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Abstract: To explore more efficient and less toxic antibacterial and antifungal pesticides, we uti-
lized 2,6-difluorobenzamide as a starting material and ultimately synthesized 23 novel benzoylurea
derivatives containing a pyrimidine moiety. Their structures were characterized and confirmed
by 1H NMR, 13C NMR, 19F NMR, and HRMS. The bioassay results demonstrated that some of the
title compounds exhibited moderate to good in vitro antifungal activities against Botrytis cinerea
in cucumber, Botrytis cinerea in tobacco, Botrytis cinerea in blueberry, Phomopsis sp., and Rhizoctonia
solani. Notably, compounds 4j and 4l displayed EC50 values of 6.72 and 5.21 µg/mL against Rhizocto-
nia solani, respectively, which were comparable to that of hymexazol (6.11 µg/mL). Meanwhile, at
200 and 100 concentrations, the target compounds 4a–4w exhibited lower in vitro antibacterial activi-
ties against Xanthomonas oryzae pv. oryzicola and Xanthomonas citri subsp. citri, respectively, compared
to those of thiodiazole copper. Furthermore, the molecular docking simulation demonstrated that
compound 4l formed hydrogen bonds with SER-17 and SER-39 of succinate dehydrogenase (SDH),
providing a possible explanation for the mechanism of action between the target compounds and
SDH. This study represents the first report on the antifungal and antibacterial activities of novel
benzoylurea derivatives containing a pyrimidine moiety.

Keywords: benzoylurea; pyrimidine; antifungal activity; antibacterial activity; succinate dehydrogenase

1. Introduction

Pesticides serve as a primary means of preventing and controlling agricultural disas-
ters, such as pests and weeds, thereby ensuring the healthy growth and successful harvest
of crops [1–3]. For a prolonged period, crop yields have been constrained not only by
natural conditions but also by detrimental biological infestations, particularly fungal and
bacterial diseases that have exhibited an exacerbating trend in recent years, jeopardizing
the stable production of crops [4,5]. Although China’s current grain production is suffi-
cient to meet basic needs, the significant amount of money spent annually on pest control
highlights ongoing challenges in this area. While farm chemicals play a crucial role in
disease management, their non-standard use can have adverse effects on ecosystems. The
issue of pesticide misuse has resulted in problems such as excessive residues in crops,
resistance to pesticides, and pollution of water and soil. Therefore, it is imperative to
develop novel pesticides with enhanced biological activity, broad-spectrum sterilization
capabilities, greater efficiency, and reduced toxicity.

Pyrimidine compounds have demonstrated a diverse range of biological activities
in previous studies, encompassing antiviral, antibacterial, fungicidal, insecticidal, and
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herbicidal properties [6–20]. Consequently, a variety of pyrimidine derivatives (Figure 1)
have been successfully developed into commercial pesticides that have made significant
contributions to the smooth functioning of agricultural production. Pyrimidine derivatives
have exhibited promising potential as an initial foundation for the exploration of novel
succinate dehydrogenase inhibitors (SDHIs) [21,22]. Meanwhile, previous research has
demonstrated the effective insecticidal properties of benzoylureas, which are commercially
available as diflubenzuron, fluazuron, and flufenoxuron (Figure 2) [23–25]. These com-
pounds offer numerous advantages including mild environmental impact, low residue
levels, and easy degradation, making them a popular focus in synthetic research for an
extended period. As potent inhibitors of chitin synthesis, benzoylureas exert a remarkably
active inhibitory effect owing to their distinctive mechanism of action. Consequently, re-
search on benzoylurea compounds in the field of insecticidal and acaricidal properties has
reached a relatively advanced stage of development. Recent studies also have revealed that
benzoylurea compounds possess certain fungicidal activity [26]. In addition, the chemistry
of fluorine-containing compounds has undergone significant advancements in recent years.
Inherent characteristics of the fluorine atom, such as its high electronegativity, small atomic
radius, and low polarizability of the C–F bond, contribute significantly to enhancing the
biological activity of fluorinated molecules [27,28]. Thus, the substitution of fluorine con-
tinues to be an appealing strategy in the advancement of drug molecules with enhanced
activity and selectivity.
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The present study drew inspiration from the aforementioned research and employed
the principle of molecular hybridization to strategically combine benzoylurea with a pyrim-
idine moiety, resulting in the design and synthesis of a series of novel benzoylurea deriva-
tives featuring an active pyrimidine group. Then, their in vitro antibacterial and antifungal
activities were determined. Finally, a molecular docking study was conducted to investigate
the binding mode of the target compounds with succinate dehydrogenase (SDH).

