
Citation: Tan, H.; Qi, Z.; Yu, Y.;

Zhang, X.; Xiang, Y.; Huang, J.; Xu, Z.;

Tang, D.; Chen, Z.; Wang, B. An

Efficient Synthesis of

Naphtho[2,3-b]furan-4,9-diones via

Visible-Light-Mediated [3+2]

Cycloaddition Reaction. Molecules

2023, 28, 4751. https://doi.org/

10.3390/molecules28124751

Academic Editor: Andrea Penoni

Received: 29 May 2023

Revised: 10 June 2023

Accepted: 10 June 2023

Published: 13 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

An Efficient Synthesis of Naphtho[2,3-b]furan-4,9-diones via
Visible-Light-Mediated [3+2] Cycloaddition Reaction
Hongbo Tan 1,2,3,*, Zehui Qi 1, Yuanhui Yu 1, Xu Zhang 1, Yuheng Xiang 1, Jingwen Huang 1, Zhigang Xu 1,
Dianyong Tang 1 , Zhongzhu Chen 1 and Bochu Wang 2

1 National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing
Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase
Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative
Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160,
China; 19122059273@163.com (Z.Q.); 18883085146@163.com (Y.Y.); 13637765110@163.com (X.Z.);
19946770877@163.com (Y.X.); hjw69328@163.com (J.H.); 18883138277@163.com (Z.C.)

2 Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering,
Chongqing University, Chongqing 400030, China; wangbc2000@126.com

3 Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
* Correspondence: 13167859296@163.com

Abstract: Naphtho[2,3-b]furan-4,9-dione is an important privileged structural motif which is present
in natural products, drugs, and drug candidates. Herein, visible-light-mediated [3+2] cycloaddition
reaction for the synthesis of naphtho[2,3-b]furan-4,9-diones and dihydronaphtho[2,3-b]furan-4,9-
diones has been developed. Under environmentally friendly conditions, a variety of title compounds
were delivered in good yields. This new protocol shows excellent regioselectivity and remarkable
functional group tolerance. This approach provides a powerful, green, efficient, and facile means to
expand the structural diversity of naphtho[2,3-b]furan-4,9-diones and dihydronaph-tho[2,3-b]furan-
4,9-diones as promising scaffolds for novel drug discovery.

Keywords: green chemistry; photochemistry; visible-light photocatalysis; [3+2] cycloaddition;
naphtho[2,3-b]furan-4,9-diones; dihydronaphtho[2,3-b]furan-4,9-diones

1. Introduction

As an important privileged structural motif, many naturally occurring naphtho[2,3-
b]furan-4,9-diones and synthetic analogs have been widely found to exhibit versatile
biological activities [1–9], in particular, antitumor [10], cytotoxic activity toward KB [11],
antiviral activity against the Japanese encephalitis virus [12], and Vero cells [13], an inhibitor
of human keratinocyte hyperproliferation [14], and other cytotoxic activities [15] (A−F,
Scheme 1). Because of the importance of furonaphthoquinones to pharmaceutical research
and drug discovery, considerable efforts have been focused on the synthetic approaches of
naphtho[2,3-b]furan-4,9-dione ring system. In recent years, different methodologies for the
synthesis of furonaphthoquinones have been reported (Scheme 2). Predominantly starting
from 2-hydroxy-1,4-naphthoquinones, the two-step procedures, such as multi-component
reaction (Scheme 2a) [16], thermal cyclization with enamines (Scheme 2b) [17], and CAN-
mediated oxidative cycloaddition with enol ether (Scheme 2c), [18] and one-step cascade ap-
proaches, such as transition-metal (Scheme 2d) [19] or strong-base (Scheme 2e) [20] or strong
oxidant (Scheme 2f) [21] promoted thermal cyclization methods have been developed. In
addition, other multifarious methods, such as Friedel−Crafts acylation/oxidation [22] and
bromine-mediated intramolecular cyclization [23], have also been developed. Although
significant progress has been made in the synthesis of naphtho[2,3-b]furan-4,9-diones,
novel green synthetic approaches with milder reaction conditions and enhanced reaction
efficiency are still desirable.
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Scheme 2. Synthetic approaches starting from 2-hydroxy-1,4-naphthoquinones: (a) multi-component
reaction, (b) thermal cyclization with enamines, (c) CAN-mediated oxidative cycloaddition with
enol ether, (d) transition-metal promoted thermal cyclization, (e) strong-base promoted thermal
cyclization, (f) strong oxidantpromoted thermal cyclization.
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To supplement our initial research in the synthesis of heterocyclic compounds by
green MCR approaches and photochemical protocols [24–27], herein, we report a concise,
efficient and green synthetic approach that affords naphtho[2,3-b]furan-4,9-diones via the
visible-light-mediated [3+2] cycloaddition reaction of 2-hydroxy-1,4-naphthoquinones (1)
and phenylacetylenes (2) under irradiation of blue LEDs (460 nm) in the absence of any
bases, metals, ligands, or other catalysts (Scheme 3).
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2. Results and Discussion

