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Abstract: Astragaloside IV (AS-IV) is one of the main active components extracted from the Chi-
nese medicinal herb Astragali and serves as a marker for assessing the herb’s quality. AS-IV is a
tetracyclic triterpenoid saponin in the form of lanolin ester alcohol and exhibits various biological
activities. This review article summarizes the chemical structure of AS-IV, its pharmacological effects,
mechanism of action, applications, future prospects, potential weaknesses, and other unexplored
biological activities, aiming at an overall analysis. Papers were retrieved from online electronic
databases, such as PubMed, Web of Science, and CNKI, and data from studies conducted over the last
10 years on the pharmacological effects of AS—IV as well as its impact were collated. This review
focuses on the pharmacological action of AS-IV, such as its anti-inflammatory effect, including sup-
pressing inflammatory factors, increasing T and B lymphocyte proliferation, and inhibiting neutrophil
adhesion-associated molecules; antioxidative stress, including scavenging reactive oxygen species,
cellular scorching, and regulating mitochondrial gene mutations; neuroprotective effects, antifibrotic
effects, and antitumor effects.

Keywords: astragaloside IV; anti-inflammatory; antioxidative; neuroprotective; antifibrotic; antitumor;
pharmacological action

1. Introduction

Polysaccharides and astragalosides are the main active components of the traditional
Chinese medicine astragalus. Astragalosides can be categorized into astragalosides I, II,
and IV, with astragalosides IV (AS-IV) being the most biologically active compound [1].
AS-IV is a tetracyclic triterpenoid saponin in the form of lanolin ester alcohol and possesses
the efficacy of an astragalus polysaccharide with excellent potency. AS-IV has poor water
solubility; however, it is readily soluble in methanol, ethanol, and dimethyl sulfoxide. Its
molecular formula is C41H68O14, and its molecular weight is 784.97 Da; its structure is
shown in Figure 1. In recent years, scientific studies on astragalus methyl glycosides have
demonstrated a wide range of pharmacological activities. In particular, AS-IV exhibits
various pharmacological effects, including anti-inflammatory, antifibrotic, antioxidative
stress, antidiabetic, and cardioprotective effects, which can be triggered by modulating
different signaling pathways. AS-IV has been reported to be effective in treating various
diseases [2], such as cerebral ischemia/reperfusion lesions, cardiovascular diseases, lung
disease, liver cirrhosis, and diabetic nephropathy (DN). In addition, increasing evidence im-
plicates AS-IV in organ fibrosis, the inflammatory response, oxidative stress, and apoptosis.
This review provides a systematic overview of the pharmacology, metabolism, and thera-
peutic molecular mechanisms, as well as the medicinal significance of AS-IV, to provide a
reference for future research and applications related to astragalosides.
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Figure 1. The structural formula of AS-IV.

2. Anti-Inflammatory Effects

The inflammatory response is a key feature in the transition from mild to severe and
critical illness. The inflammatory response is a reflection of the body’s defense against
inflammatory factors. AS-IV exhibits anti-inflammatory effects and has been reported to
reduce various types of inflammatory injuries, such as lipopolysaccharide (LPS)-induced
organ damage, ischemia–reperfusion injury, allergic diseases, diabetes mellitus and its
complications, myocardial injury, and hypertension [3]. These diseases are related to the
downregulated gene expression of some inflammation-related factors. AS-IV involves acti-
vating transcription factors and downstream inflammatory cytokine release [4]. AS-IV ex-
erts potent antagonistic effects on inflammation via multiple pathways. For example, AS-IV
counteracts inflammatory damage by regulating inflammatory factors (interleukin [IL]-1β,
tumor necrosis factor [TNF]-α, intercellular adhesion molecule [ICAM], and chemokines),
inflammatory mediators (nitrogen oxide [NO]), the nuclear factor kappa-light-chain en-
hancer of activated B cells (NF-κB) signaling pathway, and apoptosis-related genes. Here,
the mechanism of the anti-inflammatory effect of AS-IV has been described and is also
depicted in Figure 2.
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models [6]. Moreover, AS-IV can inhibit NF-κB–p65 pathway-mediated inflammation in 
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coactivator; Ang-2: Angiopoietin-2.
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2.1. Suppression of Inflammatory Factors

Increased expression of proinflammatory factors disrupts the homeostasis of the in-
flammatory microenvironment. The NF-κB protein is central to the inflammatory response.
Cell stimulation activates the inhibitor of NF-κB (IκB) and decreases IκB phosphoryla-
tion. Furthermore, ubiquitination modifies the IκB subunit of the NF-κB–IκB complex,
allowing NF-κB to dissociate, enter the nucleus, and initiate transcription. Reportedly,
NF-κB triggers the release of proinflammatory factors, such as IL-6 and TNF-α [5]. In
addition, some experiments have demonstrated that astragaloside activates the choliner-
gic anti-inflammatory pathway by restoring the Th17/Treg balance by impeding CXCR4
to ameliorate COPD, consequently reducing the symptoms in pulmonary embolism rat
models [6]. Moreover, AS-IV can inhibit NF-κB–p65 pathway-mediated inflammation in
the placenta. Astragaloside has further been shown to attenuate Streptococcus pneumoniae-
induced inflammatory damage in alveolar epithelial cells by upregulating mRNA and Bcl-2
protein expression; downregulating monocyte chemoattractant protein (MCP) and NF-κB
protein expression; and Bax, cleaved caspase-3, IL-1β, IL-6, and TNF-α mRNA expression;
and reducing apoptosis [7].