2. Results and Discussion
2.1. Chemistry

The synthetic procedures of the target compounds 4a–4w were summarized in Scheme 1.
As shown in Scheme 1, using 2,6-difluorobenzamide as the starting material, the target
compounds were prepared by condensation, acylation, and thioetherification reactions with
the yields of 37.3–97.5%. The structures were confirmed by 1H NMR, 13C NMR, 19F NMR,
and HRMS.
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In the 1H NMR spectra of compound 4l, two singlet peaks at 10.64 and 9.06 ppm
verified the presence of two CONH groups; one multiplet at 7.12–7.09 ppm indicated the
presence of H atoms in the pyrimidine structure. In the 13C NMR spectra of compound 4l,
two singlet peaks at 174.84 and 162.18 ppm revealed the presence of C atoms in the C=O
group; one triplet at 133.99 ppm indicated the presence of C atoms in the CHF2 group. In
addition, the molecular weight of compound 4l was correctly assigned by HRMS data with
the [M + Na]+ ions of m/z 459.05093.

2.2. Biological Evaluations

The in vitro antifungal activities of the target compounds 4a–4w against Botrytis cinerea
in cucumber, Botrytis cinerea in tobacco, Botrytis cinerea in blueberry, Phomopsis sp., and Rhi-
zoctonia solani were evaluated using the mycelial growth rate method, and the preliminary
bioassay results are listed in Table 1. Table 1 demonstrates that the target compounds ex-
hibit certain in vitro antifungal activities against Botrytis cinerea in cucumber (3.65–50.15%),
Rhizoctonia solani (40.88–89.74%), Botrytis cinerea in tobacco (35.74–51.26%), Phomopsis sp.
(21.73–49.84%), and Botrytis cinerea in blueberry (2.83–62.26%). Among them, compounds
4f, 4l, and 4q demonstrate significant in vitro antifungal activity against Botrytis cinerea in
cucumber at 50 µg/mL, with the inhibition rates of 32.52%, 50.15%, and 43.47%, respectively,
which surpass the efficacy of hymexazol (24.64%). Furthermore, compound 4l exhibits
superior antifungal activity (89.74%) against Rhizoctonia solani compared to hymexazol
(71.98%). Additionally, compound 4j demonstrates comparable antifungal activity (49.84%)
against Phomopsis sp., with an efficacy equivalent to that of hymexazol (47.09%).

Table 1. Antifungal activity of the target compounds against the test fungi at concentrations of
50 µg/mL.

Compounds
Inhibition Rate (%) a

Botrytis cinerea
in Cucumber Rhizoctonia solani Botrytis cinerea

in Tobacco Phomopsis sp. Botrytis cinerea
in Blueberry

4a 24.92 ± 2.24 55.41 ± 1.46 51.26 ± 1.60 30.35 ± 1.38 39.94 ± 4.36
4b 15.20 ± 1.36 52.03 ± 1.12 38.99 ± 1.17 27.48 ± 1.43 30.82 ± 1.00
4c 39.51 ± 4.68 51.35 ± 2.55 45.49 ± 1.60 32.27 ± 1.29 55.35 ± 1.31
4d 22.49 ± 2.05 46.96 ± 2.26 37.18 ± 1.25 29.39 ± 0.96 33.96 ± 1.54
4e 21.88 ± 3.46 53.04 ± 1.30 42.24 ± 1.25 28.12 ± 1.14 46.86 ± 2.12
4f 32.52 ± 1.57 54.73 ± 1.38 50.54 ± 1.85 28.12 ± 1.14 44.03 ± 2.90
4g 16.41 ± 1.57 57.09 ± 1.38 50.90 ± 1.17 28.43 ± 0.99 54.72 ± 1.83
4h 21.58 ± 2.82 56.08 ± 1.10 44.77 ± 1.03 37.38 ± 1.02 42.77 ± 4.49
4i 3.65 ± 1.30 54.39 ± 2.49 36.82 ± 1.26 40.89 ± 1.01 46.54 ± 1.56
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Table 1. Cont.

