhibitory effects on OAT3. However, oroxylin A, viscidulin III, and 3,5,7,4'-Tetra-O-methyl-kaempferol competitively inhibit OAT3 [73].

Another study demonstrated that epicatechin may significantly inhibit substrate transport by hOAT3 (IC $_{50}$ > 50 μ M) [72].

4.3. Alkaloids

Zheng et al. demonstrated that camptothecin, 10-hydroxycamptothecin, 10-methoxycamptothecin (MCPT), and 9-nitrocamptothecin (Figure 3) could significantly inhibit OAT3-mediated substrate uptake (IC $_{50}$ < 10 μ M) [74].

Molecules **2023**, 28, 4740 10 of 16

Tryptanthrin, an alkaloid isolated from the medicinal indigo plant *Strobilanthes cusia*, was shown to be a potent OAT3 noncompetitive inhibitor (IC₅₀ = $0.93 \pm 0.22 \mu M$, Ki = $0.43 \mu M$) [81].

Figure 3. Structural diagram showing OAT3 inhibitors of alkaloids.

4.4. Anthraquinones

Ma et al. evaluated five anthraquinones isolated from rhubarb (Figure 4); among them, rhein, emodin, and aloeemodin significantly inhibited the uptake of 6-carboxyl fluorescein (6-CF, substrate of OAT3) via hOAT3, while chrysophanol and physicion showed slight inhibition [62].

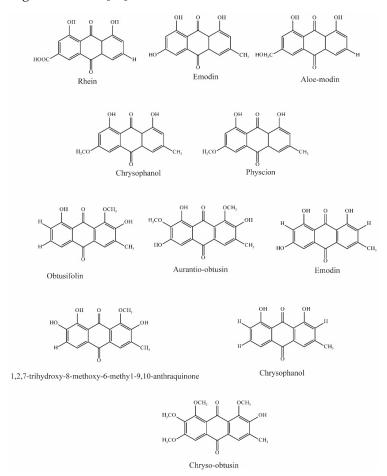


Figure 4. Structural diagram showing OAT3 inhibitors of anthraquinones.

Wang et al. evaluated 22 substances isolated from *Semen cassiae*, and 6 anthraquinones significantly (IC $_{50}$ < 10 μ M) inhibited OAT3-mediated transport. In vivo experimental

Molecules 2023, 28, 4740 11 of 16

results demonstrated that *Semen cassiae* extract can nearly eliminate the alterations in renal histology induced by mercury chloride in rats. With docking and validation of OAT3 inhibitors, it may become a drug for treating Hg-induced renal injury [75].

4.5. Phenols

As shown in Figure 5, two phenolic compounds, 9-Dehydroxyeurotinone and 2-O-Methyl-9-dehydroxyeurotinone from extracts of *Semen cassiae* are potent inhibitors of OAT3 (IC $_{50}$ < 10 μ M). In addition, 9-dihydroxyurotinone is a noncompetitive inhibitor of OAT3 [75].

Figure 5. Structural diagram showing OAT3 inhibitors of phenols.

Tatsuya et al. simultaneously injected 6-CF (1 mg/kg) and EGCG (60 mg/kg) intravenously in rats and detected the concentration of 6-CF in the blood and urine. Their results demonstrated that simultaneous injection elevated the plasma concentration of 6-CF by 8-fold after 1 h, while the AUC $_{0-1h}$ was significantly increased to 2.2-fold. In contrast, EGCG significantly reduced the CLr of 6-CF, indicating that EGCG can inhibit OAT3 [76].

Li et al. demonstrated that 2,4,6-Trichloro-3-methoxy-5-methylphenol extract from *Lilium maximowiczii* significantly competitively inhibited OAT3 ($IC_{50} = 3.93 \mu M$) [35].

4.6. Phenylpropanoids

Dioscorealide B is a phenylpropanoid compound extracted from *Dioscorea esculenta* that has been shown to be an effective noncompetitive inhibitor of OAT3 (IC $_{50}$ < 10 μ M). Another phenylpropanoid compound, wedelolactone, extracted from *Eclipta prostrata* L., is also an effective inhibitor of OAT3 (IC $_{50}$ < 10 μ M). Moreover, wedelolactone significantly increased serum AAI concentrations and ameliorated renal injuries in AAI-treated mice (Figure 6) [35].

