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Abstract: The attainment of a well-crystallized photo-absorbing layer with minimal defects is crucial
for achieving high photovoltaic performance in polycrystalline solar cells. However, in the case of
perovskite solar cells (PSCs), precise control over crystallization and elemental distribution through
solution processing remains a challenge. In this study, we propose the use of a multifunctional
molecule, α-amino-γ-butyrolactone (ABL), as a modulator to simultaneously enhance crystallization
and passivate defects, thereby improving film quality and deactivating nonradiative recombination
centers in the perovskite absorber. The Lewis base groups present in ABL facilitate nucleation, leading
to enhanced crystallinity, while also retarding crystallization. Additionally, ABL effectively passivates
Pb2+ dangling bonds, which are major deep-level defects in perovskite films. This passivation
process reduces recombination losses, promotes carrier transfer and extraction, and further improves
efficiency. Consequently, the PSCs incorporating the ABL additive exhibit an increase in conversion
efficiency from 18.30% to 20.36%, along with improved long-term environmental stability. We believe
that this research will contribute to the design of additive molecular structures and the engineering
of components in perovskite precursor colloids.

Keywords: polycrystalline thin film; surface passivation; nucleation; nonradiative recombination;
perovskite solar cells

1. Introduction

Organic metal-halide perovskites are becoming significant photovoltaic absorbers
that have the potential to prepare high-efficiency solar cells at an affordable cost [1–5].
Due to their appealing optoelectronic characteristics, significant advancements have been
made in recent years regarding the power conversion efficiencies (PCE) of perovskite solar
cells (PSCs), which now boast record values exceeding 25% [6]. However, the low ionic
migration energies along with the “soft” nature of the MHP also lead to unacceptable ion
redistribution as well as phase separation in external stimulation [7,8]. Studies show that
twelve intrinsic point defects will be generated in the MAPbI3 grains, such as interstitials
(interstitial MA, interstitial Pb, and interstitial I), vacancies (MA-vacancy, Pb-vacancy, and
I-vacancy), and substitution (MA substitute Pb, Pb substitute MA, MA substitute I, Pb
substitute I, I substitute MA, and I substitute Pb) [9]. The dangling bonds located at the
grain surfaces, involving lead clusters, uncoordinated Pb2+, negative unbonded halide ions,
and organic-cation vacancies, can also contribute to the nonradiative recombination and
the annihilation of charges [5]. These recombinations will trigger the open-circuit voltage
loss of the device, playing as an obstacle toward the theoretical efficiency limit of 30%. In
addition, the defects within the perovskite layer are also one main source of the instability
of the device due to the defects-induced perovskite-framework collapses [10]. Therefore, it
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is critical to terminate these different kinds of defects simultaneously to reduce the charge
recombinations and reinforce the framework of the perovskite, thereby wholly enhancing
the efficiency of the PSCs.

To achieve this goal, more strategies, including additive engineering, dimensionality
modulation, and post-treatment, have been made to realize crystallization modulation, sur-
face passivation, device self-sealing, etc., aiming to control the native defect density during
the perovskite growth and eliminate the surface dangling bonds on the film surface [11–16].
Among them, additive engineering is mostly used because it can trigger different effects
on perovskite films, from nucleation to the final ripening process [17–19]. For example,
several inert large molecules, supramolecules, and polymers have been explored to target
the undesired defects by adding them to the perovskite precursor solutions [1,20–23]. The
defects at the grain boundaries can be finely passivated by forming hydrogen bonds or
coordination bonds with the additive, and a moisture barrier can be built to improve the
stability. Because the point defects at the bulk of the grains can rarely be terminated due to
their large size, the additive is hardly incorporated into the perovskite lattice. Therefore,
to further eliminate the defects induced by the solution-processed crystallization, halide
acids, zwitterionic sulfamic acid, and citric acid have been used to promote the dissolution
of precursor colloids, thus yielding the film with enhanced crystallization and fewer point
defects [24–28]. However, the residual H2O in these acids is difficult to thoroughly remove
from the perovskite precursor, and the grain boundaries cannot be self-sealed compared to
the large molecular additives, which degrades the perovskite film stability. Hence, finding
a suitable additive that can enable good crystallization and passivate the defects at the
grain boundaries, along with building a moisture barrier, is a meaningful route to enhance
the perovskite film stability.