Compounds
Inhibition Rate (%) a

Botrytis cinerea
in Cucumber Rhizoctonia solani Botrytis cinerea

in Tobacco Phomopsis sp. Botrytis cinerea
in Blueberry

4j 18.84 ± 1.86 70.27 ± 1.43 46.93 ± 1.46 49.84 ± 1.47 52.20 ± 3.26
4k 17.33 ± 1.58 47.30 ± 1.43 39.35 ± 1.22 30.35 ± 0.79 45.28 ± 1.58
4l 50.15 ± 1.82 89.74 ± 8.84 47.65 ± 1.21 42.17 ± 1.34 53.77 ± 3.62

4m 30.70 ± 1.55 47.30 ± 1.63 41.16 ± 1.19 25.24 ± 0.87 42.77 ± 2.04
4n 10.94 ± 1.13 46.62 ± 1.57 36.82 ± 1.46 21.73 ± 0.91 34.28 ± 1.77
4o 9.12 ± 0.92 47.30 ± 2.60 40.07 ± 1.54 30.99 ± 0.91 35.85 ± 1.23
4p 20.36 ± 3.33 49.32 ± 1.94 36.10 ± 1.75 23.64 ± 2.38 2.83 ± 1.15
4q 43.47 ± 3.44 57.77 ± 2.62 40.07 ± 1.39 28.75 ± 0.96 36.16 ± 1.41
4r 29.48 ± 2.66 55.41 ± 1.46 37.91 ± 1.20 31.63 ± 0.86 42.14 ± 1.52
4s 15.50 ± 1.09 47.64 ± 1.55 44.77 ± 2.26 30.99 ± 0.91 44.97 ± 1.66
4t 9.42 ± 1.05 40.88 ± 1.12 35.74 ± 1.18 26.20 ± 1.12 26.10 ± 2.81
4u 24.92 ± 2.74 50.00 ± 1.78 39.35 ± 1.09 32.91 ± 1.55 62.26 ± 2.07
4v 12.16 ± 1.79 48.65 ± 1.75 36.46 ± 1.18 38.02 ± 1.08 35.53 ± 1.61
4w 6.38 ± 1.04 51.01 ± 1.61 40.07 ± 1.39 36.42 ± 2.84 29.56 ± 4.12

Hymexazol 24.64 ± 3.09 71.98 ± 2.00 72.88 ± 2.30 47.09 ± 1.69 71.26 ± 4.43
a Average of three replicates.

Meanwhile, the 50% effective concentration (EC50) values of compounds 4j and 4l
against Rhizoctonia solani were also determined and are listed in Table 2. Table 2 shows that
the EC50 values of compounds 4j and 4l against Rhizoctonia solani were 6.72 and 5.21 µg/mL,
respectively, which were similar to that of hymexazol (6.11 µg/mL).

Table 2. The EC50 values of compounds 4j and 4l against Rhizoctonia solani.

Compounds Toxic Regression Equation R2 EC50 (µg/mL) a

4j y = 0.47x + 3.43 0.98 6.72 ± 0.95
4l y = 0.58x + 3.49 0.94 5.21 ± 1.04

Hymexazol y = 0.78x + 4.39 0.99 6.11 ± 1.24
a Average of three replicates.

In addition, the in vitro antibacterial activities of the target compounds 4a–4w against
Xanthomonas oryzae pv. oryzicola and Xanthomonas citri subsp. citri were assessed using the
turbidimeter tests, and the preliminary bioassay results are presented in Table 3. As shown
in Table 3, all the test compounds exhibit lower antibacterial activities against Xanthomonas
oryzae pv. oryzicola and Xanthomonas citri subsp. citri compared to those of thiodiazole
copper at concentrations of 200 and 100 µg/mL.

Table 3. Antibacterial activity of the target compounds against the test bacteria at concentrations of
200 and 100 µg/mL.