Figure 6. Structural diagram showing OAT3 inhibitors of phenylpropanoids.

Molecules **2023**, 28, 4740 12 of 16

4.7. Terpenes

There is currently only one terpene compound, 3-Oxo-16 α - hydroxy-olean-12-en-28 β -oic acid, which was isolated from *Eclipta prostrata* L. It was identified as an OAT3 inhibitor with an IC₅₀ value of 8.05 μ M, inhibiting OAT3 in a competitive manner (Figure 7) [35].

Figure 7. Structural diagram showing OAT3 inhibitor of terpenes.

Li et al. demonstrated that ursolic acid, the major bioactive component in pomegranate, significantly inhibits transport mediated by OAT3 (IC₅₀ = $18.9 \mu M$) [77].

4.8. Phenanthrenoids

Li et al. identified 16 compounds from *Juncus effusus*. Among them, 7-carboxy-2-hydroxy-1-methyl-6-vinyl-9,10-dihydrophenanthrene, 7-carboxy-2-hydroxy-1-methyl-8-vinyl-9,10-dihydrophenanthrene, 6-carboxy-2-hydroxy-1-methyl-8-vinyl-9,10-dihydrophenanthrene, 7-carboxy-2-hydroxy-1-methyl-5-vinyl-9,10-dihy-drophenanthrene, and 4,4'-dihydroxy-3,3'-dimethoxybenzophenone were potent inhibitors of OAT3 (IC $_{50}$ < 5 μ M). Their structural formulas are shown in Figure 8 [78].

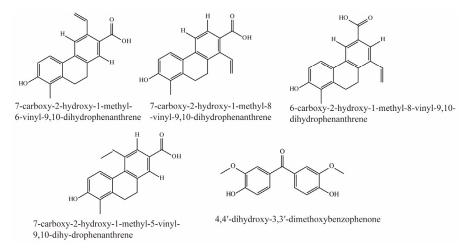


Figure 8. Structural diagram showing OAT3 inhibitors of phenanthrenoids.

4.9. Others

Lu et al. [61] evaluated the effects on OAT3 of 172 extracts and showed that 14 were strong inhibitors of OAT3 (IC $_{50}$ between 0.3 and 4.8 µg/mL). Generally speaking, the n-Butanol extract from plants is more effective. For example, the n-Butanol extract IC $_{50}$ value for *Anchusa azurea*, *Symphytum asperum*, and *Echium russicum* are 0.343, 0.406, 0.460, respectively.

With regards to the effects of natural bioactive compounds, most studies used the IC_{50} value as an indicator for OAT3 inhibition. However, depending on the potential differences in protein binding and tissue-specific concentrations, IC_{50} alone may not be sufficient to indicate that exposure to the active compound can cause effective effects. Therefore, further in vivo studies are needed to verify the efficacy of these natural bioactive compounds.

In conclusion, when these substances are administered alongside other drugs or herbs, they may change the pharmacokinetics of the drug or herbal elimination and have certain

Molecules **2023**, 28, 4740 13 of 16

clinical consequences, including reduced therapeutic efficacy or specific side effects caused by interactions. Therefore, caution should be exercised when administering multiple drugs involving the above substances.

5. Conclusions

OAT3-mediated DDIs/HDIs have both potential benefits and risks. On the one hand, they can enhance drug efficacy by prolonging its half-life, but on the other hand, they may lead to nephrotoxicity by increasing drug accumulation in the kidneys. Therefore, it is important to pay attention to the potential DDIs/HDIs mediated by OAT3 during drug/herb development and in clinical practice. In this regard, the identification of natural active OAT3 inhibitors, which are summarized into nine categories, can help predict and avoid potential interactions. A better understanding of the regulatory pathways involved can also lead to the development of new methods to alleviate or avoid DDIs/HDIs mediated by OAT3. While taking advantage of OAT3-mediated interactions can be beneficial in clinical treatment, it is also important to remain vigilant with respect to potential interactions with unreported drugs. The key role played by OAT3 in DDIs/HDIs has been confirmed, and this related review may also provide a reference for future clinical application of drugs as OAT3 substrates to avoid adverse effects caused by DDIs/HDIs. In addition, there is limited research on natural OAT3 inhibitors, with most studies limited to the in vitro level. The effects of and mechanisms of action for specific natural compounds on OTA3 inhibition in vivo require further research.