In the pilot experiment, 2-hydroxy-1,4-naphthoquinone (1) was selected as the model
substrate to react with phenylacetylene (2a) at ambient temperature under irradiation of
blue LEDs (460 nm). Product 3a was obtained in 58% yield without any catalyst after 6 h
irradiation in DCM (Table 1, entry 2). Furthermore, the use of different solvents, including
acetone, THF, and toluene, failed to give better results than DCM (Table 1, entries 4–12,
respectively). However, the yield was improved to 75% when a solvent of MeCN was used
with irradiation for 6 h. (Table 1, entry 14). Consequently, the optimized reaction conditions
turned out to be using MeCN as solvent under blue LEDs (460 nm) irradiation at ambient
temperature for 6 h.

Table 1. Optimization of the reaction conditions a.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 12 
 

 

with enol ether, (d) transition-metal promoted thermal cyclization, (e) strong-base promoted ther-
mal cyclization, (f) strong oxidantpromoted thermal cyclization. 

To supplement our initial research in the synthesis of heterocyclic compounds by 
green MCR approaches and photochemical protocols [24–27], herein, we report a concise, 
efficient and green synthetic approach that affords naphtho[2,3-b]furan-4,9-diones via the 
visible-light-mediated [3+2] cycloaddition reaction of 2-hydroxy-1,4-naphthoquinones (1) 
and phenylacetylenes (2) under irradiation of blue LEDs (460 nm) in the absence of any 
bases, metals, ligands, or other catalysts (Scheme 3). 

 
Scheme 3. Visible-light-mediated green synthesis of naphtho[2,3-b]furan-4,9-diones. 

2. Results and Discussion 
In the pilot experiment, 2-hydroxy-1,4-naphthoquinone (1) was selected as the model 

substrate to react with phenylacetylene (2a) at ambient temperature under irradiation of 
blue LEDs (460 nm). Product 3a was obtained in 58% yield without any catalyst after 6 h 
irradiation in DCM (Table 1, entry 2). Furthermore, the use of different solvents, including 
acetone, THF, and toluene, failed to give better results than DCM (Table 1, entries 4–12, 
respectively). However, the yield was improved to 75% when a solvent of MeCN was used 
with irradiation for 6 h. (Table 1, entry 14). Consequently, the optimized reaction condi-
tions turned out to be using MeCN as solvent under blue LEDs (460 nm) irradiation at 
ambient temperature for 6 h. 

Table 1. Optimization of the reaction conditions a. 

 

Entry Solvent Time Yield b 
1 DCM 3 h 34% 
2 DCM 6 h 58% 
3 DCM 9 h 49% 
4 Acetone 3 h 37% 
5 Acetone 6 h 49% 
6 Acetone 9 h 46% 
7 THF 3 h 44% 
8 THF 6 h 56% 
9 THF 9 h 51% 

10 Toluene 3 h 26% 
11 Toluene 6 h 38% 
12 Toluene 9 h 33% 

Entry Solvent Time Yield b

1 DCM 3 h 34%
2 DCM 6 h 58%
3 DCM 9 h 49%
4 Acetone 3 h 37%
5 Acetone 6 h 49%
6 Acetone 9 h 46%
7 THF 3 h 44%
8 THF 6 h 56%
9 THF 9 h 51%
10 Toluene 3 h 26%
11 Toluene 6 h 38%
12 Toluene 9 h 33%
13 MeCN 3 h 62%
14 MeCN 6 h 75%
15 MeCN 9 h 71%