Compounds

Inhibition Rate (%) a

Xanthomonas oryzae pv.
oryzicola Xanthomonas citri subsp. citri

200 µg/mL 100 µg/mL 200 µg/mL 100 µg/mL

4a 34.41 ± 2.78 19.46 ± 3.21 48.81 ± 2.68 32.59 ± 2.58
4b 26.36 ± 1.60 19.89 ± 1.91 29.77 ± 1.90 17.0 ± 0.30
4c 10.56 ± 2.70 6.69 ± 3.50 15.39 ± 2.70 7.70 ± 2.40
4d 35.98 ± 2.20 20.54 ± 1.03 19.90 ± 2.39 6.90 ± 2.47
4e 20.58 ± 1.96 19.78 ± 2.63 22.83 ± 2.70 13.32 ± 2.34
4f 35.10 ± 0.93 20.56 ± 3.28 31.09 ± 2.94 24.45 ± 1.55
4g 26.32 ± 1.75 23.22 ± 3.40 52.19 ± 2.71 31.60 ± 2.70
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Table 3. Cont.

Compounds

Inhibition Rate (%) a

Xanthomonas oryzae pv.
oryzicola Xanthomonas citri subsp. citri

200 µg/mL 100 µg/mL 200 µg/mL 100 µg/mL

4h 43.48 ± 2.20 29.03 ± 2.45 38.93 ± 2.80 20.27 ± 2.00
4i 14.79 ± 1.43 6.28 ± 1.27 25.24 ± 2.41 6.98 ± 1.43
4j 30.17 ± 3.07 19.01 ± 2.96 31.66 ± 2.36 16.91 ± 3.75
4k 27.85 ± 3.26 26.85 ± 3.88 41.44 ± 2.64 16.85 ± 1.42
4l 35.78 ± 2.14 19.89 ± 4.16 35.25 ± 2.34 15.14 ± 2.41

4m 29.96 ± 2.12 26.22 ± 1.29 32.45 ± 2.38 15.55 ± 2.56
4n 39.85 ± 2.14 14.82 ± 2.77 32.84 ± 2.63 13.81 ± 0.26
4o 28.02 ± 2.58 17.00 ± 3.30 26.23 ± 2.14 14.03 ± 2.14
4p 18.57 ± 1.90 16.51 ± 2.54 39.43 ± 1.93 18.1 ± 2.86
4q 25.34 ± 1.16 19.01 ± 0.57 46.55 ± 2.95 25.08 ± 2.95
4r 29.44 ± 3.16 16.44 ± 2.41 44.13 ± 3.20 28.81 ± 1.19
4s 16.51 ± 2.03 14.82 ± 3.38 32.55 ± 3.21 11.24 ± 2.17
4t 33.85 ± 2.17 11.06 ± 2.29 30.62 ± 2.21 22.15 ± 2.90
4u 22.22 ± 1.90 17.02 ± 2.01 55.24 ± 1.03 24.77 ± 2.79
4v 21.94 ± 2.01 15.76 ± 3.03 66.80 ± 2.30 24.96 ± 3.02
4w 26.75 ± 1.70 19.85 ± 2.17 55.67 ± 1.75 38.88 ± 2.25

Thiodiazole copper 62.51 ± 1.52 46.42 ± 2.91 76.59 ± 3.10 48.01 ± 2.33
a Average of three replicates.

2.3. Docking Analysis

To elucidate the binding mode of the target compounds to SDH, a molecular docking
simulation was conducted for compound 4l and SDH. As depicted in Figure 3, compound
4l was successfully docked into the active site of the SDH receptor (PDB: 2FBW) with a
favorable binding energy of −10.6 kcal/mol. Notably, the N atom in the pyrimidine ring
formed a hydrogen bond interaction with the amino acid residue SER-17 at a distance of
3.1 Å, while the O atom in the amide group established another hydrogen bond interaction
with the amino acid residue SER-39 at a distance of 2.7 Å.
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3. Materials and Methods
3.1. Materials and Instruments

The melting points (m.p.) of the target compounds were determined on an uncor-
rected XT-4 binocular microscope (Beijing Tech Instrument Co., Beijing, China). Nuclear
magnetic resonance (1H NMR, 13C NMR, and 19F NMR) was conducted on a Bruker NMR
spectrometer (Bruker, Rheinstetten, Germany). High resolution mass spectrometry (HRMS)
was performed on a Thermo Scientic Q Exactive Plus instrument (Thermo Fisher Scientific,
Waltham, MA, USA).