Author Contributions: Writing—original draft preparation, Y.C. and H.L.; writing—review and editing, Y.C., K.W. and Y.W.; funding acquisition, Y.W. and Y.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (grant number 31972127; 31471626) and the Natural Science Foundation of Rizhao (grant number 202117).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data are included in this article.

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- Muller, F.; Fromm, M.F. Transporter-mediated drug-drug interactions. Pharmacogenomics 2011, 12, 1017–1037. [CrossRef]
- 2. Burckhardt, G. Drug transport by Organic Anion Transporters (OATs). Pharmacol. Ther. 2012, 136, 106–130. [CrossRef] [PubMed]
- 3. Ivanyuk, A.; Livio, F.; Biollaz, J.; Buclin, T. Renal Drug Transporters and Drug Interactions. *Clin. Pharm.* **2017**, *56*, 825–892. [CrossRef]
- 4. Nigam, S.K. What do drug transporters really do? Nat. Rev. Drug Discov. 2015, 14, 29–44. [CrossRef]
- 5. International Transporter, C.; Giacomini, K.M.; Huang, S.M.; Tweedie, D.J.; Benet, L.Z.; Brouwer, K.L.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V.; et al. Membrane transporters in drug development. *Nat. Rev. Drug Discov.* **2010**, *9*, 215–236. [CrossRef]
- 6. Nigam, S.K. The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. *Annu. Rev. Pharmacol. Toxicol.* **2018**, *58*, 663–687. [CrossRef] [PubMed]
- 7. Zou, L.; Matsson, P.; Stecula, A.; Ngo, H.X.; Zur, A.A.; Giacomini, K.M. Drug Metabolites Potently Inhibit Renal Organic Anion Transporters, OAT1 and OAT3. *J. Pharm. Sci.* **2021**, *110*, 347–353. [CrossRef] [PubMed]
- 8. Sweet, D.H.; Miller, D.S.; Pritchard, J.B.; Fujiwara, Y.; Beier, D.R.; Nigam, S.K. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. *J. Biol. Chem.* **2002**, 277, 26934–26943. [CrossRef] [PubMed]
- 9. Hosoya, K.; Tachikawa, M. Roles of organic anion/cation transporters at the blood-brain and blood-cerebrospinal fluid barriers involving uremic toxins. *Clin. Exp. Nephrol.* **2011**, *15*, 478–485. [CrossRef]
- 10. Nigam, S.K.; Bush, K.T.; Martovetsky, G.; Ahn, S.Y.; Liu, H.C.; Richard, E.; Bhatnagar, V.; Wu, W. The organic anion transporter (OAT) family: A systems biology perspective. *Physiol. Rev.* **2015**, *95*, 83–123. [CrossRef]
- 11. Bush, K.T.; Wu, W.; Lun, C.; Nigam, S.K. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut-liver-kidney axis. *J. Biol. Chem.* **2017**, 292, 15789–15803. [CrossRef]

Molecules **2023**, 28, 4740 14 of 16

12. He, L.; Vasiliou, K.; Nebert, D.W. Analysis and update of the human solute carrier (SLC) gene superfamily. *Hum. Genom.* **2009**, 3, 195–206. [CrossRef]