Herein, we successfully screened a lactone hydrobromide additive, termed α-amino-
γ-butyrolactone (ABL), containing lactones and -NH2, to improve the quality and stability
of the perovskite films. In contrast to existing large-size molecular additives and inorganic
salt additives, this study proposes the use of small molecular additives to treat perovskite
precursors. ABL, as one type of small molecule, has minimal steric hindrance. Moreover,
through ligand engineering, they can exhibit excellent passivation capabilities, thereby
enhancing the quality of perovskite films. The ABL with γ-butyrolactone can increase
the solubility of perovskite intermediate in the solvent [29], decreasing the large colloidal
content and resulting in better film morphology with increased grain size. Moreover, the
Pb2+ dangling-bond defects at the grain boundaries can be terminated by the -NH2 and
C=O groups of ABL, which reduces the nonradiative recombination loss. And the lactone
of ABL with hydrophobic nature can serve as a moisture barrier at the grain boundaries and
resist moisture invasion, which improves the stability of the films. The PCE of the planar
MAPbI3 solar cells prepared with the ABL improved from 18.30% to 20.36%. Additionally,
the modified solar cells showed improved environmental and thermal stabilities.

2. Results and Discussion

The ABL is one kind of organic molecule that can be dissolved in the DMSO solvent.
The chemical structure and simulated electrostatic potential (ESP) show that the negative
potential is loading at the -NH2 and C=O, suggesting electron-donating characteristics.
We blended the ABL with perovskite (MAPbI3) precursor and fabricated the perovskite
by adopting a spin-coating approach (Figure 1b). The thin-film morphology is one of the
critical factors affecting device performance. We optimized the perovskite morphology by
adding different contents of ABL in the precursor, which were 0.1 mg/mL, 0.5 mg/mL, and
1 mg/mL, and the corresponding thin films were termed M1, M2, and M3, respectively. As
shown in Figures 1c–f and S1, the scanning electron microscope (SEM) demonstrated the
grain size was remarkably enlarged when the ABL concentration was 0.1 mg/mL (M1), and
the surface was much smoother than the control film. Further increasing the ABL concentra-
tion to 0.5 mg/mL and 1 mg/mL (M3) gradually yielded some small grains on the surface.
This phenomenon can also be quantitatively verified by the atomic-force-microscope (AFM)
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images (Figure S2), which show that the root-mean-square (RMS) roughness declined from
17.47 (control) to 12.45 nm (M1) and then increased to 32.40 nm and 35.31 nm for M2 and
M3, respectively. The increased RMS for M2 and M3 may have originated from the addition
of excess ABL breaking the ordered sol–gel precursor phase, yielding an inhomogeneous
distribution of perovskite and a smaller average grain size [28]. X-ray diffraction (XRD)
was further performed to unveil the phase structure of the perovskite films (Figure 1g).
The peaks at 14.2◦, 28.5◦, and 31.8◦ were indexed as the (110), (220), and (310) planes of
the MAPbI3 film, respectively [30]. The M1 peak intensity was apparently 1.3 times higher
than that of the control film, and the intensity gradually decreased with further increasing
of the ABL content. Furthermore, the relative intensity of (110)/(310) in Figure 1h shows
the grains of M1 had a preferred (110) orientation, indicating that the grain prefers to
grow perpendicularly toward the substrate [31]. The UV-vis absorption spectra (Figure
S3) exhibit that the absorption intensity for M1 was slightly higher than that of the control
films, which may have originated from the improved crystallization.
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Figure 1. (a) Surface potential and structure of the ABL. (b) Schematic diagram of the fabrication
processes of perovskite films with ABL additives. The SEM images of the perovskite films with
different concentrations of ABL: (c) control, 0 mg/mL; (d) M1, 0.1 mg/mL; (e) M2, 0.5 mg/mL;
and (f) M3, 1 mg/mL. (g) XRD patterns of the perovskite film with different concentrations of ABL.
(h) The R values of the perovskite films with various concentrations of ABL additives.