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression is
inhibited in the hippocampus of chronic unpredictable stress or LPS mouse models. Fur-
thermore, astragaloside increases PGC-1α expression, attenuates depression-like behavior,
and reduces neuroinflammation by modulating NF-κB signaling. Reducing PGC-1α levels
has been reported to reverse the effects of astragaloside on NF-κB signaling and neuroin-
flammation [5].

The anti-inflammatory properties of astragalus also play a vital role in treating lym-
phatic vessel growth and lymphedema. In an inflammatory environment, NF-κB is a
promoter of Ang-2. Upregulating its expression can therefore augment Ang-2 protein
synthesis, ultimately triggering and promoting the growth of inflammatory lymphatic
vessels [8].

2.2. Increasing T and B Lymphocyte Proliferation

Astragaloside has been reported to effectively inhibit cell proliferation in T-cell lym-
phoma and promote TNFAIP3 expression to inhibit Raji cell proliferation in human B-cell
lymphoma while promoting apoptosis [9]. In addition, Treg cells and Th17 cells are subpop-
ulations of helper T cells (Th cells), which are key players in maintaining the physiological
balance between immune defense and tolerance. Treg cells primarily mediate peripheral
immune tolerance. These cells secrete factors such as IL-10 and transforming growth fac-
tor (TGF)-β, which prevent the Th1/Th17-induced immune and inflammatory responses,
thereby exerting an immunosuppressive effect [10]. Th17 cells promote inflammation
mainly by secreting cytokines such as IL-6, IL-17, IL-23, granulocyte-macrophage colony-
stimulating factor, TGF-β, and microRNAs. Thus, there is a reciprocal relationship between
Th17 (which promotes the inflammatory response) and Treg (which inhibits this response).
In particular, Th17 and Tregs play opposing roles in various immunoinflammatory diseases,
typically in a dynamic equilibrium that is critical for maintaining the body’s immunity [11].
In vitro experiments have disclosed that AS-IV modulates the inflammatory response by
regulating the balance of Th17/Treg, and studies have revealed an increase in IL-10 and a
significant decrease in IL-6, IL-17, IgE, and TGF-β1 levels [12]. In addition, Liu et al. [13]
have reported that AS-IV provides therapeutic benefits in the early stages of acute kidney
injury, regulates Th1/Th2 imbalance, reduces renal tubular damage, and plays a vital role
in protecting the kidneys.

2.3. Inhibiting Neutrophil Adhesion-Associated Molecules

Neutrophils play a central role in the inflammatory response. Hence, inhibiting their
infiltration and activation can potentially offer a new approach to achieving neuroprotec-
tive effects. The chemokine receptor CXCR2 is crucial for the recruitment of neutrophils
from circulation to the site of infection. Activation of toll-like receptors in neutrophils
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downregulates CXCR2 expression and impairs neutrophil migration. AS-IV blocks the
reduction in CXCR2 expression and neutrophil migration induced by the TLR4 activator
LPS [14]. AS-IV can induce host antimicrobial immunity by modulating GRK2–CXCR2
signaling in neutrophils. CD11b/CD18 is a vital integrin present on the surface of neu-
trophils that recognizes and firmly adheres to immunoglobulin superfamily proteins on
endothelial cells [15,16]. ICAM-1 is a receptor for CD11b/CD18 and induces the aggre-
gation of CD11b/CD18-expressing neutrophils [17]. AS-IV (20 mg/kg, 90 min) has been
shown to considerably reduce the level of myeloperoxidase in endothelial cells and prevent
neutrophil accumulation in the brain parenchyma. In addition, AS-IV substantially reduces
neutrophil adhesion and endothelial cell infiltration by downregulating the expressions of
CD11b/CD18 and ICAM-1 in endothelial cells after CIRI [18].

3. Antioxidative Effects
3.1. Antioxidative Stress

The body produces trace amounts of reactive oxygen species (ROS). Excess accumu-
lation of ROS, or reduced antioxidant capacity, leads to an imbalance in the oxidative
and antioxidant systems of the body. These changes result in oxidative stress, which in
turn causes inflammatory neutrophil infiltration [19], increased protease secretion [20],
and oxidative intermediate generation. Oxidative stress refers to the detrimental effect
of free radicals on the body. Excess ROS accumulation leads to impaired mitochondrial
function [21], thereby causing dysfunction in cells, tissues, organs, and systems and poten-
tially leading to cancer, atherosclerosis, Alzheimer’s disease, and numerous other diseases.
ROS damage mitochondria by triggering mutations in mitochondrial genes, damaging the
mitochondrial respiratory chain, disrupting calcium homeostasis, or attacking mitochon-
drial defense systems [22]. AS-IV is chiefly used to delay or suppress cellular oxidation by
scavenging ROS or as an exogenous antioxidant to maintain or reestablish oxidoreductive
homeostasis [23].