- 13. Burckhardt, G.; Burckhardt, B.C. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. In *Drug Transporters*; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 29–104. [CrossRef]
- 14. Otani, N.; Ouchi, M.; Hayashi, K.; Jutabha, P.; Anzai, N. Roles of organic anion transporters (OATs) in renal proximal tubules and their localization. *Anat. Sci. Int.* **2017**, *92*, 200–206. [CrossRef]
- 15. Hosoya, K.; Makihara, A.; Tsujikawa, Y.; Yoneyama, D.; Mori, S.; Terasaki, T.; Akanuma, S.; Tomi, M.; Tachikawa, M. Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine. *J. Pharmacol. Exp. Ther.* **2009**, 329, 87–93. [CrossRef]
- 16. Mor, A.L.; Kaminski, T.W.; Karbowska, M.; Pawlak, D. New insight into organic anion transporters from the perspective of potentially important interactions and drugs toxicity. *J. Physiol. Pharmacol.* **2018**, *69*, 307–324. [CrossRef]
- 17. Astorga, B.; Wunz, T.M.; Morales, M.; Wright, S.H.; Pelis, R.M. Differences in the substrate binding regions of renal organic anion transporters 1 (OAT1) and 3 (OAT3). *Am. J. Physiol. Renal Physiol.* **2011**, *301*, F378–F386. [CrossRef] [PubMed]
- 18. Bischoff, A.; Bucher, M.; Gekle, M.; Sauvant, C. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3. *Physiol. Rep.* **2014**, *2*, e00243. [CrossRef] [PubMed]
- 19. Albrecht, E.; Waldenberger, M.; Krumsiek, J.; Evans, A.M.; Jeratsch, U.; Breier, M.; Adamski, J.; Koenig, W.; Zeilinger, S.; Fuchs, C.; et al. Metabolite profiling reveals new insights into the regulation of serum urate in humans. *Metabolomics* **2014**, 10, 141–151. [CrossRef] [PubMed]
- 20. Yang, L.; Wang, B.; Ma, L.; Fu, P. Traditional Chinese herbs and natural products in hyperuricemia-induced chronic kidney disease. *Front. Pharmacol.* **2022**, *13*, 971032. [CrossRef]
- 21. Zhang, J.; Wang, H.; Fan, Y.; Yu, Z.; You, G. Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. *Pharmacol. Ther.* **2021**, 217, 107647. [CrossRef]
- 22. Saito, H. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: Pharmacological and toxicological implications. *Pharmacol. Ther.* **2010**, 125, 79–91. [CrossRef]
- 23. Chung, S.; Kim, G.H. Urate Transporters in the Kidney: What Clinicians Need to Know. *Electrolyte Blood Press.* **2021**, *19*, 1–9. [CrossRef] [PubMed]
- 24. Wang, L.; Sweet, D.H. Renal organic anion transporters (SLC22 family): Expression, regulation, roles in toxicity, and impact on injury and disease. *AAPS J.* **2013**, *15*, 53–69. [CrossRef] [PubMed]
- 25. Voigt, N.; Ort, K.; Sossalla, S. Drug-drug interactions you should know! Dtsch. Med. Wochenschr. 2019, 144, 264–275. [CrossRef]
- 26. Parvez, M.K.; Rishi, V. Herb-Drug Interactions and Hepatotoxicity. Curr. Drug Metab. 2019, 20, 275–282. [CrossRef] [PubMed]
- 27. Huo, X.; Liu, K. Renal organic anion transporters in drug-drug interactions and diseases. *Eur. J. Pharm. Sci.* **2018**, 112, 8–19. [CrossRef]
