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Abstract: Heterocyclic compounds are significant lead drug candidates based on their various
structure–activity relationships (SAR), and their use in pharmaceutics is constantly developing.
Benzimidazole (BnZ) is synthesized by a condensation reaction between benzene and imidazole. The
BnZ structure consists of two nitrogen atoms embedded in a five-membered imide ring which is
fused with a benzene ring. This review examines the conventional and green synthesis of metallic
and non-metallic BnZ and their derivatives, which have several potential SARs, along with a wide
range of pharmacological properties, including anti-cancer, anti-inflammatory, anti-microbial, anti-
tubercular, and anti-protozoal properties. These compounds have been proven by pharmacological
investigations to be efficient against different strains of microbes. Therefore, in this review, the
structural variations of BnZ are listed along with various applications, predominantly related to their
biological activities.

Keywords: benzimidazole; heterocyclic derivatives; biological activity

1. Introduction

With regard to BnZ’s limiting efficacy and its extensive advantageous reactive proper-
ties for quantitative and qualitative relations, BnZ derivatives have remarkable beneficial
components due to their diverse bioactivity and therapeutic uses [1]. Due to the impor-
tance of BnZ, it was decided to synthesize a number of novel BnZ-based derivatives with
additional heteroatoms and investigate their probable bioactivity. BnZ exhibits a significant
electron-rich heterocyclic pharmacophore in its structure which is beneficial for drug design
and development [2]. Investigation of the melting point (m.p.) of several BnZ derivatives
showed that addition of a substituent to 1-position leads to a reduction in m.p. The pres-
ence of two nitrogen atoms in the imide group generally causes polarity, resulting in its
solubility in organic solvents and greater solubility in polar solvents. The solubility in
non-polar solvents may improve with the addition of non-polar substituents to the BnZ
ring in various positions. In contrast, the addition of polar groups to BnZ causes it to
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become more soluble in polar liquids. Over 300 ◦C, the BnZ derivatives’ structures are
unaltered. BnZ is soluble in dilute acid and has less basicity than imidazole. Additionally,
BnZ has sufficient acidity to dissolve in aqueous (aq.) alkali for the synthesis of N-metallic
compounds. Similar to imidazole, BnZ’s acidic character shows ion stabilization by reso-
nance. In a weak basic solution such as K2CO3, BnZ is more acidic with improved solubility
in an aqueous medium [3]. Thus, the addition of substituents to the BnZ ring at different
positions can significantly impact properties such as melting point and solubility in organic
and polar solvents. However, BnZ shows significant electronic transition because of its het-
erocyclic pharmacophore, which contributes to its pharmacological potential. Furthermore,
its unique characteristics enable structural modulation of BnZ and its derivatives, which
allows for solubility in dilute acid. Therefore, by exploring novel BnZ-based structural
variations with additional heteroatoms, further insights into their bioactivity can be gained.
These factors highlight the importance of BnZ derivatives and their potential applications.

2. Synthesis of Benzimidazole

BnZ is a bicyclic heterocyclic aromatic compound which is made up of benzene and
imidazole rings bonded at 4- and 5-positions. Ortho-phenylene derivatives of BnZ such as
methyl-o-phenylenediamine are known as benzoglyoxalines. Recently, several researchers
have described various techniques for synthesizing 1- or 1, 2-disubstituted BnZ derivatives
by employing various moieties in various reaction environments [4]. Initially, BnZ was
synthesized as a 2,5-dimethyl-benzimidazole (III) in 1872 by Hoebrecker [5] through the
reduction of 2-nitro-4-methylacetanilide (I) using tin (Sn) and hydrochloric acid (HCl),
followed by the dehydration of 2-nitro-4-methylacetanilide(II), as explained in Scheme 1.
Details regarding the specific reaction conditions are provided elsewhere [6].

Molecules 2023, 28, x FOR PEER REVIEW 2 of 26 
 

 

ring in various positions. In contrast, the addition of polar groups to BnZ causes it to be-
come more soluble in polar liquids. Over 300 °C, the BnZ derivatives’ structures are unal-
tered. BnZ is soluble in dilute acid and has less basicity than imidazole. Additionally, BnZ 
has sufficient acidity to dissolve in aqueous (aq.) alkali for the synthesis of N-metallic 
compounds. Similar to imidazole, BnZ’s acidic character shows ion stabilization by reso-
nance. In a weak basic solution such as K2CO3, BnZ is more acidic with improved solubil-
ity in an aqueous medium [3]. Thus, the addition of substituents to the BnZ ring at differ-
ent positions can significantly impact properties such as melting point and solubility in 
organic and polar solvents. However, BnZ shows significant electronic transition because 
of its heterocyclic pharmacophore, which contributes to its pharmacological potential. 
Furthermore, its unique characteristics enable structural modulation of BnZ and its deriv-
atives, which allows for solubility in dilute acid. Therefore, by exploring novel BnZ-based 
structural variations with additional heteroatoms, further insights into their bioactivity 
can be gained. These factors highlight the importance of BnZ derivatives and their poten-
tial applications. 

2. Synthesis of Benzimidazole 
BnZ is a bicyclic heterocyclic aromatic compound which is made up of benzene and 

imidazole rings bonded at 4- and 5-positions. Ortho-phenylene derivatives of BnZ such as 
methyl-o-phenylenediamine are known as benzoglyoxalines. Recently, several research-
ers have described various techniques for synthesizing 1- or 1, 2-disubstituted BnZ deriv-
atives by employing various moieties in various reaction environments [4]. Initially, BnZ 
was synthesized as a 2,5-dimethyl-benzimidazole (III) in 1872 by Hoebrecker [5] through 
the reduction of 2-nitro-4-methylacetanilide (I) using tin (Sn) and hydrochloric acid (HCl), 
followed by the dehydration of 2-nitro-4-methylacetanilide(II), as explained in Scheme 1. 
Details regarding the specific reaction conditions are provided elsewhere [6]. 

 
Scheme 1. Hoebrecker method. 

BnZ synthesis proceeds by choosing benzene derivatives that have nitrogen-contain-
ing functionalities at ortho positions to each other, e.g., orthophenylenediamine (Figure 
1). It is evident that the starting material must have the functionality to enable the prepa-
ration of BnZ using a variety of techniques. Ortho-phenylenediamine and its derivatives 
undergo a condensation process with carboxylic acids or aldehydes. Therefore, several 
BnZ synthesis processes have been categorized based on the basic nature of o-phenylene-
diamine [7]. The direct condensation of orthophenylenediamine with nitriles has much 
use in the synthesis of benzimidazoles as well as in the manufacture of benzimidazole-
related agricultural and pharmaceuticals chemicals because nitriles are easily accessible 
due to their broad supply as commodity chemicals [8]. 