3.2. Chemical Synthesis
3.2.1. Preparation Procedure of Intermediates 2–3

As shown in Scheme 1, 2,6-difluorobenzamide (20 mmol) and CHCl3 (20 mL) were
added to a three-necked flask (50 mL) equipped with a tail gas treatment device (0.25 mol/L
NaOH aqueous solution, 200 mL) on the condenser tube. Oxalyl chloride (40 mmol),
dissolved in CHCl3 (20 mL), was then carefully added dropwise. The mixture was stirred
for 0.5 h under ice bath conditions before being placed in an oil bath at 65 ◦C for reflux
condensation reaction. After the completion of the reaction, the mixture was dried under
pressure to obtain intermediates 2.

The 3-aminothiophenol or 4-aminothiophenol (20 mmol) and CH2Cl2 (40 mL) were
added to a 100 mL three-neck flask, followed by the slow dropwise addition of intermediate
2 (21 mmol) which was dissolved in CH2Cl2 (15 mL). The reaction mixture was allowed
to proceed at room temperature. Upon completion of the reaction, the resulting solid
precipitate was filtered, washed with methanol, dried, and subjected to recrystallization
using anhydrous methanol to obtain intermediates 3.

3.2.2. Preparation Procedure of the Target Compounds 4a–4w

As shown in Scheme 1, intermediate 3 (10 mmol), acetone (20 mL), Cs2CO3 (15 mmol),
and substituted 4-chloropyrimidine (11 mmol) were added to a 50 mL round bottom flask
and reacted at room temperature. Upon completion of the reaction, the resulting solid
precipitate was filtered, washed with methanol, dried, and purified using column chro-
matography to obtain the target compounds 4a–4w. The physical characteristics and the
1H NMR, 13C NMR, 19F NMR, and HRMS data of the target compounds 4a–4w are shown
below. The spectra of 1H NMR, 13C NMR, 19F NMR, and HRMS for compounds 4a–4w are
shown in Supplementary Materials.

2,6-Difluoro-N-((3-(((2-methyl-6-(trifluoromethyl)pyrimidin-4-yl)thio)phenyl)carbamoyl) ben-
zamide (4a). White solid; yield 49.5%; m.p. 149.4–152.7 ◦C; 1H NMR (600 MHz, DMSO-d6,
ppm) δ 11.56 (s, 1H, CONH), 10.40 (s, 1H, CONH), 8.02 (t, J = 2.00 Hz, 1H, Ph-H), 7.78 (d,
J = 7.20 Hz, 1H, Ph-H), 7.67–7.32 (m, 1H, Ph-H), 7.57 (t, J = 7.90 Hz, 1H, Ph-H), 7.45–7.44 (m,
1H, Ph-H), 7.27 (t, J = 8.20 Hz, 2H, Ph-H), 7.19 (s, 1H, pyrimidine-H), 2.64 (s, 3H, pyrimidine-
CH3); 13C NMR (150 MHz, DMSO-d6, ppm) δ 175.09, 168.69, 162.63, 160.02 (d, J = 6.60 Hz),
158.36 (d, J = 7.20 Hz), 154.07 (q, J = 34.67 Hz), 150.63, 139.44, 133.65, 131.16, 130.98, 127.17,
126.76, 123.64 (q, J = 274.13 Hz), 122.73, 112.64 (d, J = 20.55 Hz), 112.61 (d, J = 20.70 Hz),
110.46 (d, J = 2.77 Hz), 25.78; 19F NMR (565 MHz, DMSO-d6, ppm) δ −69.10, −113.49;
HRMS (ESI) m/z calculated for C20H13F5N4O2S [M + Na]+: 491.05695, found: 491.05716.