- 28. Yuan, H.; Feng, B.; Yu, Y.; Chupka, J.; Zheng, J.Y.; Heath, T.G.; Bond, B.R. Renal organic anion transporter-mediated drug-drug interaction between gemcabene and quinapril. *J. Pharmacol. Exp. Ther.* **2009**, 330, 191–197. [CrossRef]
- 29. Ni, Y.; Duan, Z.; Zhou, D.; Liu, S.; Wan, H.; Gui, C.; Zhang, H. Identification of Structural Features for the Inhibition of OAT3-Mediated Uptake of Enalaprilat by Selected Drugs and Flavonoids. *Front. Pharmacol.* **2020**, *11*, 802. [CrossRef]
- 30. Nigam, S.K.; Wu, W.; Bush, K.T.; Hoenig, M.P.; Blantz, R.C.; Bhatnagar, V. Handling of Drugs, Metabolites, and Uremic Toxins by Kidney Proximal Tubule Drug Transporters. *Clin. J. Am. Soc. Nephrol.* **2015**, *10*, 2039–2049. [CrossRef]
- 31. Wu, W.; Jamshidi, N.; Eraly, S.A.; Liu, H.C.; Bush, K.T.; Palsson, B.O.; Nigam, S.K. Multispecific drug transporter Slc22a8 (Oat3) regulates multiple metabolic and signaling pathways. *Drug Metab. Dispos.* **2013**, *41*, 1825–1834. [CrossRef]
- 32. Zamek-Gliszczynski, M.J.; Chu, X.; Polli, J.W.; Paine, M.F.; Galetin, A. Understanding the transport properties of metabolites: Case studies and considerations for drug development. *Drug Metab. Dispos.* **2014**, 42, 650–664. [CrossRef] [PubMed]
- 33. Matsson, P.; Fenu, L.A.; Lundquist, P.; Wisniewski, J.R.; Kansy, M.; Artursson, P. Quantifying the impact of transporters on cellular drug permeability. *Trends Pharmacol. Sci.* **2015**, *36*, 255–262. [CrossRef]
- 34. Hagos, Y.; Wolff, N.A. Assessment of the role of renal organic anion transporters in drug-induced nephrotoxicity. *Toxins* **2010**, 2, 2055–2082. [CrossRef] [PubMed]
- 35. Zhu, Y.; Huo, X.; Wang, C.; Meng, Q.; Liu, Z.; Sun, H.; Tan, A.; Ma, X.; Peng, J.; Liu, K. Organic anion transporters also mediate the drug-drug interaction between imipenem and cilastatin. *Asian J. Pharm. Sci.* **2020**, *15*, 252–263. [CrossRef] [PubMed]
- 36. Huo, X.; Meng, Q.; Wang, C.; Wu, J.; Wang, C.; Zhu, Y.; Ma, X.; Sun, H.; Liu, K. Protective effect of cilastatin against diclofenacinduced nephrotoxicity through interaction with diclofenac acyl glucuronide via organic anion transporters. *Br. J. Pharmacol.* **2020**, 177, 1933–1948. [CrossRef] [PubMed]
- 37. Narumi, K.; Sato, Y.; Kobayashi, M.; Furugen, A.; Kasashi, K.; Yamada, T.; Teshima, T.; Iseki, K. Effects of proton pump inhibitors and famotidine on elimination of plasma methotrexate: Evaluation of drug-drug interactions mediated by organic anion transporter 3. *Biopharm. Drug Dispos.* **2017**, *38*, 501–508. [CrossRef] [PubMed]
- 38. Liu, Z.H.; Jia, Y.M.; Wang, C.Y.; Meng, Q.; Huo, X.K.; Sun, H.J.; Sun, P.Y.; Yang, X.B.; Ma, X.D.; Peng, J.Y.; et al. Organic anion transporters 1 (OAT1) and OAT3 meditated the protective effect of rhein on methotrexate-induced nephrotoxicity. *RSC Adv.* **2017**, 7, 25461–25468. [CrossRef]