3.2. AS-IV Scavenges ROS and Alleviates Cellular Scorching

Caspase molecules are a group of protease-like molecules that are highly conserved
evolutionarily [24]. Natural and synthetic caspase inhibitors can considerably reduce or
even block apoptosis induced by various stimuli, and some caspase-knockout animal
models exhibit an absence of apoptosis [25]. Furthermore, activated caspase-1 cleaves IL-1β
and IL-18 precursors to form active IL-1β and IL-18. Proinflammatory cytokines, such as
activated forms of IL-1β and IL-18, are extracellularly released through pores, which leads
to the onset of inflammatory responses. Gasdermin D (GSDMD) is a 242-amino acid protein
expressed predominantly on the surfaces of the immune and epithelial cells of the small
intestinal mucosa [26]. GSDMD has an N-terminal effector and a C-terminal inhibitory
structural domain, with the former being the primary functional structural domain involved
in cell death via cellular scorching and the latter serving as an autoinhibitor [27]. In vivo, AS-
IV, as an exogenous antioxidant, reduces myocardial infarction-induced myocardial fibrosis
and cardiac remodeling by inhibiting the ROS/caspase-1/GSDMD signaling pathway [28].
Bone marrow-derived macrophages (BMDMs) are commonly used as primary macrophages
for developing inflammatory cell models. In vitro, AS-IV stimulates BMDMs, which
possibly alleviates the cardioprotective effect of AS-IV on macrophage death.

3.3. AS-IV Regulates Mitochondrial Gene Mutations

Peroxisome proliferator-activated receptor (PPAR) is a member of the intranuclear
receptor superfamily of transcription factors that regulate the expression of target genes.
PPARγ influences NF-κB signaling, signal transcription, and protein-1-mediated signaling
pathway activation [29,30]. These pathways can be suppressed by inhibiting the target
gene promoter and transcription. FOXO1 maintains the normal response of β cells to
acute oxygen stress, which protects them from oxidative damage by the FoxO protein [31].
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Furthermore, AS-IV inhibits oxidative stress in DN by activating the PPARγ–Klotho–FoxO1
axis [32].

Oxidative stress due to ROS is a key activating factor of apoptosis, and superoxide
dismutase is one of the main free radical–scavenging enzymes in the body [33]. ROS
production, inflammation, and endoplasmic reticulum stress induce podocyte apoptosis.
Hyperglycemia, a common stimulus in DN; moreover, inhibits podocyte adhesive func-
tion and increases ROS production in mast cells (MCs) in vivo and in vitro. Against this
background, the antioxidant and antiapoptotic effects of AS-IV were tested on podocytes
under diabetic conditions. The results revealed that AS-IV improved podocyte apopto-
sis, cysteine-3 activation, and oxidative stress. In addition, AS-IV pretreatment partially
restored the mRNA and protein expressions of the apoptosis-promoting gene Bax and
the apoptosis-inhibiting gene Bcl-2. These findings indicate the potential of AS-IV as a
novel antioxidant.

3.4. AS-IV Regulates Calcium Homeostasis

AS-IV modulates calcium homeostasis to mitigate cellular oxidation. In a study,
diabetic rats were reported to exhibit significantly increased ROS levels and decreased su-
peroxide dismutase and glutathione–Px activities; however, AS-IV administration reversed
these changes in a concentration-dependent manner [34]. Particularly, AS-IV prevented
hyperglycemia-induced vascular endothelial dysfunction by inhibiting oxidative stress
and calpain-1 activation. RPC6, a critical ion channel, is expressed in the kidney, mainly
in podocytes. Reportedly, TRPC6 present in podocytes is central to cell signaling regula-
tion in podocytes for calcium homeostasis. AS-IV may prevent hyperglycemia-induced
podocyte apoptosis by downregulating TRPC6, which may be mediated by the calcium-
regulated phosphatase/NFAT signaling pathway [35]. Therefore, AS-IV could serve as a
potential therapeutic agent for diabetic neuropathy. The antioxidant mechanism of AS-IV
is illustrated in Figure 3.

Molecules 2023, 28, x FOR PEER REVIEW 6 of 17 

 

 

podocyte apoptosis by downregulating TRPC6, which may be mediated by the calcium-
regulated phosphatase/NFAT signaling pathway [35]. Therefore, AS-IV could serve as a 
potential therapeutic agent for diabetic neuropathy. The antioxidant mechanism of AS-IV 
is illustrated in Figure 3. 

 

 Inhibition, downregulation, or mitigation 

 Promote, upregulate, or restore 

Figure 3. The antioxidative mechanism of AS-IV. Annotation: Bcl-2: B-cell lymphoma-2; Bax: BCL2-
Associated X; Caspase-1: cysteinyl aspartate specific proteinase-1; TRPC6: Transient receptor poten-
tial cation channel 6; PPAR: Peroxisome proliferator-activated receptor; DN: Deoyribonucleic acid; 
IL-18: Interleukin 18; IL-1β: Interleukin 1β; ROS: Reactive oxygen species. 

4. Neuroprotective Effects 
Following intravenous AS-IV administration, AS-IV is rapidly absorbed and widely 

distributed in the liver, kidneys, lungs, heart, and spleen. However, the distribution of AS-
IV in the brain is limited owing to the presence of the blood-brain barrier. AS-IV displays 
a significant protective effect against ischemia–reperfusion injury; however, the potential 
underlying mechanisms remain unknown. 