 
Figure 1. Orthophenylenediamine compound. 

Scheme 1. Hoebrecker method.

BnZ synthesis proceeds by choosing benzene derivatives that have nitrogen-containing
functionalities at ortho positions to each other, e.g., orthophenylenediamine (Figure 1). It is
evident that the starting material must have the functionality to enable the preparation of
BnZ using a variety of techniques. Ortho-phenylenediamine and its derivatives undergo a
condensation process with carboxylic acids or aldehydes. Therefore, several BnZ synthesis
processes have been categorized based on the basic nature of o-phenylenediamine [7]. The
direct condensation of orthophenylenediamine with nitriles has much use in the synthesis
of benzimidazoles as well as in the manufacture of benzimidazole-related agricultural and
pharmaceuticals chemicals because nitriles are easily accessible due to their broad supply
as commodity chemicals [8].
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The most typical synthetic approach for producing several BnZ derivatives is known
as Phillip’s method, which entails the condensation of o-phenylenediamine (IV) with
carboxylic acids (V) itself or its derivatives, and which involves heating the reagents in the
presence of concentrated HCl (Scheme 2).
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A number of new modified BnZ derivatives have been synthesized, having a furan
substituent at the second position and an alkyl/aryl substituent at the first position, which
further was tested by an in silico study [9].

Several synthetic tactics have been successfully implemented, which are described
in Figure 2 for the production of BnZ [A]. A combination of ortho-substituted aniline [B]
and bifunctional o-esters produced a BnZ derivative in 2012, according to Bastug et al. [10].
Utilizing heterocyclic aromatic compounds like H2NC6H4NO2 with CH2O2, iron powder,
and ammonium chloride, proceeded by the one pot reduction of NO2 followed by imida-
zole cyclisation [C] into bicyclic 2-H BnZ, was one method used by Hanan et al. (2010) [11].
Yang et al. developed a new method for the one-step synthesis of 2-substituted -N-H,
-N-alkyl, and -N-aryl BnZ derivatives in the presence of aldehydes and sodium dithionite
through the reduction of o-nitroanilines [D], succeeding in synthesizing BnZ [12]. Another
approach for the synthesis of 2-substituted BnZ was published by Cui et al. in 2012 for pro-
ducing 1,2-phenylenediamines and triacyloxyborane intermediates, which were produced
via the interaction between carboxylic acids [E] and borane-THF, to yield 2-substituted
BnZ [13]. N-methyl-1,2-phenylenediamine, sodium hydride, and carbonitriles [F] were
used as the starting ingredients by Sluiter and Christoffers in 2009 [14]. Wray synthe-
sized [1] 1H-indazoles from common arylamino oximes in 2010 in the presence of several
bases, but the synthesis of BnZ was only improved by one base, i.e., triethylamine [G] [15].
Cuprous oxide, potassium carbonate, (CH3NH)2C2H4, and water [H] were used by Peng
et al. to synthesize cost-effective and environmentally friendly BnZ [16]. Ortho-bromoaryl
compounds are cyclized intramolecularly using cuprous oxide nanoparticles like a catalyst
[I]. Saha et al. were able to synthesize substituted BnZ and 2-aminobenzimidazole. The cat-
alyst might also be restored without altering its activity, in addition, with this method [17].
CuI/l-proline was applied by Diao et al. as a catalyst to condense 2-iodoacetanilides and
aqueous ammonia for cyclization to create substituted 1H-BnZ by applying heat under
acidic circumstances [18]. Kim et al. produced BnZ derivatives by condensation as well
as the formation of C-N bonds. Sodium azide, RCHO [J] and 2-haloanilines are active as
initial ingredients in one-pot synthesis [19]. Tao Zhang initially presented a model for the
reaction of BnZ with [K] (10 mmol) and benzonitrile (NC-R) in a mixture of 20 mL PPA
(polyphosphoric acid) and 10 mL H3PO4 under microwave irradiation (MC 275 W, 15 min),
with a yield of 92% [20].

Several synthetic tactics have been successfully implemented, which are described
in Figure 2 for the production of BnZ [A]. A combination of ortho-substituted aniline [B]
and bifunctional o-esters produced a BnZ derivative in 2012, according to Bastug et al. [10].
Utilizing heterocyclic aromatic compounds like H2NC6H4NO2 with CH2O2, iron powder,
and ammonium chloride, proceeded by the one pot reduction of NO2 followed by imidazole
cyclisation [C] into bicyclic 2-H BnZ, was one method used by Hanan et al. (2010) [11]. Yang
et al. developed a new method for the one-step synthesis of 2-substituted -N-H, -N-alkyl,
and -N-aryl BnZ derivatives in the presence of aldehydes and sodium dithionite through
the reduction of o-nitroanilines [D], succeeding in synthesizing BnZ [12]. Another approach
for the synthesis of 2-substituted BnZ was published by Cui et al. in 2012 for producing
1,2-phenylenediamines and triacyloxyborane intermediates, which were produced via the
interaction between carboxylic acids [E] and borane-THF, to yield 2-substituted BnZ [13].
N-methyl-1,2-phenylenediamine, sodium hydride, and carbonitriles [F] were used as the
starting ingredients by Sluiter and Christoffers in 2009 [14]. Wray synthesized [1] 1H-
indazoles from common arylamino oximes in 2010 in the presence of several bases, but the
synthesis of BnZ was only improved by one base, i.e., triethylamine [G] [15]. Cuprous oxide,
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potassium carbonate, (CH3NH)2C2H4, and water [H] were used by Peng et al. to synthesize
cost-effective and environmentally friendly BnZ [16]. Ortho-bromoaryl compounds are
cyclized intramolecularly using cuprous oxide nanoparticles like a catalyst [I]. Saha et al.
were able to synthesize substituted BnZ and 2-aminobenzimidazole. The catalyst might
also be restored without altering its activity, in addition, with this method [17]. CuI/l-
proline was applied by Diao et al. as a catalyst to condense 2-iodoacetanilides and aqueous
ammonia for cyclization to create substituted 1H-BnZ by applying heat under acidic
circumstances [18]. Kim et al. produced BnZ derivatives by condensation as well as
the formation of C-N bonds. Sodium azide, RCHO [J] and 2-haloanilines are active as
initial ingredients in one-pot synthesis [19]. Tao Zhang initially presented a model for the
reaction of BnZ with [K] (10 mmol) and benzonitrile (NC-R) in a mixture of 20 mL PPA
(polyphosphoric acid) and 10 mL H3PO4 under microwave irradiation (MC 275 W, 15 min),
with a yield of 92% [20].
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3. Metal-Catalyzed Derivatives of Benzimidazole