We further investigated the precursor properties to figure out the reason for the better
crystallinity of the MAPbI3 + ABL film. Actually, when we fabricated the perovskite
precursor by dissolving MAI and PbI2 in the given solvent (DMF and DMSO), we produced
a colloidal system instead of the real solution [32]. The perovskite nucleates from the
colloidal cluster and the cluster distribution in the precursor should be carefully controlled
to obtain uniform films. The γ-butyrolactone groups of the ABL endow ABL with the
capability to dissolve the MAI and PbI2, which increases the precursor colloidal solubility



Molecules 2023, 28, 5542 4 of 10

and decreases the content of large colloids [33]. This can be visually presented by the
changes in the UV-vis absorption of the precursors (Figure 2a). The UV-vis absorption
spectra demonstrate colloid-sized perturbations, along with the absorbance intensity, at the
wavelength range of 200–450 nm, which decreased after introducing ABL, suggesting a
contracted colloidal cluster. Also, the dynamic-light-scattering (DLS) spectra of the two
precursors (Figure 2b) show that the colloidal size of the MAPbI3 precursor with ABL
(~170 nm) was smaller than that of the pristine precursor (~440 nm), which is consistent
with the above results. In general, smaller colloids tend to require higher temperatures
and longer durations for complete crystallization, leading to improved morphology by
increased grain size and crystallinity [34]. Meanwhile, the small colloids can also trigger
homogeneous nucleation for the perovskite precursor, improving the uniformity of the
crystallization and elemental distribution [35,36].
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Figure 2. (a) UV–vis absorption spectra of the different solutions, including DMF + DMSO,
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Except for the nucleation process, we also collected the liquid 1H nuclear-magnetic-
resonance (NMR) spectra of the ABL and the ABL + PbI2 solution in deuterated dimethyl
sulfoxide-d6 (DMSO-d6) to investigate the scheme of the enlarged grain size for the ripened
films (Figure 2c). With the PbI2 additive, the peak located at 8.58 ppm exhibits a downshift.
This phenomenon can be ascribed to the interaction between the -NH2 and the Pb2+ in
the perovskite precursor, which will delay the crystallization process of perovskite and
is also beneficial to upgrade the crystallization of the films [33]. Therefore, the above
research indicates that ABL can improve the quality of perovskite thin films by shrinking
the colloidal particles in the precursor and prolonging the crystallization process.

The surface passivation effects for perovskite film brought by the ABL additive have
also been studied. The Fourier transform infrared spectroscopy (FTIR) of the ABL and the
perovskite films with and without ABL additive is shown in Figure 3a. The C=O stretching
mode can be observed in both the ABL and MAPbI3 + ABL samples. Compared with
the ABL, the C=O stretching mode of the MAPbI3 + ABL sample was downshifted from
1702 to 1693 cm−1, which refers to the interaction between the C=O of the ABL and the
Pb2+ of the perovskite. In addition, the N-H stretching vibration mode for ABL, MAPbI3
+ ABL, and MAPbI3 films are 3472, 3480, and 3495 cm−1, respectively. The wavenumber
difference between MAPbI3 and MAPbI3 + ABL indicates the -NH2 group of the ABL can
also terminate the Pb2+ of the MAPbI3, thus synergistically passivating deep-level defects
within the film. The X-ray photoelectron spectroscopy (XPS) was also taken to elucidate the
passivation details (Figure 3b). The XPS peaks of Pb 4f core singles of the MAPbI3 + ABL
shift towards the lower binding energies. This is due to the passivation group of the ABL
(C=O and -NH2) donating electrons to the Pb2+ defects of the MAPbI3, thus increasing the
Pb 4f electron cloud density. Moreover, for the pristine MAPbI3, the Pb0 peaks at 141.4
and 136.6 eV can be observed, which is one type of defect caused by the evaporation of
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organic cations and halide anions [32,37]. While the Pb0 is apparently reduced for the
MAPbI3 + ABL film, which suggests that the ABL cannot only terminate the Pb2+ dangling
bonds but enhance the framework and restrain the defect generation. We then studied
the perovskite film’s defect density by the space-charge–limited-current (SCLC) approach
with an architecture of an FTO/SnO2/perovskite/PCBM/Ag device (Figure S4). The trap
density declined from 2.73 × 1016 to 5.27 × 1015 cm−3 after introducing the ABL, indicating
an effective passivation effect of the ABL. The steady-state photoluminescence (PL) and
time-resolved PL (TRPL) are taken to reveal the carrier kinetics of the perovskite films
(Figure 3c,d, respectively). The MAPbI3 + ABL film exhibits a higher PL intensity than
that of the control film, implying that ABL, as an effective passivator, indeed suppresses
carrier recombination by coordinating with the perovskite film, which is in agreement with
the FTIR and XPS results. As for the TRPL, a bi-exponential model is adopted to fit the
experimental decay curves. Table S1 summarizes the output parameters. The average decay
time of the MAPbI3 + ABL films was 468.9 ns, longer than that of the pristine MAPbI3 film
(152.7 ns), demonstrating a declined nonradiative recombination.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 10 
 