4.1. Preventing Neuronal Loss 
AS-IV has been observed to prevent dopamine neuronal loss and behavioral deficits 

in a mouse model of Parkinson’s disease (PD) [36]. In addition, AS-IV promotes mitochon-
drial autophagy and reduces the accumulation of damaged mitochondria and mitochon-
drial ROS production, thereby contributing to the inhibition of astrocyte senescence. SH-
SY5Y cells can transform into neuron-like cells and have been widely exploited in in vitro 
experimental studies of neurological disorders. AS-IV exhibits considerable neuroprotec-
tive effects against MPP+-induced SH-SY5Y cell death by inhibiting Bax/Bcl-2-related 
apoptotic pathways and ROS production [37]. 

PD is characterized by the persistent and irreversible loss of dopamine neurons and 
the formation of Lewy bodies in the substantia nigra of the midbrain. Although the exact 
etiology of this disease is yet to be clarified, the probable mechanisms include impaired 
energy metabolism, oxidative stress, and abnormal protein accumulation. 

4.2. Action on Neural Stem Cells 

Figure 3. The antioxidative mechanism of AS-IV. Annotation: Bcl-2: B-cell lymphoma-2; Bax: BCL2-
Associated X; Caspase-1: cysteinyl aspartate specific proteinase-1; TRPC6: Transient receptor potential
cation channel 6; PPAR: Peroxisome proliferator-activated receptor; DN: Deoyribonucleic acid; IL-18:
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4. Neuroprotective Effects

Following intravenous AS-IV administration, AS-IV is rapidly absorbed and widely
distributed in the liver, kidneys, lungs, heart, and spleen. However, the distribution of AS-
IV in the brain is limited owing to the presence of the blood-brain barrier. AS-IV displays
a significant protective effect against ischemia–reperfusion injury; however, the potential
underlying mechanisms remain unknown.

4.1. Preventing Neuronal Loss

AS-IV has been observed to prevent dopamine neuronal loss and behavioral deficits in
a mouse model of Parkinson’s disease (PD) [36]. In addition, AS-IV promotes mitochondrial
autophagy and reduces the accumulation of damaged mitochondria and mitochondrial
ROS production, thereby contributing to the inhibition of astrocyte senescence. SH-SY5Y
cells can transform into neuron-like cells and have been widely exploited in in vitro ex-
perimental studies of neurological disorders. AS-IV exhibits considerable neuroprotective
effects against MPP+-induced SH-SY5Y cell death by inhibiting Bax/Bcl-2-related apoptotic
pathways and ROS production [37].

PD is characterized by the persistent and irreversible loss of dopamine neurons and
the formation of Lewy bodies in the substantia nigra of the midbrain. Although the exact
etiology of this disease is yet to be clarified, the probable mechanisms include impaired
energy metabolism, oxidative stress, and abnormal protein accumulation.

4.2. Action on Neural Stem Cells

After the injury, neural stem cells are attracted to some factors and cross the blood-
brain barrier to accumulate at high levels at the injury site; hence, these cells can be
targeted for treating neurological diseases such as PD and Frozen disease. AS-IV counters
the radiation-induced senescence of brain cells by regulating the p53-p21 and p16-RB
senescence-regulated signaling pathways and JNK-p38 phosphorylation [38,39]. Further-
more, the combination of AS-IV and ginsenoside Rg1 augments the protective effects
against cerebral ischemic injury via antiapoptotic and anti-inflammatory effects. The
underlying mechanism is probably related to the inhibition of NF-κB and JAK1/STAT1
signaling pathway activation upon cerebral ischemia and the regulation of endoplasmic
reticulum stress [38]. These findings signify that AS-IV has potential therapeutic value
for neuroprotection.

5. Antifibrotic Effects

Fibrosis can develop in various organs, and increased fibrous tissue in the organs,
decreased parenchymal cells, and excessive deposition of extracellular matrix (ECM) in
the tissues are the main pathological changes involved. AS-IV exerts anitpulmonary,
anithepatic, antirenal, and antimyocardial fibrotic effects. Furthermore, various growth
factors, cytokines, and multiple cell signaling pathways interact and participate in these
antifibrotic effects. Figure 4 summarizes the anti-fibrotic mechanism of AS-IV.

5.1. Improvement of Renal Fibrosis

Iron death is an inevitable pathological change in end-stage renal disease and is
involved in the development of renal fibrosis caused by various diseases. In particular,
iron death is a novel form of iron-dependent, nonapoptosis-regulated cell death mainly
caused by the reduced biological activity of glutathione peroxidase 4 either because of
lipid peroxidation or ROS accumulation [40]. AS-IV prevents iron death in subarachnoid
hemorrhage by activating the Nrf2/HO-1 pathway [41]. In a high glucose-induced mouse
model, AS-IV has been found to mitigate the effects of high glucose by increasing mir-138-
5p expression in retinal pigment epithelial cells and promoting Sirt1 and Nrf2 expression
in the nucleus. In addition, AS-IV has been shown to inhibit miR-138-5p expression and
enhance Sirt1/Nrf2 activity and cellular antioxidant capacity to mitigate the increase in
iron [32]. Epithelial–mesenchymal transition (EMT) is a key process and a direct outcome
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of renal fibrosis [42]. A study has reported that EMT is associated with decreased epithelial
E-cadherin and increased α-smooth muscle actin (α-SMA) expression in mesenchymal
cells [43]. In addition, Xu [44] has demonstrated that AS-IV attenuates oxidative stress by
inhibiting glycated albumin-induced EMT, alleviating α-SMA expression, and increasing
E-cadherin expression in renal proximal tubular cells. Table 1 summarizes the target or
pathway of AS-IV in renal fibrosis.
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Table 1. Target or pathway of AS-IV in renal fibrosis.