Metal catalysts have a few features, including the fact that they can be recovered.
Catalysts have surface efficiency for catalyzing reactions and further increase overall re-
action rate. Indium [III]triflate was used as a reusable catalyst by De et al., in 2006 which
described the synthesis of MSBs (IX-a) with high yields. The synthesis of 2-substituted
BnZ without solvent occurs by the fusion of o-phenylenediamine (VII) with aldehydes
[where R = benzaldehyde (VIII)] utilizing a catalytic quantity of In(OTf)3. VII and VIII
were combined in a 1:1.1 molar ratio and heated up to atmospheric temperature for
30 minutes to perform the reactions. They also used various catalysts, such as Copper
[II]triflate, Lutetium[III]trifluoromethanesulfonate, Indium[III]trifluoromethanesulfonate
and La(OTf)3. Among these, the most recently used catalysts gave the highest output. The
process is depicted in Scheme 3 [21].
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Fu et al., described the method for the synthesis of 2-substituted 1H-BnZ (XIII a-b) in
dimethyl sulfoxide using cesium carbonate as a base and 10 mol % Copper[I] bromide as
a catalyst. The optimized yield of 2-substituted 1H-BnZ (XIII-c) using this approach was
obtained by coupling, hydrolysis, and the intra-molecular cyclization of o-haloacetanilide
(X) derivatives with amidines (XI). o-iodoacetanilide is required for the N-arylation of
amidines at 60 ◦C to yield XIII-a, whereas o-bromoacetanilide required a high temperature
of 90 ◦C to yield XIII-b and XIII-c., which is displayed in Scheme 4 [22].
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In 2013, Nguyen et al. described a process using iron-sulfur as a catalyst to synthesize
the BnZ derivative (XVI). For the synthesis of XVI, 4-picoline (XV) and substituted o-
nitroanilines (XIV) were used as reactants, and the reaction was carried out at 150 ◦C under
solvent-free conditions using an equimolecular amount of an Fe/S catalyst. Fe/S played
a crucial role for promoting the cyclization process. Pyridine and quinoline derivatives
possess a methyl group at the 2- or 4-position (XV) and are coupled with XIV to form
derivative MSBs (XVI a-c), where all other suitable substrates in the reaction along with
o-nitroaniline synthesize the corresponding benzimidazole products XVI-a-b with yields
of 83-91%, if o-Nitroanilines have electron-donating and withdrawing substituents on
its benzene ring. There are methyl groups of picolines in elemental Chloride (XVI-c), as
depicted in Scheme 5 [23].
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Sun et al. (2017) described a procedure for the feasible condensation of phenylhy-
drosilicon, o-phenylenediamine (XVII) and dimethylformamide (XVIII). According to this
scheme, hydrosilicon is utilized as a reaction catalyst, activating the carbonyl group of
di-methylformamide to make an Si–O bond at 120 ◦C for 12 hours. An amine-group in
o-phenylenediamine was coupled with activated DMF-hydrosilicon mixture, and further
undergoes cyclization, succeeding in the excellent synthesis of BnZ (XIX), as shown in
Scheme 6 [24].
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Scheme 6. Cyclization of o-phenylenediamines with DMF.

A dehydrogenation reaction, using cobalt-pincer complexes (XXII) as a catalyst, was
carried out at 150 ◦C for 24 hours by Milstein et al. (2017). Primary alcohol (XXI) and
o-phenylenediamine (XX) were combined to synthesize the 2-MSB derivative (XXIII)
(Scheme 7) [25].
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4. Metal-Free Catalyzed Derivatives of BnZ

A one-pot synthesis with an exceptional yield was reported by Nguyen et al. in 2012
under dry and metal-free conditions to obtain XXX–XXXIV. In this method, the reaction
was completed with trialkyl amine (triethylamine) (XXVIII), benzene-1,2-diamine (XXIX),
and derivatives of phenylmethanamines (XXIV–XXVII). Sulphur atoms helped to proceed
the reaction for generating C–N bonds, and the researchers succeeded in its cyclization
(Scheme 8) [26].
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Scheme 8. Cross–coupling reaction of o–phenylenediamines with aliphatic amines (S).

Shanmugam et al. described the efficient metal-free synthesis of aryl-substituted BnZ
(XXXVII-a) through the use of acetic acid as a catalyst under microwave heating conditions.
This synthesis involves the reaction of o-phenylenediamine (XXXVI) with a substituted
aromatic aldehyde (XXXV). Shown in Scheme 9, the reaction is entirely free from metals, as
well as using environmentally friendly green solvent [27].
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Scheme 9. Thermal/microwave-assisted BnZ synthesis.

Liu et al. described a metal–free process for the preparation of N-substituted BnZ
(XL) under microwave irradiation. The improved yield is produced when fluoro-aryl
formamidines (XXXVIII) with primary amines (XXXIX) undergo an SN–Ar reaction [28].
(Scheme 10).
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Scheme 10. Synthesis of BnZ under metal-free conditions with amines.

Mostafavi et al. published a method in 2018 for BnZ biosynthesis. Hexamethyldisi-
lazane regulated the reaction at 120 ◦C, and transformed o-phenylenediamine (XLI) and
N,N-Dimethylformamide into BnZ. There is no need for any acid, transition metal, or fluid
for proceeding the reaction to achieve good yields XLIII (Scheme 11) [29].
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Scheme 11. Metal-free BnZ biosynthesis.

In the presence of 5ml of dilute hydrochloric acid solution, o-phenylenediamine (XLV)
and Ibuprofen (XLIV) are used to produce a BnZ variant XLVI. Further, the mixture was
heated in a water bath at 100 ◦C for two hours with the slow addition of 10% sodium
hydroxide, as shown in Scheme 12. The researchers discovered that BnZs have very strong
antimicrobial properties [30].
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5. Green Synthesis of Benzimidazole

Most chemical organizations or industries, including pharma-enterprises, are now
coping with mild ecological issues, like excessive solvent, chemicals waste, and the use
of catalysts in the production of BnZ. Green synthesis mediates solvent-free production
by using environmentally friendly catalysts like C3H6O3 or B(OH)3 under microwave
condition, which is an effective way to get rid of these issues.