Molecules **2023**, 28, 4740 15 of 16

39. Iwaki, M.; Shimada, H.; Irino, Y.; Take, M.; Egashira, S. Inhibition of Methotrexate Uptake via Organic Anion Transporters OAT1 and OAT3 by Glucuronides of Nonsteroidal Anti-inflammatory Drugs. *Biol. Pharm. Bull.* **2017**, *40*, 926–931. [CrossRef]

- 40. Wang, J.; Yuan, W.; Shen, Q.; Wu, Q.; Jiang, Z.; Wu, W.; Zhang, L.; Huang, X. The key role of organic anion transporter 3 in the drug-drug interaction between translast and methotrexate. *J. Biochem. Mol. Toxicol.* **2022**, *36*, e22983. [CrossRef]
- 41. Feng, Y.; Wang, C.; Liu, Q.; Meng, Q.; Huo, X.; Liu, Z.; Sun, P.; Yang, X.; Sun, H.; Qin, J.; et al. Bezafibrate-mizoribine interaction: Involvement of organic anion transporters OAT1 and OAT3 in rats. *Eur. J. Pharm. Sci.* **2016**, *81*, 119–128. [CrossRef]
- 42. Ye, J.; Liu, Q.; Wang, C.; Meng, Q.; Sun, H.; Peng, J.; Ma, X.; Liu, K. Benzylpenicillin inhibits the renal excretion of acyclovir by OAT1 and OAT3. *Pharmacol. Rep.* **2013**, *65*, 505–512. [CrossRef]
- 43. Wen, S.; Wang, C.; Duan, Y.; Huo, X.; Meng, Q.; Liu, Z.; Yang, S.; Zhu, Y.; Sun, H.; Ma, X.; et al. OAT1 and OAT3 also mediate the drug-drug interaction between piperacillin and tazobactam. *Int. J. Pharm.* **2018**, 537, 172–182. [CrossRef]
- 44. Karlowsky, J.A.; Lob, S.H.; Young, K.; Motyl, M.R.; Sahm, D.F. Activity of imipenem-relebactam against multidrug-resistant Pseudomonas aeruginosa from the United States-SMART 2015–2017. *Diagn. Microbiol. Infect. Dis.* **2019**, 95, 212–215. [CrossRef]
- 45. Wu, F.; Zhao, T.; Zhang, Y.; Wang, Y.; Liao, G.; Zhang, B.; Wang, C.; Tian, X.; Feng, L.; Fang, B.; et al. Beneficial herb-drug interaction of rhein in Jinhongtang and Imipenem/Cilastatin mediated by organic anion transporters. *J. Ethnopharmacol.* **2023**, 312, 116449. [CrossRef] [PubMed]
- 46. Huo, X.; Meng, Q.; Wang, C.; Zhu, Y.; Liu, Z.; Ma, X.; Ma, X.; Peng, J.; Sun, H.; Liu, K. Cilastatin protects against imipenem-induced nephrotoxicity via inhibition of renal organic anion transporters (OATs). *Acta Pharm. Sin. B* **2019**, *9*, 986–996. [CrossRef] [PubMed]
- 47. Zou, W.; Shi, B.; Zeng, T.; Zhang, Y.; Huang, B.; Ouyang, B.; Cai, Z.; Liu, M. Drug Transporters in the Kidney: Perspectives on Species Differences, Disease Status, and Molecular Docking. *Front. Pharmacol.* **2021**, *12*, 746208. [CrossRef] [PubMed]
- 48. Zhang, Y.; Han, Y.H.; Putluru, S.P.; Matta, M.K.; Kole, P.; Mandlekar, S.; Furlong, M.T.; Liu, T.; Iyer, R.A.; Marathe, P.; et al. Diclofenac and Its Acyl Glucuronide: Determination of In Vivo Exposure in Human Subjects and Characterization as Human Drug Transporter Substrates In Vitro. *Drug Metab. Dispos.* **2016**, *44*, 320–328. [CrossRef]
- 49. Brandoni, A.; Torres, A.M. Altered Renal Expression of Relevant Clinical Drug Transporters in Different Models of Acute Uremia in Rats. Role of Urea Levels. *Cell Physiol. Biochem.* **2015**, *36*, 907–916. [CrossRef]
- Uwai, Y.; Saito, H.; Inui, K. Interaction between methotrexate and nonsteroidal anti-inflammatory drugs in organic anion transporter. Eur. J. Pharmacol. 2000, 409, 31–36. [CrossRef]
- 51. El-Sheikh, A.A.; Greupink, R.; Wortelboer, H.M.; van den Heuvel, J.J.; Schreurs, M.; Koenderink, J.B.; Masereeuw, R.; Russel, F.G. Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4. *Transl. Res.* 2013, 162, 398–409. [CrossRef]