Research Subject Induction Methods Mechanism Ref.

T2DM Alleviates renal tubular epithelial–mesenchymal transdifferentiation
through the CX3CL1-RAF/MEK/ERK signaling pathway [45]

Male diabetes nephropathy rats and
High-fat diet consisting of 8% lard,

10% yolk powder, 18% sucrose, and
0.5% sodium cholate

Downregulation of CD36 expression mediates FFA uptake and lipid
accumulation [46]

diabetic nephropathy rats using streptozotocin administration
in vivo

Inhibiting the excessive proliferation of HG-induced RMCs decreased
TGF-β1, Smad3, col1, α-SMA mRNA and protein expression, and

increased Smad7 mRNA and protein expression in vitro and in vivo
[47]

Male C57BL/6 mice with renal fibrosis Unilateral ureteral occlusion (UUO) Inhibition of TGF-β1 induced EMT [48]

diabetic KK-Ay mice Feeding KK-Ay mice a high-fat diet Inducing autophagy and inhibiting MC activation through the
SIRT1-NF-κB pathway [49]

Male C57BL/6 mice with diabetes Streptozotocin-induced Inhibition of the activation of the MEK1/2ERK1/2-RSK2 signaling
pathway [50]

UUO mice Unilateral ureteral obstruction Inhibiting inflammation via the TLR4/NF-κB signaling pathway [51]

Primary renal fibroblasts of BALB/c
mice Treated with TGF-b1 Inhibition of the C and NF-κB signaling pathways [52]

Male Sprague–Dawley rats with renal
fibrosis

Unilateral ureteral obstruction in vivo
and TGF-b1-stimulated

Inhibition of TGF-b1, CTGF, a-SMA, and collagen matrix expression,
decrease in serum creatinine and urea nitrogen, and upregulation of

Smad7, thereby blocking upregulation of TGF-b1, CTGF, and a-SMA, and
activation of phosphorylated-Smad2/3

[53]

Male SPF Wistar rats with unilateral
ureteral obstruction Unilateral ureteral obstruction Inhibition of tubular epithelial–mesenchymal transdifferentiation,

fibroblast activation, and an increase in NO production in the kidney [54]

Annotation: T2DM: Type 2 Diabetes Mellitus; CD36: Platelet glycoprotein 4; TGF-β1: Transforming growth factor
beta 1; EMT: Epithelial-mesenchymal transition; MEK1: Mitogen-activated proteinkinase kinase 1; TLR4: Toll-like
receptor 4; CTGF: Connective tissue growth factor.
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5.2. Improvement of Cardiac Fibrosis

AS-IV is effective in preventing and treating cardiovascular diseases, with multiple
targets involved in its pharmacological action. The protective effects of AS-IV on the
cardiovascular system can be classified into five categories: antimyocardial hypertrophy,
anti-ischemia-reperfusion injury, antioxidative stress, Ca2+ overload inhibition, and vascu-
lar endothelial cell modulation. Multiple mechanisms are involved in the protective effects
of AS-IV on the heart. Modulation of cellular signaling pathways, activation or inhibition of
related gene expression, and alteration of intracellular calcium ion concentration in cardiac
myocytes are a few examples. AS-IV inhibits high glucose-induced oxidative stress and
autophagy and protects cardiomyocytes from injury via the miR-34a/Bcl2/(LC3II/LC3I)
and pAKT/Bcl2/(LC3II/LC3I) pathways [42]. In addition, AS-IV inhibits apoptosis under
various pathological conditions in vivo and in vitro. Moreover, AS-IV has been reported to
inhibit the activation of the FAS/FASL signaling pathway in CVB3-induced viral myocardi-
tis (VM) [55]. Therefore, it is evident that astragaloside has a wide range of therapeutic
effects for the improvement of cardiac fibrosis. Based on the findings of current studies, it
can be used to treat physical injuries caused by hypoxia and ischemia, viral diseases, and
novel proangiogenic agents. Table 2 summarizes the target or pathway of AS-IV in cardiac
fibrosis.

Table 2. Target or pathway of AS-IV in cardiac fibrosis.

Research Subject Induction Methods Mechanism Ref.