XLVII and aldehydes (XLVIII) undergo cyclic condensation in an equal amount of a
bioabsorbable solution like ethanol and lactic acid for 4-6 hours at normal temperature.
Song et al. (2016) disclosed the one-pot synthesis of disubstituted-benzimidazole (DSBs)
(XLIX-a) derivatives. The optimized result is obtained in lactic acid (Scheme 13) [31].
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Khunt et al. (2014) described a strategy for the preparation of a BnZ candidate (LII)
via the interaction of 1,2-diaminobenzene (L) with aldehydes (LI) by use of an ecofriendly
solvent such as polyethylene glycol (PEG)-400. Above 80–85 ◦C, the process produces the
highest yield of PEG-400. The targeted molecule was produced through a new unique
synthetic pathway, in which glycerol/water is used (Scheme 14) [32].
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Scheme 14. Synthesis of BnZ in solution instead of PEG.

Kathirvelan et al. discovered the one-pot synthesis of a monosubstituted benzimida-
zole (MSB) (LV a-b) scaffold in 2013 (Scheme 15) by the coupling of benzene-1,2-diamine
(LIII) and aldehydes (LIV) using an ecofriendly feasible catalyst, i.e., ammonium chloride
in ethanol at 80–90 ◦C [33].
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Kidwai et al. (2010) described a unique approach using ceric ammonium nitrate (CAN)
catalyst for the synthesis of BnZ scaffold (LVIII) in a polyethylene glycol at 50 ◦C for 2 h.
Benzene-1,2-diamine (LVI) combined with aldehyde (LVII) in CAN catalyst tends to lead to
exceptional PEG yields (LVIII-a) (Scheme 16) [34].
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Miyaura coupling reactions [38]. Earlier surveys demonstrate that the BnZ scaffold is cru-
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dium, Th, and U from a watery medium [48]. PBI-based technologies exist in Charlotte, 
North Carolina, used in the pioneering industrial applications for firefighter safety in Eu-
rope, United States, and Middle East, with 32 years of expertise. PBI materials are famous 
for their tested protection against heat and flames, and shield the firemen in a various fire 
services [49]. 
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Azarifar et al. (2010) suggested an eco-friendly microwave-assisted reflux reaction
of o-phenylenediamine (LIX) with an RCHO derivative (LX) at 80 ◦C for the synthesis of
MSBs and DSBs (LXI, LXII) (Scheme 17) [35].
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6. Multifaceted Efficacy of Benzimidazole

The significance of chiral BnZs has led to a relatively new sector of drug discovery for
various biological applications; therefore, its synthesis has received special attention [36].
Additionally, chiral BnZs have been utilized as organocatalysts for the enantioselective
chlorination, Diels–Alder reactions, asymmetric Michael additions, and asymmetric aldol-
type reactions. However, Rh- and Pd-based BnZ complexes are synthesized using a
Mizoroki–Heck reaction [37]. The reduction processes is performed using Suzuki–Miyaura
coupling reactions [38]. Earlier surveys demonstrate that the BnZ scaffold is crucial for its
therapeutic usage, in addition to as optical sensors for use in nanomaterial properties [39].
These properties can apparently benefit the numerous sensing devices, as well as its
cost effectiveness and operational flexibility; therefore, it seems to have specific usage
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in medicine, geology, and industrial innovation (Figure 3). Another use of BnZ and its
derivatives is in supra-molecular assemblies with intriguing features for various uses, such
as thermostable polymers, adsorbent materials, nano-containers, and liquid crystals for
electronic conduction. For the last few years, it has been seen in a lot of research in the area
of polybenzimidazole (PBI) derivatives, such as for solid electrolytes of fuel cells [40–44],
fiber [45], thin coatings [46], advanced protective coverings [47], or to remove palladium,
Th, and U from a watery medium [48]. PBI-based technologies exist in Charlotte, North
Carolina, used in the pioneering industrial applications for firefighter safety in Europe,
United States, and Middle East, with 32 years of expertise. PBI materials are famous for
their tested protection against heat and flames, and shield the firemen in a various fire
services [49].
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Another use of poly-Benzimidazole, as a combined matrix, shows extraordinarily
strong evaporation property due to its high porosity and selectivity [50]. Additionally, this
is the most recommended material for another photonic technology in organic frames.
This has led to the study of a number of small molecules of BnZ derivatives like 2-
mercaptobenzimidazole, 2-phenylbenzimidazole, and 2-hydroxybenzimidazole, with ex-
cellent non-linear optical (NLO) properties [51] and highly intricate structures [52]. Benlate
and Carbendazim both used BnZ as fungicides with minimal cytotoxicity at lower con-
centrations and no risk for carcinogenic or genetic effects [53]. There is documentation
regarding the utilization of BnZ as fertilizers and insecticides, which also specifies their
uses [54]. BnZ is an organic molecule, recently highlighted as a corrosion inhibitor for
copper, iron, or zinc in acidic circumstances [55,56] because of its properties of BnZ-bonded
electron donating and accepting substituents. Scientists have demonstrated that BnZ is a
flexible and necessary chromophore for natural dyes, with excellent photophysical, electro-
chemical, and photovoltaic characteristics [57]. Benzimidazol-2-one is highly considerable
because of its durability and light-resistance properties. It has been used for the last three
decades to produce a wide variety of subtleties in water for color painting and electro-
photographic toner [58]. BnZ has proven to be a vital molecule in organic light-emitting
devices (OLEDs), with excellent phosphorescence, thermal features, and morphological
stabilities [59]. For innovative research with a new mode of action, heterocyclic compounds
are frequently used. Aryl aziridines is a heterocyclic compound [60] and BnZ derivatives
play a significant role because of the vast range of biological actions they exhibit. According
to a literature survey, BnZ and its derivatives have physiological and pharmacological
activities. These are able to treat a broad range of disorders, particularly epilepsy, diabetes,
and pregnancy. Such derivatives exhibit a variety of bioactivities like antiallergic [61],
antihistamine [62], anti-ulcerative, antiproliferative [63], antioxidant [64,65], antifungal,
antibacterial, antitubercular [66], antihypertensive [67], anti-inflammatory, analgesic, an-
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tiamoebic [68], antitumor [69–71], antimalarial [72], and anti-kinase activity [73]. Several
BnZ derivatives are also being investigated as cholinesterase inhibitors and anti-parasitic
drugs [74–77].