a The reactions were carried out on a 1 mmol scale in 20 mL of solvent at room temperature. b Isolated yields.
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The structure of product 3a was confirmed firstly by means of proton and carbon NMR
spectra. It was noted that the naphtho[2,3-b]furan-4,9-dione 3a was obtained with complete
regioselectivity, with only 2-phenylnaphtho[2,3-b]furan-4,9-dione was obtained and no
isomer 3-phenylnaphtho[2,3-b]furan-4,9-dione being detectable or isolable (Scheme 3).
Furthermore, the configuration of the main compound 3a was unambiguously established
by single-crystal X-ray diffraction analysis (Figure 1), which indicated that the phenyl
group is at a C-2 position (green) instead of a C-3 position. With the optimized conditions
in hand (Table 1, entry 14), a series of substituted phenylacetylenes 2a−2k were evaluated
(Scheme 4). It was noticed that the analogous reactions of formyl and various halogens
substituted phenylacetylenes (2b–2e) with 2-hydroxy-1,4-naphthoquinone (1) successfully
generated the corresponding products 3b-3e in moderate yields, respectively. Subsequently,
we evaluated various alkyls substituted phenylacetylenes (2g–2j), such as Me, tBu, and
cyclohexyl, all of which favourably delivered the corresponding products 3g–3j in good
to very good yields, not showing significant differences in yield. Relatively speaking, an
electron-donating group on the benzene ring, as in the case of 3j, is more favorable than
the electron-withdrawing groups (CHO and halogens) of 3b–3e. Furthermore, other two
phenylacetylene derivatives, diphenylacetylene and propargylamine (2k and 2l), were
evaluated too, and corresponding naphtho[2,3-b]furan-4,9-diones 3k and 3l were obtained
swimmingly, as predicted, in good yields.
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Figure 1. X-ray structure of compound 3a (CCDC-2264554).

Next, to further examine the feasibility of this reaction, we examined the variation of
the styrene component toward the formation of dihydronaphtho[2,3-b]furan-4,9-diones (5)
(Scheme 5). With the above optimized conditions in hand (Table 1, entry 14), a series of
substituted styrenes 4a–4h were evaluated (Scheme 5). It was observed that the analogous
reactions of EDG or EWG substituted styrenes with 2-hydroxy-1,4-naphthoquinone (1)
smoothly produced the corresponding products 5a–5h in moderate yields, respectively.
Thereafter, we evaluated a heterocyclic olefin 2-vinylthiophene (4i), which was also found
to be effective, as demonstrated in the successful installation of 5i with a 74% yield. Overall,
different substituted phenylacetylene derivatives (2) and styrene derivatives (4) reacted
with 2-hydroxy-1,4-naphthoquinone (1) and generated corresponding cycloaddition prod-
ucts naphtho[2,3-b]furan-4,9-diones (3) and dihydronaphtho[2,3-b]furan-4,9-diones (5), not
showing significant differences in yield.
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To reveal the mechanism of this visible-light-mediated [3+2] cycloaddition reaction,
several control experiments were performed (Scheme 6). As expected, no reaction occurs
in the absence of light (Scheme 6b), which highlights the fact that the [3+2] cycloaddition
reaction needs to be mediated by visible light. Furthermore, in reaction c of Scheme 6,
TEMPO was added as a radical scavenger under standard conditions, and a trace amount
of the target product 3a was observed. Based on the control experimental results and the
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reported literature [28], a possible mechanism for this blue visible-light photocatalyzed
[3+2] cycloaddition reaction was proposed, as shown in Scheme 7. First, the irradiation of 1
in MeCN generates tautomeric excited triplets (A) and (B), which react with an alkyne (2)
to give a 1,5-biradical intermediate (C). Subsequently, an intramolecular [3+2] cyclization
of the intermediate C gives hydroquinone intermediate (D). Upon 1,3-hydrogen transfer,
the hydroquinone intermediate (E) is formed, and then, naphtho[2,3-b]furan-4,9-diones (3)
is produced by air oxidation of the hydroquinone by oxygen in the air. Similarly, the [3+2]
cycloaddition reaction of 2-hydroxy-1,4-naphthoquinone (1) with alkenes (4) leading to
product dihydronaphtho[2,3-b]furan-4,9-diones (5) may proceed in a manner parallel to
the [3+2] cycloaddition of alkynes and may also involve biradical intermediates.
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[3+2] cycloaddition reaction was proposed, as shown in Scheme 7. First, the irradiation of 
1 in MeCN generates tautomeric excited triplets (A) and (B), which react with an alkyne 
(2) to give a 1,5-biradical intermediate (C). Subsequently, an intramolecular [3+2] cycliza-
tion of the intermediate C gives hydroquinone intermediate (D). Upon 1,3-hydrogen 
transfer, the hydroquinone intermediate (E) is formed, and then, naphtho[2,3-b]furan-4,9-
diones (3) is produced by air oxidation of the hydroquinone by oxygen in the air. Similarly, 
the [3+2] cycloaddition reaction of 2-hydroxy-1,4-naphthoquinone (1) with alkenes (4) 
leading to product dihydronaphtho[2,3-b]furan-4,9-diones (5) may proceed in a manner 
parallel to the [3+2] cycloaddition of alkynes and may also involve biradical intermediates. 

 
Scheme 6. Control experiments for the photocatalyzed [3+2] cycloaddition reaction: (a) experiment 
was performed under standard conditions, (b) experiment was performed in the absence of light, 
(c) experiment was performed in the presence of TEMPO. 