- 52. Zhou, Y.; Wang, J.; Zhang, D.; Liu, J.; Wu, Q.; Chen, J.; Tan, P.; Xing, B.; Han, Y.; Zhang, P.; et al. Mechanism of drug-induced liver injury and hepatoprotective effects of natural drugs. *Chin. Med.* **2021**, *16*, 135. [CrossRef] [PubMed]
- 53. Yang, B.; Xin, M.; Liang, S.; Xu, X.; Cai, T.; Dong, L.; Wang, C.; Wang, M.; Cui, Y.; Song, X.; et al. New insight into the management of renal excretion and hyperuricemia: Potential therapeutic strategies with natural bioactive compounds. *Front. Pharmacol.* **2022**, 13, 1026246. [CrossRef]
- 54. Endou, H. Recent advances in molecular mechanisms of nephrotoxicity. Toxicol. Lett. 1998, 102–103, 29–33. [CrossRef]
- 55. Agbabiaka, T.B.; Spencer, N.H.; Khanom, S.; Goodman, C. Prevalence of drug-herb and drug-supplement interactions in older adults: A cross-sectional survey. *Br. J. Gen. Pract.* **2018**, *68*, e711–e717. [CrossRef] [PubMed]
- 56. Fan, Y.; Huang, G. Preparation, Structural Analysis and Antioxidant Activity of Polysaccharides and Their Derivatives from Pueraria lobata. *Chem. Biodivers.* **2023**, *20*, e202201253. [CrossRef]
- 57. Liu, Q.; Wang, C.; Meng, Q.; Huo, X.; Sun, H.; Peng, J.; Ma, X.; Sun, P.; Liu, K. MDR1 and OAT1/OAT3 mediate the drug-drug interaction between puerarin and methotrexate. *Pharm. Res.* **2014**, *31*, 1120–1132. [CrossRef] [PubMed]
- 58. Wang, M.; Qi, H.; Li, J.; Xu, Y.; Zhang, H. Transmembrane transport of steviol glucuronide and its potential interaction with selected drugs and natural compounds. *Food Chem. Toxicol.* **2015**, *86*, 217–224. [CrossRef]
- 59. Zhou, D.; Xu, Y.; Wang, Y.; Li, J.; Gui, C.; Zhang, H. Interaction of Organic Anion Transporter 3-Mediated Uptake of Steviol Acyl Glucuronide, a Major Metabolite of Rebaudioside A, with Selected Drugs. *J. Agric. Food Chem.* **2020**, *68*, 1579–1587. [CrossRef]
- 60. Huo, X.; Meng, Q.; Wang, C.; Wu, J.; Zhu, Y.; Sun, P.; Ma, X.; Sun, H.; Liu, K. Targeting renal OATs to develop renal protective agent from traditional Chinese medicines: Protective effect of Apigenin against Imipenem-induced nephrotoxicity. *Phytother. Res.* **2020**, *34*, 2998–3010. [CrossRef]
- 61. Lu, H.; Lu, Z.; Li, X.; Li, G.; Qiao, Y.; Borris, R.P.; Zhang, Y. Interactions of 172 plant extracts with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8): A study on herb-drug interactions. *PeerJ* 2017, 5, e3333. [CrossRef]
- 62. Ma, L.; Zhao, L.; Hu, H.; Qin, Y.; Bian, Y.; Jiang, H.; Zhou, H.; Yu, L.; Zeng, S. Interaction of five anthraquinones from rhubarb with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8) and drug-drug interaction in rats. *J. Ethnopharmacol.* **2014**, 153, 864–871. [CrossRef] [PubMed]
- 63. Xu, Y.; Zhou, D.; Wang, Y.; Li, J.; Wang, M.; Lu, J.; Zhang, H. CYP2C8-mediated interaction between repaglinide and steviol acyl glucuronide: In vitro investigations using rat and human matrices and in vivo pharmacokinetic evaluation in rats. *Food Chem. Toxicol.* **2016**, 94, 138–147. [CrossRef]
- 64. Bao, Y.Y.; Zhou, S.H.; Fan, J.; Wang, Q.Y. Anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers. *Future Oncol.* **2013**, *9*, 1353–1364. [CrossRef] [PubMed]