7. Benzimidazole-Derivative-Based Biological Activities

Numerous derivatives have been explored in individual investigations, for various
therapeutic treatments. These include the antiemetic, KB-R-6933; the anti-cancer, Bendas-
tumide; the antiviral, l Hoechst 33342; the antihistamine, Clemizole; the anti-ulcerative,
Omeprazole; and the anti-hypertensive, Telmisartan. Additionally, Thiabendazol, an anti-
fungal agent, has been employed to examine its effects (Figure 4) [78].
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8. Anti-Cancer Activity

Cancer is responsible for the second-largest number of disease-related deaths in the
world. Anticancer drugs must harm cancer-affected cells but not ordinary cells, and act ef-
fectively against cancer. For the last few years, anti-cancer medicines have shown relatively
significant damage to both normal and tumor cells. Cancer patients are discontinuing
chemotherapy because of toxicities and the side effects of anticancer medicines. It should
be observed that the investigation of novel anticancer medicines with a high efficacy and
minimal side effects are both an urgent necessity and a challenging problem.
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In Figure 5, Zhe Wang et al. evaluated the anti-cancer activities of several chrysin-based
BnZ derivatives. Entity 1 (7-(4-(2-methyl-1H-benzo[d]imidazol-1-yl)butoxy)-4-methylene-2-
phenyl-4H-chromen-5-ol) was synthesized and exhibited the most anti-proliferative effects
on MCF cell lines, having an IC50 of 25.72 ± 3.95 µM. Flow cytometry results showed that
drug 1 accelerates MCF cell-line apoptosis in a daily dosage manner. When the anti-cancer
activity of compound 1 was examined in tumor-suffering mice, the resultant tumor growth
was shown to be suppressed [79]. Goreti Ribeiro Morais et al. [80] freshly developed BnZ
variants with Na3AlF6 and R-OH substituents, which has been further tested for anti-
cancer activity. “Drug 2” (4-(1H-benzo[d]imidazol-2-yl)-N-(2-fluoroethyl)-N-methylaniline)
was demonstrated to be the most significant anticancer drug. The BnZ nucleus was
substituted by a 2-fluoroethyl string at the aniline nitrogen, which demonstrated acceptable
cytotoxicity against U87 glioblastoma cell lines (IC50 = 45.2 ± 13.0 µM) compared to DOX
(IC50 = 16.6 ± 2.5 µM), i.e., a generic anticancer medicine [81].
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Unique 5-fluoro-benzimidazole-4-carboxamide analogues were synthesized by Wang
et al. One highly effective anti-cancerous drug, 3 (5-fluoro-2-(4-(piperazin-1-yl)phenyl)-1H-
benzo[d]imidazole-4-carboxamide), was identified to have an IC50 of 7.4 µM, with good cell
inhibition against HCT116 cell lines [82]. The antiproliferative effect of BnZ derivatives was
investigated by Valentina Onnis et al. All investigated cell lines were precisely suppressed
in terms of tumor growth by the hydrazones 4a ((E)-N′-(2-hydroxy-4-methoxybenzylidene)-
1H-benzo[d]imidazole-2-carbohydrazide) and 4b ((E)-N1-((2-Hydroxynaphthalen-1-yl)-
methylene)-1H-benzo[d]imidazole-2-carbohydrazide). A growth inhibitor was tested
against cell lines of human T-lymphoblastic leukemia for entity 4a and 4b, with an IC50 of
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0.98 ± 0.02 and 1.0 ± 0.01 µM, and human pancreatic carcinoma, with an IC50 of 6.3 ± 3.2
and 7.9 ± 0.3 (µM), and murine leukemia, with an IC50 of 1.6 ± 0.9 and 2.9 ± 1.3 µM,
respectively. They noticed that mixing BnZ with hydrazone enhanced its pharmacological
activities, producing a new featured chemical compound that has strong antiproliferative
properties [83]. Recently, the anti-cancer effect of BnZ derivatives was investigated by Ul-
viye Acar Cevik et al. Besides these examined chemicals, they also noticed that compounds
5a (4-(6-chloro-1H-benzo[d]imidazol-2-yl)-N′-(2,4-dichlorobenzylidene)benzohydrazide)
and 5b (4-(6-chloro-1H-benzo[d]imidazol-2-yl)-N′-(4-nitrobenzylidene)benzohydrazide)
had noticeable cytotoxicity. Compounds 5a and 5b, when applied to human-lung-cell-
line adenocarcinoma, have an IC50 of 0.0316 µM. Compared with the classical anticancer
medicine cisplatin (IC50 0.045 and 0.052 µM), 5c (4-(6-chloro-1H-benzo[d]imidazol-2-yl)-
N′-(2-methoxybenzylidene)benzohydrazide) showed significant cytotoxicity, with an IC50
of around 0.06 µM [84]. Elancheran et al. synthesized and examined a number of oxo-
bBnZ derivatives for their ability to inhibit androgen receptor functions. They had ef-
fective actions against PC-3, with an IC50 of 12.19 ± 0.25 µM, and on LNCaP, with an
IC50 of 11.2 ± 0.13 µM. Also, cytotoxicity effects were actively expressed by compound
6 (4-(3-(3-(4-fluorophenyl)-2-oxopropyl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)-2-
(trifluoromethyl)benzonitrile) [85].

9. Anti-Inflammatory and Analgesic Activity

Inflammation is an important characteristic of the body’s immunological system. The
common early symptoms and indications are heat, redness, pain, swelling, and the lack
of ability of the immune system. Since non-steroidal anti-inflammatory drugs (NSAIDs)
naturally have the capacity to block cyclooxygenases (COXs), they are frequently employed
to reduce inflammation. The synthesis of prostaglandins from arachidonic acid is mediated
by cyclooxygenase. Medical scientists have investigated a number of analgesic and anti-
inflammatory drugs using BnZ bases [86–88], as shown in Figure 6.