 
Scheme 7. Proposed mechanism for the photocatalyzed [3+2] cycloaddition reaction.
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3. Materials and Methods
3.1. General Information

All starting materials were purchased from available commercial suppliers and used
without further purification. Thin layer chromatography (TLC) was performed on silica
gel GF254 plates. Melting points were obtained by using an XT-5A digital melting-point
apparatus and were uncorrected. The NMR spectra were recorded on a Bruker Avance
400 spectrometer at 400 MHz (1H NMR) and 100 MHz (13C NMR). HRMS analyses were
carried out on a Thermo Fisher Q-Exactive mass spectrometer, which was operated in
electrospray ionization (ESI) mode.

3.2. General Procedure for the Synthesis of Naphtho[2,3-b]furan-4,9-diones (3)

In a 25 mL tube, 2-hydroxy-1,4-naphthoquinone 1 (1.0 mmol) and alkyne 2 (1.0 mmol)
were dissolved in 20 mL of acetonitrile. The reaction mixture was under irradiation of
visible blue LEDs (460 nm) for 6.0 h. After completion (by TLC), the reaction mixture
was evaporated to dryness in a vacuo. The residue was purified by medium-pressure
chromatography (silica gel) using a mixed solvent of hexane and ethyl acetate (10–50% EA).
The products were characterized by 1H NMR, 13C NMR, and HRMS spectroscopy.

2-Phenylnaphtho[2,3-b]furan-4,9-dione (3a). Yellow solid, yield 75%, m.p. 244–247 ◦C; 1H
NMR (400 MHz, CDCl3): δ (ppm) 7.12 (s, 1H, Ar-H), 7.37–7.43 (m, 3H, Ar-H), 7.67–7.70 (m,
2H, Ar-H), 7.81–7.84 (m, 2H, Ar-H), 8.11–8.18 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3):
δ (ppm) 102.9, 125.6, 126.9, 127.0, 128.3, 130.3, 132.4, 132.9, 133.1, 133.6, 134.0, 151.6, 160.4,
173.1, 180.8; HRMS (ESI), m/z calcd 275.0803 for C18H11O3 [M + H]+, found 275.0807.

2-(4,9-Dioxo-4,9-dihydronaphtho[2,3-b]furan-2-yl)benzaldehyde (3b). Faint yellow solid, yield
64%, m.p. 188–191 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 7.28 (s, 1H, Ar-H), 7.64–7.68 (m,
1H, Ar-H), 7.74–7.82 (m, 3H, Ar-H), 7.89 (d, 1H, J = 7.6 Hz, Ar-H), 8.10 (dd, 1H, J = 7.6 Hz,
0.8 Hz, Ar-H), 8.24–8.29 (m, 2H, Ar-H), 10.44 (s, 1H, CHO); 13C NMR (100 MHz, CDCl3): δ
(ppm) 108.8, 127.1, 127.2, 129.4, 129.8, 130.4, 132.6, 132.6, 133.0, 133.9, 134.0, 134.1, 134.2,
152.8, 158.2, 173.3, 180.5, 190.6; HRMS (ESI), m/z calcd 303.0652 for C19H11O4 [M + H]+,
found 303.0655.

2-(2-Chlorophenyl)naphtho[2,3-b]furan-4,9-dione (3c). Orange-yellow, yield 56%, m.p. 191–
194 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 7.36–7.44 (m, 2H, Ar-H), 7.51–7.54 (m, 1H,
Ar-H), 7.68 (s, 1H, Ar-H), 7.76–7.78 (m, 2H, Ar-H), 8.09 (dd, 1H, J = 8.0 Hz, 2.0 Hz, Ar-H),
8.21–8.26 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 108.5, 126.9, 127.1, 127.3,
129.3, 130.7, 131.9, 132.0, 132.8, 133.2, 133.8, 134.0, 151.3, 156.4, 173.2, 180.7; HRMS (ESI),
m/z calcd 309.0313 for C18H10ClO3 [M + H]+, found 309.0317.

2-(4-Chlorophenyl)naphtho[2,3-b]furan-4,9-dione (3d). Orange solid, yield 67%, m.p. 209–
212 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 7.19 (s, 1H, Ar-H), 7.62 (d, 2H, J = 8.4 Hz, Ar-
H), 7.74–7.78 (m, 4H, Ar-H), 8.18–8.25 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm)
103.5, 124.7, 126.9, 126.9, 127.0, 127.2, 132.3, 132.4, 132.8, 133.1, 133.7, 134.1, 151.7, 159.2,
173.0, 180.6; HRMS (ESI), m/z calcd 309.0313 for C18H10ClO3 [M + H]+, found 309.0316.