Male C57BL-6J mice with cardiac
fibrosis Isoprenaline

Increase of Akkermansia, Defluviitaleaceae_UCG-011, and
Rikenella abundance and modulation of amino acid

metabolism
[56]

Diabetic rats High glucose/high fat and
hypoxia culture condition Prevented apoptosis and restored cardiac function in MI [57]

Sprague–Dawley male rats with
cardiomyopathy Adriamycin

Suppressed oxidative stress to counter type I and III
collagens, TGF-β, NOX2, and NOX4 expression, and

SMAD2/3 activity in the left ventricles
[58]

Cardiac fibrosis rats Isoprenaline Inhibited cardiac fibrosis by targeting the
miR-135a-TRPM7-TGF-β/Smads pathway [59]

Male BALB/c mice with cardiac
fibrosis Isoprenaline Inhibition of the NLRP3 inflammasome pathway [59]

Cardiac fibrosis rats Isoprenaline Inhibited hypoxia-induced cardiac fibrosis in vivo and
in vitro is associated with reduced expression of TRPM7 [60]

Male healthy Sprague-Dawley
rats with cardiac fibroblast Isoprenaline

Inhibited ISO-induced cardiac fibrosis proliferation and
collagen production through negative regulation of

ROS-mediated CT-1 upregulation
[61]

Sprague–Dawley rat pups (age,
1–3 days; weight, 7 ± 2 g) Isoprenaline Inhibited ISO-induced cardiac fibrosis by suppressing

ROS-mediated MAPK activation [62]

CVB3-induced inbred male
BALB/c mice CVB3 Downregulated TGF-β1-Smad signaling [63]

Acute viral myocarditis BALB/c
mice CVB3 Downregulated TGF-β1-Smad signaling [63]

Annotation: NOX2: NADPH oxidase2; NLRP3 Nucleotide- binding oligomerization domain, leucine- rich repeat,
and pyrin domain- containing 3; TRPM7: Transient receptor potential melastatin 7; MAPK: Mitogen-activated
protein kinases.

5.3. Improvement of Liver Fibrosis

Hepatic fibrosis is a pathological process in which hepatic stellate cells (HSCs) are
activated and proliferate owing to diffuse chronic liver injury caused by various factors,
resulting in the excessive synthesis of extracellular collagen and excessive ECM deposition.
Fibrosis is a repair response of the body to chronic liver injury. A previous study has shown
that liver fibrosis and early cirrhosis are reversible [64]; hence, inhibiting or even reversing
the progression of liver fibrosis is crucial for improving the quality of life of patients and
the prognosis of liver disease. Rendong et al. [65] have reported that AS-IV exerts an



Molecules 2023, 28, 6118 9 of 16

ameliorative effect on CCl4-induced liver fibrosis in rats. A possible mechanism underlying
this effect is the downregulation of N-cadherin, α-SMA, and TGF-β1 protein expression
along with the upregulation of E-cadherin protein expression. Zhongying et al. [66] have
demonstrated that AS-IV inhibits the inflammatory response and plays a vital role in
reducing collagen expression by inhibiting the PI3K/Akt/mTOR signaling pathway. The
model group exhibited higher levels of α-SMA and TGF-β than the astragaloside group,
which suggests that AS-IV significantly improves liver function and liver fibrosis-related
protein factors.

Nonalcoholic fatty liver disease (NAFLD) is a major form of chronic liver disease
worldwide. AS-IV has been shown to significantly reduce liver tissue damage and serum
aspartate transaminase, alanine aminostransferase, and triglyceride levels in NAFLD mice.
AS-IV also reduced ROS and malondialdehyde levels and inhibited the LPS-induced
production of proinflammatory cytokines (IL-6 and TNF-α) in RAW264.7 cells. Moreover,
it downregulated 5-LO and leukotriene B4 expression in NAFLD mice and restored Bax
and Bcl-2 expression in PA-treated LO2 cells [67].

Research on primary hepatocellular carcinoma has demonstrated that AS-IV admin-
istration delays its development by continuously inhibiting the development of fibrosis
via its therapeutic efficacy. Regulation of the pSmad3C/3L and Nrf2/HO-1 pathways,
particularly in terms of modulating the reversibility and antagonism of pSmad3C and
pSmad3L and promoting Nef2 phosphorylation, is the mechanism involved [66].

6. Antitumor Effects

Recently, AS-IV has been reported to exhibit significant antitumor activity [68], indicat-
ing its potential as a novel anticancer drug. Protein kinase B (AKT)/endothelial nitric oxide
synthase (eNOS), and calpain-1/NF-κB pathways modulate the immune system, regulate
noncoding RNA expression, and mediate the sensitivity of anticancer drugs.

6.1. Modulation of the Immune System

In vivo studies have demonstrated that AS-IV can enhance the immune response and
suppress lung cancer. Within the tumor microenvironment, tumor-associated macrophages
(TAMs) are a crucial population of inflammatory cells that can polarize into the M2 pheno-
type and promote tumor progression. AS-IV exerts its effects by partially inhibiting the M2
polarization of macrophages via the AMPK signaling pathway. This inhibition ultimately
leads to a reduction in the growth, invasion, migration, and angiogenesis of lung cancer
cells. Therefore, the ability of AS-IV to limit lung cancer metastasis may be attributed to
its modulation of TAMs and the immune response [69]. AS-IV has also been found to
substantially suppress the migration and invasion of A549 cells by inhibiting the expression
of E-cadherin, integrin-β1, MMPs, and Tregs; activating cytotoxic T lymphocytes; and
blocking the PKC-α–extracellular regulatory protein kinase (ERK)1/2–NF-κB signaling
pathway [70]. In another study, AS-IV administration (50–200 mg/kg, 7 days) clearly
increased the proliferation of T and B lymphocytes and antibody production both in vitro
and in vivo but inhibited the expressions of IL-1 and TNF-α in peritoneal macrophages
in vitro [71].