One of the BnZ-derivative compounds 7 (2-(4-methoxybenzyl)-1H-benzo[d]imidazole)
was investigated by Boggu et al., and had the greatest nuclear factor (κB) at its optimized
concentration, with an IC50 of 1.7 µM. An additional synthesis for the possible suppression
of activity was examined in unsubstituted BnZ, which had only one carbon spacer and a
methoxy group towards the phenyl ring. By refluxing 2-aminobenzenethiol using xylene
in the presences of 4-methoxyphenylacetic acid, white solid benzothiazole with a yield
of 48% and a melting point 60–62 ◦C was produced [89]. Khanapur et al. synthesized
BnZ derivatives, and examined their effect. Remarkable anti-inflammatory effect was
shown by compound 8 (N-(1H-benzo[d]imidazol-2-yl)-2-((4-oxo-2-phenyl-4H-chromen-
7-yl)oxy)acetamide). Several heterocyclic moieties were bonded with an acetamide that
enhanced their activities, with substituted ester at the 7th position. It was revealed that
bicyclic moieties are more effective with substituents at the five and six position through-
out heterocyclic molecules. Cyclooxygenase (COX) inhibition at 10 µM for COX 2 was
85.91 ± 0.23%, with an IC50 of 3.11 ± 0.41 µM, and for COX 1 was 25.91 ± 0.77%, with
an IC50 of 57.89 ± 0.19 µM. Using column chromatography (petroleum ether/EtOAc), the
residue was purified as a colorless solid with a yield of 87% [90]. Only mild inhibitory
action was demonstrated by the BnZ derivative 9 (2-(2-aminoethyl)-1-(3-aminopropyl)-
1H-benzo[d]imidazole-5-carboxamide), which was synthesized by Kim et al., who chose a
3-aminopropyl group as the substituent at the N1 antagonist to Janus kinase 1 (JAK1), with
an IC50 of 6.1 and 11.3 µM, and Janus kinase 3 (JAK3), with an IC50 of 1.5 and 1.8 µM [91].
Entity 10 (1-(2-chlorobenzyl)-2-(1-(4-isobutylphenyl)ethyl)-1H-benzo[d]imidazole) is a col-
lection of BnZ derivatives synthesized by Banoglu et al., with an isobutyl-phenylethyl
profile of ibuprofen, which noticeably reduced cellular 5-Lipoxygenase (5-LO), with an
IC50 value of 0.31 µM, but was considerably less effective on free-cell 5-LO, which was
hardly inhibited by 23% at 10 µM [92]. However, its inhibitory effects towards human con-
centrative nucleoside transporter 2 (hCNT2) and rat concentrative nucleoside transporter 2
(rCNT2) was greatly improved after substituting adenine, upon which the resultant BnZ
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product 11 ((2S,3R,4S,5R)-2-(2-(((2-(4-hydroxybutoxy)-[1,1′-biphenyl]-4-yl)methyl)amino)-
1H-benzo[d]imidazol-1-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol) was formed. So,
the most effective hCNT2 inhibitor examined was the semi-synthetic derivative of BnZ 11,
with an IC50 value of 0.062 µM. This was also effective as an rCNT2 inhibitor, with an IC50
of 1.5 µM. Similarly, compound 11 had a substantially greater solubility of 0.120 mg/mL
than others compound in Japanese Pharmacopoeia second fluid (JP2) at 37 ◦C. Compound
11, in combination with purine, greatly reduced the exaggerated uric acid in plasma at
a lower dose of 1.0 mg/kg, which likely seemed to be an in vitro improvement. This
compound, at a greater dose (10 mg/kg), did not significantly improve the suppressive
effect [93]. Shin et al. assessed the PI3Kd-specific inhibition activity of BnZ deriva-
tives. Substance 12((S)-4-amino-6-((1-(6-fluoro-1-(pyridin-3-yl)-1H-benzo[d]imidazol-2-
yl)ethyl)amino)pyrimidine-5-carbonitrile) showed strong PI3Kd activity. At day 10, plasma
was collected after examining exposures of different doses of compound 12. Unbound
substances were determined and shown via LC-MS/MS with respect to human blood.
Unbound phospho-AKT (pAKT) had an IC50 of 1.0 µM, phosphoinositide 3-kinase delta
(PI3Kδ) had an IC50 of 3.1 µM in an in vitro study in mice, and PI3Kβ showed an IC50 of
650 µM in an in vitro study in humans. A pyridine ring was substituted by the phenyl
moiety, which produced high oral bioavailability [94].
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10. Anti-Microbial Activity