2-(4-Bromophenyl)naphtho[2,3-b]furan-4,9-dione (3e). Yellow solid, yield 65%, m.p. 264–266 ◦C;
1H NMR (400 MHz, CDCl3): δ (ppm) 7.12 (s, 1H, Ar-H), 7.37–7.43 (m, 3H, Ar-H), 7.67–7.70
(m, 2H, Ar-H), 7.81–7.84 (m, 2H, Ar-H), 8.11–8.18 (m, 2H, Ar-H); 13C NMR (100 MHz,
CDCl3): δ (ppm) 55.6, 107.7, 111.2, 117.3, 121.0, 126.8, 126.9, 127.5, 131.2, 132.6, 133.0, 133.2,
133.5, 133.9, 150.5, 157.0, 173.0, 181.2; HRMS (ESI), m/z calcd 352.9808 for C18H10BrO3 [M +
H]+, found 352.9810.

2-(2-Methoxyphenyl)naphtho[2,3-b]furan-4,9-dione (3f). Yellow solid, yield 72%, m.p. 207–
209 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 4.03 (s, 3H, OCH3), 7.05 (d, 1H, J = 8.4 Hz,
Ar-H), 7.12 (t, 1H, J = 7.2 Hz, Ar-H), 7.41–7.45 (m, 1H, Ar-H), 7.52 (s, 1H, Ar-H), 7.75–7.78
(m, 2H, Ar-H), 8.13–8.27 (m, 3H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 103.4, 124.7,
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126.9, 127.0, 127.2, 132.3, 132.4, 132.8, 133.1, 133.6, 134.1, 151.7, 159.2, 173.1, 180.6; HRMS
(ESI), m/z calcd 305.0808 for C19H13O4 [M + H]+, found 305.0812.

2-(p-Tolyl)naphtho[2,3-b]furan-4,9-dione (3g). Faint yellow solid, yield 77%, m.p. 260–263 ◦C;
1H NMR (400 MHz, CDCl3): δ (ppm) 2.39 (s, 3H, CH3), 7.11 (s, 1H, Ar-H), 7.27 (d, 2H,
J = 7.6 Hz, Ar-H), 7.72–7.77 (m, 4H, Ar-H), 8.16–8.21 (m, 2H, Ar-H); 13C NMR (100 MHz,
CDCl3): δ (ppm) 21.5, 102.3, 125.5, 126.8, 126.9, 129.8, 132.5, 132.9, 133.1, 133.5, 133.9, 134.7,
160.6, 172.9, 180.9; HRMS (ESI), m/z calcd 289.0859 for C19H13O3 [M + H]+, found 289.0861.

2-(4-(Tert-butyl)phenyl)naphtho[2,3-b]furan-4,9-dione (3h). Faint yellow solid, yield 79%, m.p.
180–182 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 1.36 (s, 9H, C(CH3)3), 7.15 (s, 1H, Ar-
H), 7.50–7.52 (m, 2H, Ar-H), 7.73–7.84 (m, 4H, Ar-H), 8.18–8.25 (m, 2H, Ar-H); 13C NMR
(100 MHz, CDCl3): δ (ppm) 31.2, 35.0, 102.4, 125.4, 125.6, 126.1, 126.9, 126.9, 132.6, 133.0,
133.1, 133.5, 133.9, 151.4, 153.9, 160.9, 173.0, 180.9; HRMS (ESI), m/z calcd 331.1329 for
C22H19O3 [M + H]+, found 331.1333.

2-(4-Propylphenyl)naphtho[2,3-b]furan-4,9-dione (3i). Yellow solid, yield 80%, m.p. 166–169 ◦C;
1H NMR (400 MHz, CDCl3): δ (ppm) 0.99 (t, 3H, J = 7.6 Hz, CH3), 1.61–1.73 (m, 2H, CH2),
2.66 (t, 2H, J = 7.6 Hz, CH2), 7.16 (s, 1H, Ar-H), 7.31 (d, 2H, J = 8.0 Hz, Ar-H), 7.75–7.84 (m,
4H, Ar-H), 8.20–8.27 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 13.8, 24.3, 38.0,
102.3, 125.6, 126.8, 126.9, 126.9, 129.2, 132.6, 132.9, 145.5, 160.8, 172.9, 180.9; HRMS (ESI),
m/z calcd 317.1172 for C21H17O3 [M + H]+, found 317.1175.