Molecules **2023**, 28, 4740 16 of 16

65. van Herwerden, E.F.; Sussmuth, R.D. Sources for Leads: Natural Products and Libraries. *Handb. Exp. Pharmacol.* **2016**, 232, 91–123. [CrossRef] [PubMed]

- 66. Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. *Molecules* **2022**, 27, 349. [CrossRef]
- 67. Parvez, M.M.; Shin, H.J.; Jung, J.A.; Shin, J.G. Evaluation of para-Aminosalicylic Acid as a Substrate of Multiple Solute Carrier Uptake Transporters and Possible Drug Interactions with Nonsteroidal Anti-inflammatory Drugs In Vitro. *Antimicrob. Agents Chemother.* 2017, 61, e02392-16. [CrossRef]
- 68. Xiao, S.Q.; Wang, W.; Liu, Y. Research Progress on Extraction and Separation of Active Components from Loquat Leaves. Separations 2023, 10, 126. [CrossRef]
- 69. Hagos, F.T.; Daood, M.J.; Ocque, J.A.; Nolin, T.D.; Bayir, H.; Poloyac, S.M.; Kochanek, P.M.; Clark, R.S.; Empey, P.E. Probenecid, an organic anion transporter 1 and 3 inhibitor, increases plasma and brain exposure of N-acetylcysteine. *Xenobiotica* **2017**, *47*, 346–353. [CrossRef]
- 70. Xu, F.; Li, Z.; Zheng, J.; Gee Cheung, F.S.; Chan, T.; Zhu, L.; Zhuge, H.; Zhou, F. The inhibitory effects of the bioactive components isolated from Scutellaria baicalensis on the cellular uptake mediated by the essential solute carrier transporters. *J. Pharm. Sci.* **2013**, *102*, 4205–4211. [CrossRef]
- 71. Uwai, Y.; Ozeki, Y.; Isaka, T.; Honjo, H.; Iwamoto, K. Inhibitory effect of caffeic acid on human organic anion transporters hOAT1 and hOAT3: A novel candidate for food-drug interaction. *Drug Metab. Pharm.* **2011**, *26*, 486–493. [CrossRef]
- 72. Wang, L.; Sweet, D.H. Interaction of Natural Dietary and Herbal Anionic Compounds and Flavonoids with Human Organic Anion Transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Evid. Based Complement. Altern. Med. 2013, 2013, 612527. [CrossRef] [PubMed]
- 73. Li, C.; Wang, X.; Bi, Y.; Yu, H.; Wei, J.; Zhang, Y.; Han, L.; Zhang, Y. Potent Inhibitors of Organic Anion Transporters 1 and 3 From Natural Compounds and Their Protective Effect on Aristolochic Acid Nephropathy. *Toxicol. Sci.* 2020, 175, 279–291. [CrossRef]
- 74. Zheng, J.; Chan, T.; Zhu, L.; Yan, X.; Cao, Z.; Wang, Y.; Zhou, F. The inhibitory effects of camptothecin (CPT) and its derivatives on the substrate uptakes mediated by human solute carrier transporters (SLCs). *Xenobiotica* **2016**, *46*, 831–840. [CrossRef] [PubMed]
- 75. Wang, X.; Han, L.; Li, G.; Peng, W.; Gao, X.; Klaassen, C.D.; Fan, G.; Zhang, Y. From the Cover: Identification of Natural Products as Inhibitors of Human Organic Anion Transporters (OAT1 and OAT3) and Their Protective Effect on Mercury-Induced Toxicity. *Toxicol. Sci.* 2018, 161, 321–334. [CrossRef] [PubMed]
- 76. Kawasaki, T.; Kondo, M.; Hiramatsu, R.; Nabekura, T. (-)-Epigallocatechin-3-gallate Inhibits Human and Rat Renal Organic Anion Transporters. *ACS Omega* **2021**, *6*, 4347–4354. [CrossRef]
- 77. Li, Z.; Wang, K.; Zheng, J.; Cheung, F.S.; Chan, T.; Zhu, L.; Zhou, F. Interactions of the active components of Punica granatum (pomegranate) with the essential renal and hepatic human Solute Carrier transporters. *Pharm. Biol.* **2014**, *52*, 1510–1517. [CrossRef]
- 78. Li, X.; Qiao, Y.; Wang, X.; Ma, R.; Li, T.; Zhang, Y.; Borris, R.P. Dihydrophenanthrenes from Juncus effusus as Inhibitors of OAT1 and OAT3. *J. Nat. Prod.* **2019**, *82*, 832–839. [CrossRef]
- 79. Wang, L.; Sweet, D.H. Active Hydrophilic Components of the Medicinal Herb Salvia miltiorrhiza (Danshen) Potently Inhibit Organic Anion Transporters 1 (Slc22a6) and 3 (Slc22a8). Evid. Based Complement. Alternat. Med. 2012, 2012, 872458. [CrossRef]
- 80. Uwai, Y.; Kawasaki, T.; Nabekura, T. Caffeic acid inhibits organic anion transporters OAT1 and OAT3 in rat kidney. *Drug Metabol. Drug Interact.* **2013**, 28, 247–250. [CrossRef]
- 81. Shams, T.; Lu, X.; Zhu, L.; Zhou, F. The inhibitory effects of five alkaloids on the substrate transport mediated through human organic anion and cation transporters. *Xenobiotica* **2018**, *48*, 197–205. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.