Since they are frequently exploited against microbial infections, certain bacteria have
developed resistance to conventional antibiotics. A variety of antibacterial compounds
are synthesized to treat and cure microbial illnesses [95]. The flexible and most primary
compound is known as a BnZ, which has a wide spectrum of biological actions, most
especially for anti-bacterial [96] and antifungal [97,98] properties. Figure 7 depicts BnZ-
containing anti-microbial compounds.
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Several BnZ-based variants were developed by Kumar et al., with potential efficiency
in antibacterial properties. Entity 13 (2-methoxy-N-(6-(piperidin-1-yl)-2-(thiophen-2-yl)-
1H-benzo[d]imidazol-5-yl)benzamide) was evaluated and shown to provide excellent
anti-microbial activity. Select compounds have also been assessed for their ex vivo high
potency against F. tularensis Live vaccine strain (LVS). An ex vivo study of the leading
drug 13 against the F. tularensis LVS of RAW macrophages was performed. In addition to
13, the dose-dependent leading compound significantly decreased the extent of bacterial
action at concentrations of 10 and 50 g/mL. Its MIC90 (µg/mL) against F. tularensis LVS
was 1.6 and its cytotoxicity (µg/mL) on Vero cells was >200 µg/mL with compound 13.
Entity 13 is a white solid with a melting point 165–167 ◦C [99]. Zhang et al. produced
variants of BnZ and examined its capability to fight against bacteria. Further, the most
effective component was discovered to be 14 (N-((1H-benzo[d]imidazol-2-yl)methyl)-N-
(2,4-difluorobenzyl)-3,5-bis(trifluoromethyl)aniline). This had the strongest antibacterial
effect against the relevant microorganisms at a dose range from 8–32 mg/mL. Particularly,
it had an MIC of 8 mg/mL against the S. aureus, B. subtilis, and M. luteus species, as
well as 32 mg/mL against E. coli. Component 14 has a yellow solid color with a melting
point of 137–138 ◦C [100]. Sharma et al. developed a number of BnZ and benzothiazole
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equivalents and tested their effectiveness against microorganisms. Resultantly, compound
15 ((E)-2-(2-(benzo[d][1,3]dioxol-5-yl)vinyl)-1H-benzo[d]imidazole) demonstrated excel-
lent efficacy against. P. aeruginosa, having corresponding MIC values of 0.01 mM and
3.78 mM. In order to produce novel Schiff bases with heterogeneous complexes using
microwaves, methylenedioxy cinnamaldehyde was used as a raw material. Structure activ-
ity relationship (SAR) investigations revealed that it increased a broad range of activities
compared to the species under study [101]. Lam et al. synthesized several 7-(benzimidazol-
1-yl)-2,4-diamino-quinazoline derivatives, and their capability for antibacterial action was
assessed. Further, a new investigation of drug 16 (6-(5,6-dimethyl-2-(thiazol-2-yl)-1H-
benzo[d]imidazol-1-yl)-5,6-dihydropyrimidine-2,4-diamine) showed it to be the most ef-
fective against S. aureus, with an MIC of 0.015 mg/mL. A discovered BnZ variant with
a thiazol-2-yl group at the 2-position proved to be an incredibly efficient and specific
drug. Great potency and selectivity were both exhibited by a thiazol-2-yl group in the BnZ
against S. aureus dihydrofolate reductase DHFR Ki = 0.002 µM. Compound 16 is white
solid in its physical state [102]. Compound 17 (5-bromo-2-((4-nitrophenoxy)methyl)-1-((2-
nitrophenyl)sulfonyl)-1H-benzo[d]imidazole) had quite good efficacy against the tested
fungi and bacteria. This included notable efficacy against the M. tuberculosis H37Rv strain.
Additionally, substance 17 was found to be effective against the M. tuberculosis H37Rv
strain at around 0.625 µg/mL, but was comparably less efficient against M. smegmatis, re-
quiring a concentration of 1.25 µg/mL (ATCC 19420). It is notable that the drug had either
an improved or consistent action against M. fortuitum with reference to the drug isoniazid
(ATCC 19542) at 6.25 µg/mL. It has also shown promising efficacy against the MDR-TB
strain. Inhibitory action of Drug 17 against S. aureus and K. pneumonia was demonstrated
at an MIC ratio of 4 µg/mL. However, its antibacterial potential has already been shown,
so these are only the preliminary screening data. More research has been performed to
determine the action mechanism [103]. Compound 18 (3-(4-methoxyphenyl)-4-((2-nitro-
1H-benzo[d]imidazol-1-yl)methyl)-1,2,3-oxadiazol-3-ium-5-olate) is a different class of BnZ
derivatives and was synthesized by Savaliya et al. They discovered its exceptional ef-
fectiveness of inhibitory action against Gram-positive bacteria S. aureus, with an MIC of
40 µg/mL and inhibition zone (IZ) of 21 µg/mL. Furthermore, its inhibitory action against
B. subtilis, with an MIC value of 300 µg/mL and an IZ of 12 µg/mL, was noted. It also
demonstrated inhibitory action against Gram-negative bacteria E. coli, with an MIC value
200 µg/mL and IZ of 14 µg/mL, and against P. aeruginosa, with an MIC value 500 µg/mL
and an IZ of 10 µg/mL. According to the SAR study for all compounds, sydnone with
4-nitro benzothiazole had good efficacy against all bacterial and fungal strains [104].

11. Anti-Tubercular Activity

The 2nd second-leading reason for mortality globally is tuberculosis (TB), a bacterial
infection, and illness due to mycobacterium tuberculosis (M. tuberculosis) [105]. The
present scenario to treat TB is DOTS (directly observed therapy short-course), which
is the prescription of a mixture of three to four medicines for between six and twelve
months [106,107]. These contain isoniazid, and ethambutol, etc. Figure 8 depicts a variety of
anti-tubercular drugs with BnZ nuclei. A number of compounds of phenoxy alkyl-BnZ were
discovered by Chandrasekera et al. A minimal inhibitory concentration (MIC)99 is needed
to totally suppress M. tuberculosis formations in aqueous culture. Entity 19 (4-bromo-N-(3-
(2-ethyl-1H-benzo[d]imidazol-1-yl)propyl)-3-methylaniline) was discovered to be the most
effective compound, having an MIC of 52 µM [108]. Yoon et al. discovered a number of BnZ-
based derivatives, including compounds examined in in vitro assay, that were modified
from the microdilution of AlamarBlue (AB) complex 20 (ethyl-1-(3-(2-oxopyrrolidin-1-
yl)propyl)-2-(4-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole-5-carboxylate) (m.p. is
99–100 ◦C). It was discovered to be a highly effective anti-mycobacterial agent against
Mycobacterium tuberculosis H37Rv, with an IC50 value of 11.52 µM. It was discovered that
an electron-withdrawing group at the 4th position of the phenyl ring is significant for the
activity of this compound [109].
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Park et al. developed a method and synthesized a collection of 6, 5, or 2-tri-substituted
BnZ variants, which later were evaluated for their effectiveness at treating TB. The effi-
cacy of BnZ derivative 21 (butyl(2-cyclohexyl-5-(4-fluorophenoxy)-1H-benzo[d]imidazol-6-
yl)carbamate) at preventing Mycobacterium tuberculosis filamentous temperature-sensitive
mutant Z (Mtb-FtsZ) polymerization was tested [110]. The investigation of the chemi-
cally affected suppression of FtsZ polymerization was conducted using a light scattering
test [111,112]. Entity 21 was discovered as a highly effective drug among all the pro-
duced compounds. Mtb Hinshaw 37, and Rockefeller university variant (H37Rv) strain
were targeted by a variety of drugs, demonstrating effective MIC values in the range of
0.63–12.5 µg/mL [113]. Based on the procedure outlined by Katarzyna Gobis et al., com-
plex 22 ((6-chloro-2-(2-cyclohexylethyl)-1H-benzo[d]imidazol-4-yl)(oxo)-l4-azanol) was
produced via the heating of 3-cyclohexylpropanoic acid with 5-chloro-3-nitrobenzene-1,2-
diamine, resulting in a yield of light yellow crystals. Compound 22 showed considerable
anti-tuberculostatic action against M. tuberculosis, ranging between 1.5 and 12.5 mg/mL
and having an m.p. of 190–192 ◦C [114]. In the study of Gobis et al, compound 23
(5-chloro-2-(2-cyclohexylethyl)-1H-benzo[d]imidazole) was produced by the heating of
3-cyclo-hexylpropanoic acid with the required di-amines. Again, component 23 was identi-
fied as the most effective antituberculosis molecule against Mycobacterium tuberculosis (M.
TB) and Mycobacterium bovis (M. bovis), with an assessed MIC range from 0.75 to 1.5 mg/mL.
Molecules having cyclohexyl ethyl substituents at the C-2 position are highly active com-
pared to compounds with a longer chain [115]. Mycobacterium tuberculosis H37Rv strain was
used to test the in vitro antitubercular activity of drug 24 ((Z)-3-((1H-benzo[d]imidazol-2-
yl)methyl)-5-benzylidenethiazolidine-2,4-dione), which displayed a potent Mtb inhibitory
effect, with an MIC of 6.25 g/mL. Compound 24 was believed to be the most potent ana-
logue against mycobacterium, with equal efficiency against TB as the common antibacterial
combination of streptomycin 2-(Chloromethyl)-1H-benzo[d]imidazole and thiazolidine-2,4-
dione. This dual combination tends to give a greenish yellow color after 71 h. of reaction
in acetonitrile, with a yield of 82% and an m.p. of 210 ◦C. TLC was used to observe the
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response of dry liquid, followed by the dilution of the residue with water, drying, and
treatment with diethyl ether, to obtain the required components [116,117].