2-(4-((1s,4r)-4-Propylcyclohexyl)phenyl)naphtho[2,3-b]furan-4,9-dione (3j). Yellow solid, yield
84%, m.p. 179–182 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 0.91 (t, 3H, J = 7.6 Hz, CH3),
1.05–1.08 (m, 2H, CH2), 1.22–1.25 (m, 2H, CH2), 1.32–1.37 (m, 3H, CH2, CH), 1.46–1.50 (m,
2H, CH2), 1.88–1.93 (m, 4H, CH2), 2.50–2.56 (m, 1H, CH), 7.14 (s, 1H, Ar-H), 7.33 (d, 2H,
J = 8.0 Hz, Ar-H), 7.74–7.76 (m, 2H, Ar-H), 7.81 (d, 2H, J = 8.0 Hz, Ar-H), 8.18–8.25 (m, 2H,
Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 14.4, 20.0, 33.4, 33.4, 37.0, 39.7, 44.6, 102.3,
125.6, 125.9, 126.9, 126.9, 127.6, 132.6, 133.0, 133.1, 133.5, 133.9, 150.7, 151.3, 160.8, 172.9,
180.9; HRMS (ESI), m/z calcd 399.1955 for C27H27O3 [M + H]+, found 399.1957.

2,3-Diphenylnaphtho[2,3-b]furan-4,9-dione (3k). Orange solid, yield 76%, m.p. 262–265 ◦C;
1H NMR (400 MHz, CDCl3): δ (ppm) 7.37–7.43 (m, 3H, Ar-H), 7.35–7.43 (m, 8H, Ar-H),
7.59–7.63 (m, 1H, Ar-H), 7.77 (d, 1H, J = 7.6 Hz, Ar-H), 8.00 (dd, 1H, J = 8.0 Hz, 0.4 Hz,
Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 121.8, 121.8, 122.4, 126.6, 128.4, 128.5, 128.6,
128.7, 128.9, 129.0, 129.1, 129.9, 130.2, 130.2, 130.4, 135.4, 151.5, 159.2, 174.5, 180.6; HRMS
(ESI), m/z calcd 351.1016 for C24H15O3 [M + H]+, found 351.1019.

2-(Aminomethyl)naphtho[2,3-b]furan-4,9-dione (3l). Faint yellow solid, yield 73%, m.p. 217–
219 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 3.71 (d, 2H, J = 2.4 Hz, CH2), 5.47 (s, 1H,
Ar-H), 7.56 (t, 1H, J = 7.2 Hz, Ar-H), 7.67 (t, 1H, J = 7.6 Hz, Ar-H), 7.80 (d, 1H, J = 7.6 Hz,
Ar-H), 7.85 (d, 1H, J = 7.6 Hz, Ar-H),; 13C NMR (100 MHz, CDCl3): δ (ppm) 29.1, 77.6, 107.6,
125.3, 125.5, 130.9, 132.1, 133.8, 135.8, 181.3; HRMS (ESI), m/z calcd 228.0655 for C13H10NO3
[M + H]+, found 228.0655.

3.3. General Procedure for the Synthesis of Dihydronaphtho[2,3-b]furan-4,9-diones (5)

In a 25 mL tube, 2-hydroxy-1,4-naphthoquinone 1 (1.0 mmol) and alkenes 4 (1.0 mmol)
were dissolved in 20 mL of acetonitrile. The reaction mixture was under irradiation of
visible blue LEDs (460 nm) for 6.0 h. After completion (by TLC), the reaction mixture
was evaporated to dryness in vacuo. The residue was purified by medium-pressure
chromatography (silica gel) using a mixed solvent of hexane and ethyl acetate (10–50% EA).
The products were characterized by 1H NMR, 13C NMR, and HRMS spectroscopy.

2-Phenyl-2,3-dihydronaphtho[2,3-b]furan-4,9-dione (5a). Yellow solid, yield 61%, m.p. 171–
173 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 3.27 (dd, 1H, J = 16.8 Hz, 8.4 Hz, CH2); 3.67
(dd, 1H, J = 17.2 Hz, 10.8 Hz, CH2); 6.00 (dd, 1H, J = 10.8 Hz, 8.8 Hz, CH); 7.39–7.41 (m,
4H, Ar-H), 7.46 (s, 1H, Ar-H), 7.69–7.74 (m, 2H, Ar-H), 8.08–8.12 (m, 2H, Ar-H); 13C NMR
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(100 MHz, CDCl3): δ (ppm) 35.3, 86.8, 123.9, 126.0, 126.1, 126.4, 128.9, 131.6, 133.1, 133.1,
134.2, 139.5, 159.9, 177.7, 182.2; HRMS (ESI), m/z calcd 277.0859 for C18H13O3 [M + H]+,
found 277.0861.