6.2. Control of EMT-Associated Autophagic Pathways for Tumor Suppression

EMT is one of the main features of cellular drug resistance [72]. A study has high-
lighted the role of AS-IV in the inhibition of EMT because it plays a role in most of the
processes associated with AS-IV-related cancers [73]. AS-IV controls several EMT- and
autophagy-related pathways, such as phosphoinositol-3-kinase (PI3K)/protein kinase
B (AKT), mitogen-activated protein kinase (MAPK)/ERK, Wnt/β-linked protein, and
TGF-β/SMAD signaling pathways, which are strongly associated with most tumors. Fur-
thermore, AS-IV has been reported to inhibit EMT and angiogenesis in gastric cancer via
miR-195-5p upregulation, demonstrating its potential therapeutic role in gastric cancer via
miR-195-5p-regulated PD-L1 [74].
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6.3. Enhancing Sensitivity to Anticancer Drugs

Tumor multidrug resistance (MDR) is a major cause of chemotherapy failure and
cancer recurrence. The drug resistance of tumors can be reversed by blocking the MDR
pathway to reduce drug efflux, which can enhance tumor cell chemosensitivity [75]. Qu
et al. [76] constructed tumor-bearing mice using Lewis lung cancer cells and treated them
with AS-IV. They reported that AS-IV slowed down the proliferation of tumor cells and
enhanced cisplatin-induced apoptosis. In addition, AS-IV enhanced taxol-induced apopto-
sis and G2/M-phase blockade in the cell cycle, thereby enhancing the chemosensitivity of
cancer cells to taxol [77,78].

6.4. Reduced Integrin-Linked Kinase (ILK)

ILK has emerged as a receptor-proximal protein kinase, a threonine/serine protein ki-
nase that targets adherent spots and is a hub for numerous biochemical signaling pathways
in the extracellular and intracellular signaling of integrins [79]. ILK acts in various physio-
logical and pathological processes, such as cell-matrix interaction, cell growth, proliferation,
survival, differentiation, tumor metastasis, infiltration, and angiogenesis.

An in vitro study has shown that AS-IV inhibits damage to podocytes owing to
high glucose-associated oxidative stress in a dose-dependent manner and reduces the
expression of ILK [80]. The antioxidative effect of AS-IV may help protect podocytes by
downregulating the expression of ILK [81]. Hence, AS-IV can effectively lower blood
glucose levels, reduce urinary albumin excretion, and improve podocyte adhesive function,
thereby delaying the progression of DN.

Particularly, ILK expression and activity are upregulated in various tumors and are
crucial for tumor diagnosis. Inhibiting ILK activity is an ideal strategy for tumor gene
therapy and oncology drugs owing to its ability to induce cell cycle arrest and apoptosis.
Therefore, astragaloside AS-IV can serve as a potential agent for tumor gene therapy. Table 3
summarizes the target or pathway of AS-IV in tumors.

Table 3. Target or pathway of AS-IV in tumors.

Research Subject Induction Methods Mechanism Ref.

Primary liver cancer mice DEN/CCl4/C2H5OH (DCC) Regulates reversibility and antagonism of pSmad3C and
pSmad3L and promotes the phosphorylation of Nrf2 [66]

Male Wistar rats with bile duct
ligated UUO

Induced accumulation of Nrf2 in the nucleus, synthesized
antioxidant enzymes through negative regulation of

glycogen synthase kinase-3β, scavenged reactive oxygen
species, and suppressed hepatic stellate cell activation in bile

duct-ligated rats

[82]

HSC rat line HSC-T6 Platelet-derived growth factor
(PDGF) family

Promoted cellular senescence and apoptosis by activating the
NF-κB pathway to suppress PDGF-BB-induced HSC-T6

activation
[83]

Liver fibrosis mice Administered carbon
tetrachloride (CCl4) to rats

Inhibition of HSC activation and modulation of the
TGF-β1/Smad signaling pathway [84]

Hepatic stellate cells of rats CCL4 Inhibition of HSC activation and modulation of the
TGF-β1/Smad signaling pathway [84]

Liver fibrosis C57BL/6 mice Injection with DMN Decreased collagen deposition, hydroxyproline content, and
α-SMA expression levels in the liver tissues [85]

Diabetic-CCL4 rats CCL4 Inhibited PAR2 signaling expression [86]

Male Sprague–Dawley) rats with
Cholestatic liver fibrosis Common bile duct ligation (BDL) Inhibition of the Notch signaling pathway, thereby inhibiting

the abnormal proliferation of biliary epithelial cells [87]

Hepatic stellate cells of normal
male Sprague–Dawley rats

Sequential Pronase and
collagenase perfusion

Inhibits HSC activation by inhibiting the generation of
oxidative stress and associated p38 MAPK activation [88]

Hepatic stellate cells of rats Porcine serum Inhibitory effects on collagen synthesis and proliferation in
HSCs [89]
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7. Miscellaneous

Additional unexplored or intensively researched pharmacological effects of AS-IV are
of interest, particularly its potential for promoting bone regeneration, improving hair loss,
and alleviating constipation.