12. Anti-Protozoal Activity

Parasitic diseases are a significant threat to global health. Diseases that cause diarrhea,
which are classified as one of the top five killers globally, include several gastrointestinal
infections. Each of the global population suffers by one or more unnoticed tropical ill-
nesses yearly, with around 1.6 million persons per day [118–120]. Figure 9 depicts some
anti-protozoal medicines with BnZ-based moieties. The compound 2-anilinoBnZ was
synthesized by Karaaslan et al, and the anti-protozoal potency of this drug was assessed.
Compound 25 (2-((3,4-dichlorophenyl)amino)-1H-benzo[d]imidazole-5-carboximidamide)
was examined in vitro for its anti-parasitic effect against T. b. rhodesiense, i.e., the blood-
stream forms of trypomastigote and P. falciparum at erythrocytic stages [121]. Compound
25 displayed an IC50 value of 0.138 ± 0.017 µM against plasmodium falciparum, indicating
a strong anti-malarial activity. In contrast, it also exhibited an IC50 value of 21.80 ± 8.01 µM
against Trypanosoma brucei rhodesiense, indicating moderate activity against this para-
site. Additionally, a cytotoxicity of compound 25, with an IC50 value of 39.06 ± 0.47 µM,
was demonstrated against L6 cells (rat skeletal muscle cells), which indicates that this
compound exhibited some toxicity toward these cells at higher concentrations. Drug 26 (N-
(3-(4-methyl-1H-benzo[d]imidazol-2-yl)phenyl)thiophene-2-carboxamide), i.e., 2-arylBnZ,
was synthesized by Keurulainen et al. It was effective against Tamm–Horsfall protein 1
(THP-1) cells infected with Leishmania donovani (L. donovani), displaying a 46% parasite
reduction at 5 µM. The compounds 4- and 5-methylbenzimidazole variants displayed
intriguing SARs. They showed comparable IC50 values and suppressed axenic amastigotes
at all doses, but their effects on THP-1 cells were quite different. While 4-methyl derivative
showed considerable action, the 5-methyl variant essentially demonstrated little effect [122].
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Numerous BnZ-based compounds were discovered by Arteche et al., which were
further tested for their antiprotozoal effects. Compound 27 (6-chloro-1-methyl-N-(5-
nitrothiazol-2-yl)-2-(trifluoromethyl)-1H-benzo[d]imidazole-5-carboxamide) induced good
antiprotozoal action against T. vaginalis, E. histolytica, and G. intestinalis, exhibiting IC50
values of 0.041 ± 0.005, 0.006 ± 0.002, and 0.021± 0.005 µM, respectively. This activity
was increased by the addition of a methyl or a trifluoromethyl group at the 2 position
of the BnZ nucleus [123]. The highly effective anti-leishmanial compound 28 ((E)-N′-
(2,3-dihydroxybenzylidene)-4-(4-methyl-1H-benzo[d]imidazol-2-yl)benzohydrazide) was
synthesized by Taha et al., which had an IC50 value of 37.80 ± 2.5 µM. The activity of the
SAR is mostly influenced by the number and location of hydroxyl groups. The di-hydroxy
substituents in drug 28 had outstanding activity, with variations in their action. The least
active molecule among the di-hydroxy analogues is compound 28 (IC50 = 220.15± 1.95 µM)
because it has high intra-molecular H-bonding, which reduces the activity of the active
component methylglyoxal. Compound 28 was tested in vitro for its efficacy to scavenge
DPPH radicals. It displayed a variable DPPH radical-scavenging activity of 12.05 ± 0.45,
respectively [124]. Ramachandran et al. designed and evaluated a novel family of naryl-2-
amino-benzoimidazol 29 named (6-(1-methylpiperidin-4-yl)-N-(5-(trifluoromethyl)pyridin-
2-yl)-1H-benzo[d]imidazol-2-amine) for its anti-malarial activity against P. falciparum. Com-
pound 29 was demonstrated to being highly effective, with an IC50 value of 36 µM. It was
also easily available and efficient in a rat version of malaria. Furthermore, this series of
drug exhibited a highly efficient death rate comparable to chloroquine in a unique in vitro
study of its parasite-reduction ratio. More new clinical candidates from this chemical
family should be ascertained, possibly by additional lead optimization attempts in combi-
nation with in vivo unsafe analysis [125]. The in vitro anti-plasmodial effects of a variety
of BnZ derivatives, synthesized by Saify et al., were assessed against human Cytidine
triphosphate D (CTP D) and P. falciparum plasmepsin II. Compound 30 (1-([1,1′-biphenyl]-
4-yl)-2-(2-(pyridin-2-yl)-1H-benzo[d]imidazol-1-yl)ethan-1-one) demonstrated substantial
anti-plasmodial action, with an IC50 value of 160 µM. Cathepsin D is inhibited by com-
pound 30, with an inhibitory potency and selectivity comparable to that of plasmepsin
II (IC50 = 2.0 µM vs. 14.7 µM). According to SAR studies, the additional phenyl group at
the p-position of the acetophenone cause the moiety mosque’s enhanced anti-plasmodial
action [126].

13. Conclusions

In conclusion, BnZ and its derivatives have been the focus of extensive investigations
of their biological applications in several research areas, including their potential to treat
cancer, reduce inflammation, fight against bacteria, treat tuberculosis, and inhibit protozoal
growth. Green, non-metallic, and metallic methods have been used to synthesize BnZ
and its derivatives. The desired product, as well as economic and environmental factors,
all have an important role in the selection of the synthesis route. Recent research has
placed a lot of emphasis on the creation of BnZ derivatives with enhanced biological
activity, highlighting the potential of these substances as prospective medicines for treating
different disorders. So, additional research is required to understand the mechanisms of
action of these substances to enhance their biological activities.
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