2,6-Difluoro-N-((3-(((6-(trifluoromethyl)pyrimidin-4-yl)thio)phenyl)carbamoyl) benzamide
(4b). White solid; yield 52.2%; m.p. 150.1–153.4 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ
10.63 (s, 1H, CONH), 9.66 (s, 1H, CONH), 8.97 (s, 1H, pyrimidine-H), 7.78 (s, 1H, Ph-H),
7.48 (d, J = 8.30 Hz, 1H, Ph-H), 7.40 (t, J = 8.10 Hz, 2H, Ph-H), 7.30 (d, J = 7.60 Hz, 1H, Ph-H),
7.05 (s, 1H, pyrimidine-H), 6.93 (t, J = 8.70 Hz, 2H, Ph-H); 13C NMR (150 MHz, CDCl3, ppm)
δ 175.60, 162.53, 161.02 (d, J = 7.35 Hz), 158.98 (d, J = 6.75 Hz), 158.48, 155.03 (q, J = 43.50 Hz),
151.18, 138.69, 133.75 (t, J = 12.60 Hz), 131.49, 130.74, 127.17, 126.73, 122.47, 112.99, 112.45 (d,
J = 25.20 Hz), 112.35 (d, J = 30.60 Hz), 112.21, 112.07; 19F NMR (565 MHz, DMSO-d6, ppm)
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δ −69.05, −113.42; HRMS(ESI) m/z calculated for C19H11F5N4O2S [M + Na]+: 477.04163,
found: 477.04151.

N-(3-(((6-(difluoromethyl)-2-methylpyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluoroben-
zamide (4c). White solid; yield 59.0%; m.p. 162.1–165.4 ◦C; 1H NMR (600 MHz, CDCl3,
ppm) δ 10.70 (s, 1H, CONH), 9.94 (s, 1H, CONH), 7.84 (d, J = 2.40 Hz, 1H, Ph-H),
7.51 (d, J = 8.30 Hz, 1H, Ph-H), 7.48–7.40 (m, 2H, Ph-H), 7.36 (d, J = 7.60 Hz, 1H, Ph-
H), 6.99 (t, J = 8.60 Hz, 2H, Ph-H), 6.79 (s, 1H, pyrimidine-H), 6.37 (t, J = 54.90 Hz, 1H,
pyrimidine-CHF2), 2.71 (s, 3H, pyrimidine-CH3); 13C NMR (150 MHz, CDCl3, ppm) δ
175.06, 168.09, 162.67, 160.95 (d, J = 7.35 Hz), 159.42 (t, J = 30.75 Hz), 158.91 (d, J = 7.35 Hz),
151.44, 138.56, 133.70 (t, J = 12.30 Hz), 131.59, 130.59, 128.00, 126.70, 122.17, 114.26, 112.46,
112.36 (d, J = 25.65 Hz), 112.33 (d, J = 25.65 Hz), 110.40, 109.45 (t, J = 4.35 Hz), 25.72;
19F NMR (565 MHz, DMSO-d6, ppm) δ −113.38, −120.61; HRMS (ESI) m/z calculated for
C20H14F4N4O2S [M + Na]+: 473.06662, found: 473.06658.

N-(3-(((6-ethyl-5-fluoropyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide (4d).
White solid; yield 54.4%; m.p. 165.2–167.9 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.62 (s,
1H, CONH), 10.04 (s, 1H, CONH), 8.55 (d, J = 2.20 Hz, 1H, pyrimidine-H), 7.73 (t, J = 1.90 Hz,
1H, Ph-H), 7.49 (d, J = 7.60 Hz, 1H, Ph-H), 7.46 (m, 1H, Ph-H), 7.41–7.31 (m, 2H, Ph-H),
7.00 (t, J = 8.60 Hz, 2H, Ph-H), 2.85 (m, 2H, pyrimidine-CH2), 1.33 (t, J = 7.60 Hz, 3H, CH3);
13C NMR (150 MHz, CDCl3, ppm) δ 162.59, 160.96 (d, J = 7.20 Hz), 158.93 (d, J = 7.67 Hz),
153.48, 153.48 (t, J = 10.97 Hz), 151.38 (d, J = 8.78 Hz), 137.84, 133.53 (t, J = 12.06 Hz), 131.82,
129.75, 127.10, 126.93, 121.65, 112.45 (t, J = 21.96 Hz), 112.38 (d, J = 25.22 Hz), 24.07, 11.80;
19F NMR (565 MHz, DMSO-d6, ppm) δ −113.44, −135.12; HRMS (ESI) m/z calculated for
C20H15F3N4O2S [M + Na]+: 455.07587, found: 455.07600.