2-(3,4-Dimethoxyphenyl)-2,3-dihydronaphtho[2,3-b]furan-4,9-dione (5b). Faint yellow solid,
yield 65%, m.p. 177–179 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 3.28 (dd, 1H, J = 17.2 Hz,
9.2 Hz, CH2); 3.62 (dd, 1H, J = 17.2 Hz, 10.8 Hz, CH2); 3.88 (s, 6H, OCH3); 5.94 (dd, 1H,
J = 8.4 Hz, 7.2 Hz, CH); 6.87 (d, 1H, J = 8.0 Hz, Ar-H); 6.92–6.98 (m, 2H, Ar-H), 7.68–7.73
(m, 2H, Ar-H), 8.07–8.09 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 34.8, 56.0,
56.0, 87.1, 109.5, 111.2, 119.0, 123.9, 126.0, 126.3, 131.6, 133.0, 133.1, 134.2, 149.4, 149.7, 159.7,
177.7, 182.2; HRMS (ESI), m/z calcd 336.0992 for C20H16O5 [M + H]+, found 336.0995.

2-(4-(Tert-butyl)phenyl)-2,3-dihydronaphtho[2,3-b]furan-4,9-dione (5c). Yellow solid, yield 66%,
m.p. 166–169 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 1.32 (s, 9H, C(CH3)3), 3.30 (dd, 1H,
J = 17.2 Hz, 8.8 Hz, CH2); 3.64 (dd, 1H, J = 17.2 Hz, 10.8 Hz, CH2); 5.98 (dd, 1H, J = 10.4 Hz,
8.4 Hz, CH), 7.34 (d, 2H, J = 8.4 Hz, Ar-H), 7.42 (d, 2H, J = 8.4 Hz, Ar-H), 7.69–7.75 (m, 2H,
Ar-H), 8.01–8.12 (m, 2H, Ar-H),; 13C NMR (100 MHz, CDCl3): δ (ppm) 29.7, 31.3, 34.9, 86.8,
123.9, 124.0, 125.8, 125.9, 126.1, 126.4, 127.8, 131.7, 133.0, 134.2, 136.4, 152.2, 159.9, 182.2;
HRMS (ESI), m/z calcd 333.1485 for C22H21O3 [M + H]+, found 333.1488.

Methyl 4-(4,9-dioxo-2,3,4,9-tetrahydronaphtho[2,3-b]furan-2-yl)benzoate (5d). Yellow solid, yield
60%, m.p. 168–171 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 3.22 (dd, 1H, J = 17.2 Hz,
8.8 Hz, CH2); 3.72 (dd, 1H, J = 17.2 Hz, 10.8 Hz, CH2); 3.92 (s, 3H, OCH3), 6.05 (dd, 1H,
J = 10.8 Hz, 8.4 Hz, CH); 7.48 (d, 2H, J = 8.4 Hz, Ar-H), 7.68–7.76 (m, 2H, Ar-H), 8.06–8.11
(m, 4H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 35.5, 52.2, 85.8, 123.7, 125.7, 126.1,
126.4, 130.2, 131.6, 133.0, 133.2, 134.3, 144.5, 159.7, 166.5, 177.5, 182.0; HRMS (ESI), m/z
calcd 334.0841 for C20H14O5 [M + H]+, found 334.0844.

2-(4-Fluorophenyl)-2,3-dihydronaphtho[2,3-b]furan-4,9-dione (5e). Faint yellow solid, yield
57%, m.p. 175–177 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 3.23 (dd, 1H, J = 17.2 Hz,
8.4 Hz, CH2); 3.66 (dd, 1H, J = 17.2 Hz, 10.8 Hz, CH2); 5.98 (dd, 1H, J = 10.4 Hz, 8.8 Hz,
CH); 7.06–7.09 (m, 2H, Ar-H), 7.37–7.41 (m, 2H, Ar-H), 7.70–7.76 (m, 2H, Ar-H), 8.08–8.11
(m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 35.3, 86.1, 115.8, 116.0, 123.7, 126.1,
126.4, 127.9, 131.6, 133.0, 133.1, 134.3, 159.7, 177.7, 182.1; HRMS (ESI), m/z calcd 295.0765
for C18H12FO3 [M + H]+, found 295.0769.

2-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-2,3-dihydronaphtho[2,3-b]furan-4,9-
dione (5f). Yellow solid, yield 59%, m.p. 170–172 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm)
1.35 (s, 12H, CH3), 3.23 (dd, 1H, J = 17.2 Hz, 8.8 Hz, CH2); 3.67 (dd, 1H, J = 17.2 Hz,
10.8 Hz, CH2); 6.01 (dd, 1H, J = 10.8 Hz, 8.8 Hz, CH); 7.48 (d, 2H, J = 8.4 Hz, Ar-H),
7.69–7.75 (m, 2H, Ar-H), 7.84 (d, 2H, J = 8.4 Hz, Ar-H), 8.08–8.12 (m, 2H, Ar-H); 13C
NMR (100 MHz, CDCl3): δ (ppm) 24.9, 35.4, 84.0, 86.6, 123.9, 125.0, 126.1, 126.4, 131.6,
133.1, 133.1, 134.2, 135.4, 142.5, 159.9, 177.7, 182.2; HRMS (ESI), m/z calcd 403.1711 for
C24H24BO5 [M + H]+, found 403.1713.