 

film. The X-ray photoelectron spectroscopy (XPS) was also taken to elucidate the pas-
sivation details (Figure 3b). The XPS peaks of Pb 4f core singles of the MAPbI3 + ABL shift 
towards the lower binding energies. This is due to the passivation group of the ABL (C=O 
and -NH2) donating electrons to the Pb2+ defects of the MAPbI3, thus increasing the Pb 4f 
electron cloud density. Moreover, for the pristine MAPbI3, the Pb0 peaks at 141.4 and 136.6 
eV can be observed, which is one type of defect caused by the evaporation of organic cat-
ions and halide anions [32,37]. While the Pb0 is apparently reduced for the MAPbI3 + ABL 
film, which suggests that the ABL cannot only terminate the Pb2+ dangling bonds but en-
hance the framework and restrain the defect generation. We then studied the perovskite 
film’s defect density by the space-charge–limited-current (SCLC) approach with an archi-
tecture of an FTO/SnO2/perovskite/PCBM/Ag device (Figure S4). The trap density de-
clined from 2.73 × 1016 to 5.27 × 1015 cm−3 after introducing the ABL, indicating an effective 
passivation effect of the ABL. The steady-state photoluminescence (PL) and time-resolved 
PL (TRPL) are taken to reveal the carrier kinetics of the perovskite films (Figure 3c,d, re-
spectively). The MAPbI3 + ABL film exhibits a higher PL intensity than that of the control 
film, implying that ABL, as an effective passivator, indeed suppresses carrier recombina-
tion by coordinating with the perovskite film, which is in agreement with the FTIR and 
XPS results. As for the TRPL, a bi-exponential model is adopted to fit the experimental 
decay curves. Table S1 summarizes the output parameters. The average decay time of the 
MAPbI3 + ABL films was 468.9 ns, longer than that of the pristine MAPbI3 film (152.7 ns), 
demonstrating a declined nonradiative recombination. 

 
Figure 3. (a) The FTIR of the ABL, perovskite, and perovskite–ABL films. (b) The XPS of the perov-
skite films with and without ABL additives. (c) The room temperature PL spectra of the perovskite 
films with and without ABL additives. (d) The TRPL decay curves of the control film and the per-
ovskite–ABL film. 

With this information in hand, we then fabricated the planar PSCs with a configura-
tion of ITO glass/SnO2/with or without ABL-modified MAPbI3/Spiro-OMeTAD/Ag (Fig-
ure 4a) to assess the impact of the ABL additive on the photovoltaic performance of the 

Figure 3. (a) The FTIR of the ABL, perovskite, and perovskite–ABL films. (b) The XPS of the
perovskite films with and without ABL additives. (c) The room temperature PL spectra of the
perovskite films with and without ABL additives. (d) The TRPL decay curves of the control film and
the perovskite–ABL film.