N-(3-(((2-chloro-6-methylpyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide (4e).
White solid; yield 56.6%; m.p. 201.1–203.9 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.70 (s,
1H, CONH), 9.77 (s, 1H, CONH), 7.85 (t, J = 2.00 Hz, 1H, Ph-H), 7.54–7.48 (m, 2H, Ph-H),
7.45 (t, J = 7.90 Hz, 1H, Ph-H), 7.37 (d, J = 7.60 Hz, 1H, Ph-H), 7.02 (t, J = 8.60 Hz, 2H, Ph-H),
6.46 (s, 1H, pyrimidine-H), 2.35 (s, 3H, pyrimidine-CH3); 13C NMR (150 MHz, CDCl3, ppm)
δ 175.64, 169.29, 162.57, 160.99 (d, J = 6.59 Hz), 160.13, 158.96 (d, J = 6.59 Hz), 151.16, 138.57,
134.08 (t, J = 12.06 Hz), 131.69, 130.68, 127.98, 126.81,122.27, 114.34, 112.49 (d, J = 25.23 Hz),
112.46 (d, J = 25.22 Hz), 112.11, 24.02; 19F NMR (565 MHz, DMSO-d6, ppm) δ −114.30;
HRMS (ESI) m/z calculated for C19H13ClF2N4O2S [M + Na]+: 457.03036, found: 457.03080.

2,6-Difluoro-N-((3-(((2-(methylthio)pyrimidin-4-yl)thio)phenyl)carbamoyl)benzamide (4f).
White solid; yield 51.8%; m.p. 232.2–234.9 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.65 (s,
1H, CONH), 9.66 (s, 1H, CONH), 8.14 (d, J = 5.30 Hz, 1H, pyrimidine-H), 7.89–7.75 (m, 1H,
Ph-H), 7.51–7.45 (m, 2H, Ph-H), 7.41 (t, J = 7.80 Hz, 1H, Ph-H), 7.37–7.35 (m, 1H, Ph-H),
7.01 (t, J = 10.02 Hz, 2H, Ph-H), 6.46–6.45 (m, 1H, pyrimidine-H), 2.44 (s, 3H, pyrimidine-
SCH3); 13C NMR (150 MHz, CDCl3, ppm) δ 172.52, 172.22, 162.69, 160.93 (d, J = 6.59 Hz),
158.90 (d, J = 7.68 Hz), 155.82, 151.36, 138.21, 133.83 (t, J = 12.08 Hz), 131.91, 130.20, 128.55,
126.96, 121.83, 112.38 (d, J = 29.60 Hz), 112.35 (d, J = 29.61 Hz), 112.25, 112.13, 14.06; 19F NMR
(565 MHz, DMSO-d6, ppm) δ −113.52; HRMS (ESI) m/z calculated for C19H14F2N4O2S2
[M + Na]+: 455.04172, found: 455.04184.

N-(3-(((2-chloro-5-iodipyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide (4g).
Yellow solid; yield 55.0%; m.p. 192.4–195.1 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.57 (s,
1H, CONH), 8.83 (s, 1H, CONH), 8.52 (s, 1H, pyrimidine-H), 7.81 (t, J =1.90 Hz, 1H, Ph-H),
7.61–7.59 (m, 1H, Ph-H), 7.55–7.50 (m, 1H, Ph-H), 7.44 (t, J = 8.00 Hz, 1H, Ph-H), 7.31 (d,
J = 8.00 Hz, 1H, Ph-H), 7.05 (t, J = 8.80 Hz, 2H, Ph-H); 13C NMR (150 MHz, CDCl3, ppm) δ
175.07, 163.61, 162.15, 160.26, 159.09, 150.55, 137.96, 133.87, 131.51, 129.96, 128.65, 126.53,
121.99, 112.62 (d, J = 25.35 Hz), 112.59 (d, J = 24.98 Hz), 112.08, 89.01; 19F NMR (565 MHz,
DMSO-d6, ppm) δ −114.16; HRMS (ESI) m/z calculated for C18H10ClF2IN4O2S [M + Na]+:
568.91199, found: 568.91179.
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N-(3-(((2-chloro-5-methoxypyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide
(4h). White solid; yield 42.2%; m.p. 167.6–170.4 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ
10.58 (s, 1H, CONH), 9.61 (s, 1H, CONH), 7.90 (s, 1H, pyrimidine-H), 7.71 (t, J = 1.90 Hz,
1H, Ph-H), 7.55 (d, J = 9.18 Hz, 1H, Ph-H), 7.49–7.44 (m, 1H, Ph-H), 7.39 (t, J = 7.90 Hz, 1H,
Ph-H), 7.32 (d, J = 7.80 Hz, 1H, Ph-H), 7.01 (t, J = 8.70 Hz, 2H, Ph-H), 4.02 (s, 3H, pyrimidine-
OCH3); 13C NMR (150 MHz, CDCl3, ppm) δ 162.58, 162.45, 161.00 (d, J = 7.68 Hz), 158.97 (d,
J = 6.59 Hz), 151.76, 151.14, 148.75, 137.74, 136.64, 133.59 (t, J = 12.06 Hz), 131.81, 129.68,
127.15, 126.71, 121.63, 112.46 (d, J = 25.22 Hz), 112.42 (d, J = 25.23 Hz), 112.36, 56.77; 19F NMR
(565 MHz, DMSO-d6, ppm) δ −113.43; HRMS (ESI) m/z calculated for C19H13ClF2N4O3S
[M + Na]+: 473.02551, found: 473.02572.