Both osteoblasts and preosteoclasts contribute to the coupling of osteogenesis and an-
giogenesis and regulate bone regeneration. According to recent reports, AS-IV accelerates
bone regeneration by inhibiting osteoclast formation, preserving preosteoclast cells, and
enhancing platelet-derived growth factor-BB (PDGF-BB)-induced angiogenesis. Further-
more, the AKT/GSK-3β/β-catenin signaling pathway regulated by AS-IV may serve as a
potential target in distraction osteogenesis (DO) therapy [90]. In addition, iron loading, a
common stressor during cellular development, is strongly associated with bone loss and
osteoporosis. A study has observed that AS-IV ameliorates the FACC-induced reduction
in cell viability, proliferation, pluripotency, and osteogenesis in bone marrow stem cells
(BMSCs) [91]. AS-IV has the potential to be developed as a new therapeutic strategy for
iron loading-induced aberrant differentiation of BMSCs and osteoporosis. Based on the
above-mentioned effect of promoting the repolarization of the macrophage phenotype,
which may improve steroid-induced osteonecrosis of the femoral head, AS-IV may exert
several effects. Alleviation of osteonecrosis of the femoral head via the repolarization of
macrophages from an M1-like phenotype to an M2-like phenotype87 [90], promotion of
osteoblasts, alleviation of arthritic symptoms, and reduction of inflammatory cytokines are
a few examples.

Apoptosis and premature termination of hair follicle growth are some of the key
factors in hair loss. AS-IV has been shown to block the Fas/Fas l-mediated apoptosis
pathway and can be used as an alternative treatment for hair loss [92]. However, there are
few experiments and related articles regarding its therapeutic effect on hair loss, and this
biological activity needs more cellular and animal experiments to prove its reliability and
scientific validity.

Intestinal flora and short-chain fatty acids are closely linked to health. Studies have
shown that AS-IV can generate butyric acid by regulating the structure of intestinal flora,
thereby promoting defecation in slow-transmission constipation mice, improving intesti-
nal motility, inhibiting Cajal cell loss [93], and alleviating colonic lesions. This is one of
the major findings of AS-IV in improving constipation. However, as the oral bioavail-
ability of AS-IV is scanty, further experiments are required to prove its reliability and
pharmacodynamic evaluation.

8. Discussion

Recently, an increasing number of natural products from Chinese herbal medicines,
such as chuanxiongzin, danshenone, ginsenoside, and astragalus polysaccharides, have
attracted the attention of researchers owing to their diverse and multitargeted effects. AS-IV,
which has long been used as a key ingredient derived from astragalus and a nutraceutical,
exerts various pharmacological effects on the brain, heart, liver, kidneys, and respiratory
system. Anti-inflammatory, antifibrotic, antioxidant, immunomodulatory, and organ-
protective effects are exerted via numerous signaling pathways in vital organs and systems.
In addition, AS-IV inhibits tumor proliferation and invasion and promotes tumor cell
apoptosis in vitro and in vivo. In addition, astragalus has been used for several years
for treating diabetes and renal disease owing to its antitumor, cerebroprotective, and
multiorgan antifibrotic effects and its ability to alleviate postischemic reperfusion injury in
the heart. AS-IV has also been exploited for treating chronic renal disease characterized by
abnormal ECM accumulation.

The continuous exploration and validation of the biological activities of AS-IV provide
a strong theoretical basis for its development into a clinical drug. However, there are several
gaps in comprehending the specific metabolic processes, metabolites, pharmacokinetics,
and pharmacodynamics of AS-IV in vivo. In subsequent structural modifications, it is
important to consider the ADME (absorption, distribution, metabolism, and excretion)
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properties of triterpenes. AS-IV, being a tetracyclic triterpene saponin in the form of
lanolin ester alcohol, can undergo modifications predominantly in the side chain of the
A-ring at the C-2 and C-3 positions and the D-ring. Common modifications include the
introduction of hydroxyl, ester, and nitrogen-containing groups. The unique backbone of
natural triterpenoids and their numerous modification sites make them highly promising in
various fields. For example, triterpenoids have been shown to possess efficient anticancer
activity and demonstrate biosafety when used as building blocks in structural assembly.
Recently, the emergence of computer-aided drug design and synthetic biology has further
expanded research on triterpenoids. These advancements offer new opportunities for
studying and modifying triterpenoid compounds to enhance their therapeutic potential.

Indeed, researchers have made considerable progress in unraveling the mechanisms
of action of AS-IV in various diseases. However, certain pharmacological mechanisms have
not been completely elucidated, such as its effects on respiratory diseases, wound healing,
hair loss prevention, constipation relief, and bone growth acceleration. These mechanisms
represent potential therapeutic targets for AS-IV. However, the in vivo solubility and
bioavailability of AS-IV after oral administration are not very satisfactory. Some researchers
have obtained a new water-soluble derivative of AS-IV-astragaloside (LS-102) with higher
bioavailability than the parent compound. LS-102 may be a potential agent for the clinical
treatment of obesity and related metabolic diseases. However, the metabolic mechanism
by which AS-IV acts within the cells needs to be evaluated to understand its uptake,
distribution, transformation, and excretion.
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