With this information in hand, we then fabricated the planar PSCs with a configu-
ration of ITO glass/SnO2/with or without ABL-modified MAPbI3/Spiro-OMeTAD/Ag
(Figure 4a) to assess the impact of the ABL additive on the photovoltaic performance of
the PSCs. Figure 4b,c show the cross-sectional SEM images of the PSCs with and with-
out ABL. In agreement with the analysis above, the MAPbI3 + ABL layer shows better
crystallization with denser and larger grains compared to the pristine perovskite layer,
which is beneficial to improve the photogenerated charge transporting and suppress the
recombination. The current-density–voltage (J-V) curves of the PSCs with and without
ABL modification are exhibited in Figure 4d, and the detailed device output parameters
are tabulated in Table S2. The control device yielded an efficiency of 18.30% (forward scan:
Voc = 1.08V, FF = 75.37%, Jsc = 21.32 mA cm−2, and PCE = 17.35%; reverse scan: Voc = 1.09 V,
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FF = 77.52%, Jsc = 21.66 mA cm−2, and PCE = 18.30%). For the ABL-modified PSCs, the de-
vice possesses an apparently improved optimum PCE of 20.87% (forward scan: Voc = 1.12 V,
FF = 79.06%, Jsc = 22.99 mA cm−2, and PCE = 20.36%; reverse scan: Voc = 1.13 V, FF = 80.04%,
Jsc = 23.08 mA cm−2, and PCE = 20.87%). The enhanced FF and Voc are ascribed to the
decrease of the defect density and nonradiative recombination, which originated from the
passivation effect of the ABL. The improved Jsc is correlated with the better crystallization
of the perovskite–ABL layer with fewer voids, accelerating the charge transporting within
the device. Meanwhile, to evaluate the reproducibility of the process, 60 devices (30 control
PSCs and 30 ABL-based devices) were prepared, and the PCE statistics are demonstrated in
Figure 4e. Compared with the control PSCs, the ABL-based devices achieved higher PCE
values and narrower PCE distributions, validating good process parallelism. Moreover, the
external-quantum-efficiency (EQE) spectra show that the quantum conversion efficiency
of the device with ABL modification was notably improved in the range of 650–750 nm
(Figure 4f), and the difference of the integrated photocurrent density is consistent with the
J-V results (Figure S5). The better EQE performance is due to the MAPbI3 + ABL film being
denser than the control film, which is beneficial to the extraction of charge at the rear side
of the PSCs.
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dotted circles highlights the pinhole within the perovskite films. (d) The illuminated J-V curves of
the control and perovskite–ABL devices. Inset: the photograph of the device. (e) PCE distributions
collected from 30 control and 30 ABL-based devices. (f) The EQE spectra of the PSCs with and
without ABL additives.

Except for the PCE, the stability of the PSCs is also a critical point to weigh the appli-
cation potential [38–40]. We stored the bare perovskite films with and without ABL in the
dark under a humidity of ~30% for 30 days (temperature ~25 ◦C). Figure 5a exhibits the
corresponding XRD of the aged films. The control film exhibits a small PbI2 diffraction
peak at ~12.5◦, accounting for the decomposition of the perovskite by moisture erosion. In
contrast, the ABL-modified films have no PbI2 diffraction peak. Meanwhile, we measured
the water contact angles of the MAPbI3 and MAPbI3 + ABL films (Figure 5b,c). The angles
increased from 53.5◦ (control) to 64.5◦ (with ABL) due to the inherent hydrophobic nature
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of the lactone. Therefore, these results indicate that ABL can enhance the stability of the
perovskite film by enhancing crystallinity, passivating defects, and improving hydropho-
bicity. The photovoltaic performance of the unencapsulated PSCs was also examined at
25 ◦C in air with a humid environment of 50%. The normalized PCE trend curve shown in
Figure 5d demonstrates that the PCE of the control device continued to decline to 72.8% of
the initial efficiency. However, the PSCs with ABL modification retained more than 92.0%
of the initial efficiency, exhibiting apparently improved stability. The enhancement of the
stability is due to the interaction between ABL and perovskite suppressing the defect and
strengthening the perovskite framework, as well as the increased hydrophobicity of the
perovskite film preventing humidity-induced decomposition.
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additives. (d) The normalized PCEs of the control device and the ABL-based device.