2,2-Diphenyl-2,3-dihydronaphtho[2,3-b]furan-4,9-dione (5g). Faint yellow solid, yield 72%,
m.p. 171–173 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 3.92 (s, 2H, CH2), 7.28–7.36 (m, 6H,
Ar-H), 7.45–7.48 (m, 4H, Ar-H), 7.64–7.68 (m, 2H, Ar-H), 8.02–8.09 (m, 2H, Ar-H); 13C NMR
(100 MHz, CDCl3): δ (ppm) 41.6, 96.4, 123.7, 125.8, 126.0, 126.4, 128.2, 128.6, 131.7, 133.0,
134.1, 143.6, 158.6, 177.6, 182.2; HRMS (ESI), m/z calcd 353.1172 for C24H17O3 [M + H]+,
found 353.1175.

3-Acetyl-2-phenyl-2,3-dihydronaphtho[2,3-b]furan-4,9-dione (5h). Yellow solid, yield 66%, m.p.
195–197 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 2.54 (s, 3H, CH3), 4.52 (d, 1H, J = 7.2 Hz,
CH); 6.27 (d, 1H, J = 6.8 Hz, CH); 7.31–7.36 (m, 2H, Ar-H), 7.37–7.40 (m, 3H, Ar-H), 7.72–7.76
(m, 2H, Ar-H), 8.07–8.13 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 31.0, 60.9,
88.8, 122.0, 126.0, 125.6, 126.3, 126.6, 129.1, 129.3, 131.5, 132.9, 133.4, 134.5, 138.5, 160.4, 177.5,
181.7; HRMS (ESI), m/z calcd 319.0965 for C20H15O4 [M + H]+, found 319.0968.
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2-(Thiophen-2-yl)-2,3-dihydronaphtho[2,3-b]furan-4,9-dione (5i). Orange solid, yield 74%, m.p.
176–179 ◦C; 1H NMR (400 MHz, CDCl3): δ (ppm) 3.42 (dd, 1H, J = 17.6 Hz, 8.8 Hz, CH2);
3.67 (dd, 1H, J = 17.2 Hz, 10.8 Hz, CH2); 6.00 (dd, 1H, J = 10.0 Hz, 8.4 Hz, CH); 7.01–7.04
(m, 1H, Ar-H), 7.19–7.20 (m, 1H, Ar-H), 7.36–7.38 (m, 1H, Ar-H), 7.68–7.75 (m, 2H, Ar-H),
8.07–8.10 (m, 2H, Ar-H); 13C NMR (100 MHz, CDCl3): δ (ppm) 35.3, 82.5, 123.6, 126.1, 126.4,
127.0, 127.1, 131.6, 133.0, 133.1, 134.2, 141.7, 159.1, 177.6, 182.1; HRMS (ESI), m/z calcd
283.0423 for C16H11O3S [M + H]+, found 283.0425.

The results of the X-ray diffraction analysis for compounds 3a and 5d were deposited
with the Cambridge Crystallographic Data Centre (CCDC 2264554 and 2264555).

4. Conclusions

In conclusion, visible-light-mediated [3+2] cycloaddition reactions of 2-hydroxy-1,4-
naphthoquinones and alkynes and alkenes under irradiation of blue LEDs (460 nm) in
the absence of any bases, metals, ligands, or other catalysts have been demonstrated.
Under environmentally friendly conditions, a variety of naphtho[2,3-b]furan-4,9-diones
and dihydronaphtho[2,3-b]furan-4,9-diones were delivered within 6 h in comparable or
sometimes even (slightly) better yields than those presented in the literature. This green
and efficient protocol shows excellent regioselectivity and remarkable functional group
tolerance. This work provides a powerful, green, efficient, and facile means to expand the
structural diversity of naphtho[2,3-b]furan-4,9-diones and dihydronaphtho[2,3-b]furan-4,9-
diones as promising scaffolds for novel drug discovery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28124751/s1, including 1H, 13C NMR, and ORTEP
spectra of [3+2] cycloaddition products naphtho[2,3-b]furan-4,9-diones (3) and dihydronaphtho[2,3-
b]furan-4,9-diones (5).
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