3. Materials and Methods

Materials: Indium tin oxide (ITO) glass substrates, lead iodide (PbI2), methylammonium
iodide (CH3NH3I, MAI), 4-tert-butypyridine and lithium bis (trifluoromethanesulfonyl) imide
(Li-TFSI), SnO2 aqueous colloidal dispersion (15 wt%, ALFA), 2,2′,7,7′-tetrakis (N,N-dip-
methoxyphenylamine) 9,9′-Spirobifluorene (Spiro-OMeTAD), and all anhydrous solvents
were purchased from YOUXUAN Technology Co., Ltd. (Yingkou, China). The 2-amino-
acetamidobenzotrifluoride (BDP) was purchased from TCI Shanghai. All chemicals and
reagents were used as received from chemical companies without any further purification.

Fabrication of perovskite solar cells: SnO2 was used as ETL, which was coated on the
ITO glass sheet by spin coating. The deposited ITO glass was transferred to a nitrogen-filled
glove box (H2O and O2 < 1 ppm) to spin coat the perovskite film, which was prepared
using 693 mg of PbI2, 245 mg of MAI, and different concentrations of ABL dissolved in a
mixed solvent of dimethyl sulfoxide (DMSO) and dimethyl formamide (DMF) (v:v = 3:7).
The 80 µL of the MAPbI3 precursor solution was deposited onto the ITO/SnO2 layer by a
spin-coating process, i.e., 5500 rpm for 40 s, and 450 µL of chlorobenzene (CB) was poured
on the rotating substrate 12 s after the start of the procedure. Subsequently, the obtained
films were dried at 60 ◦C for 5 min and at 100 ◦C for 10 min. An amount of 75 µL of the
hole-transport-layer solution; prepared by mixing 72.3 mg of Spiro-OMeTAD, 18.5 µL with
a solution of 500 mg/mL Li-TFSI in acetonitrile, and 28.5 µL of 4-tertbutylpyridine in 1 mL
of CB; was spin coated on the prepared MAPbI3 films at 3000 rpm for 30 s. Finally, 100 nm
of Ag was thermally deposited under vacuum condition.

4. Conclusions

In summary, a multifunctional passivator of ABL was successfully proposed and
introduced to the perovskite precursor to affect the crystallization process and passivate
the defects. The Lewis base groups (-C=O, -NH2) of ABL can interact with the PbI2 in the
precursor solution, thereby retarding the growth process and enhancing the crystallinity
of the perovskite film. Moreover, the ABL can also passivate the Pb2+ dangling bonds,
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reducing the recombination losses and promoting carrier transfer and extraction. As an
extra benefit, the inherent hydrophobicity of lactone endows the perovskite film with
a moisture-resistant barrier, which promotes the humidity tolerance of the PSCs. The
synergetic effect of the ABL improved the PCE of the MAPbI3-based solar cells from
18.30% to 20.36% with excellent environmental and thermal stabilities. We believe that this
exploration can trigger more ideas for designing multifunctional molecules and improving
the PCE and operational stability of PSCs in the future.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28145542/s1, Figure S1: The grain sizes histogram
for the perovskite film with different concentrations ABL additives; Figure S2: The AFM images
of the perovskite films with different ABL additives: (a) control, 0 mg/mL, (b) M1, 0.1 mg/mL,
(c) M2, 0.5 mg/mL, (d) M3, 1mg/mL; Figure S3: The absorption of the perovskite films with different
concentrations ABL additives; Figure S4: The J–V curves of electronic-dominated devices with a
structure of glass/ITO/SnO2/MAPbI3 (with- and without- ABL)/PCBM/Ag. The trap density can
be determined from VTFL by referring to the relationship VTFL = eNtL2/2εε0, where the relative
dielectric constant ε of MAPbI3, the ε0 is vacuum dielectric constant, and L is the thickness of the
perovskite film; Figure S5: The integrated current density of the control and with ABL devices.
Table S1: TRPL lifetimes of the MAPbI3 and MAPbI3 + ABL films; Table S2: The illuminated output
paramenters of the PSCs with and without ABL.
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