N-(3-(((2-chloro-5-fluoropyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide (4i).
Yellow solid; yield 40.9%; m.p. 170.1–173.9 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.60 (s,
1H, CONH), 9.37 (s, 1H, CONH), 8.18 (s, 1H, pyrimidine-H), 7.80 (s, 1H, Ph-H), 7.58 (d,
J = 8.10 Hz, 1H, Ph-H), 7.53–7.48 (m, 1H, Ph-H), 7.43 (t, J = 7.90 Hz, 1H, Ph-H), 7.34 (d,
J = 7.80 Hz, 1H, Ph-H), 7.04 (t, J = 8.60 Hz, 2H, Ph-H); 13C NMR (150 MHz, CDCl3, ppm) δ
174.79, 164.88, 162.57, 159.99 (d, J = 7.50 Hz), 159.35, 158.33 (d, J = 7.50 Hz), 150.49, 138.90,
131.21, 130.59, 128.66, 126.46, 122.30, 112.70 (d, J = 22.50 Hz), 112.67 (d, J = 22.25 Hz), 91.87;
19F NMR (565 MHz, DMSO-d6, ppm) δ −113.41, −137.62; HRMS (ESI) m/z calculated for
C18H10ClF3N4O2S [M + Na]+: 464.99000, found: 464.99625.

N-(3-(((5-bromo-2-chloropyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide (4j).
Yellow solid; yield 51.6%; m.p. 136.8–140.2 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.61 (s,
1H, CONH), 9.44 (s, 1H, CONH), 8.38 (s, 1H, pyrimidine-H), 7.77 (t, J = 2.00 Hz, 1H, Ph-H),
7.56–7.54 (m, 1H, Ph-H), 7.52–7.48 (m, 1H, Ph-H), 7.43 (t, J = 7.90 Hz, 1H, Ph-H), 7.32 (d,
J = 7.70 Hz, 1H, Ph-H), 7.03 (t, J = 8.50 Hz, 2H, Ph-H); 13C NMR (150 MHz, CDCl3, ppm) δ
172.13, 162.33, 161.07 (d, J = 7.68 Hz), 159.08 (d, J = 5.48 Hz), 157.85, 150.86, 137.96, 133.74 (t,
J = 12.06 Hz), 131.68, 129.92, 127.32, 126.62, 122.02, 115.48, 112.54 (d, J = 25.23 Hz), 112.50 (d,
J = 25.22 Hz), 112.22; 19F NMR (565 MHz, DMSO-d6, ppm) δ −113.59; HRMS (ESI) m/z
calculated for C18H10BrClF2N4O2S [M + Na]+: 522.92566, found: 522.92273.

N-(3-(((2-chloropyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide (4k). Yellow
solid; yield 50.3%; m.p. 164.3–167.9 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.70 (s, 1H,
CONH), 9.70 (s, 1H, CONH), 8.21 (d, J = 5.50 Hz, 1H, pyrimidine-H), 7.87 (t, J = 2.00 Hz,
1H, Ph-H), 7.54–7.49 (m, 2H, Ph-H), 7.46 (t, J = 7.90 Hz, 1H, Ph-H), 7.38–7.36 (m, 1H,
Ph-H), 7.02 (t, J = 8.60 Hz, 2H, Ph-H), 6.64 (d, J = 5.50 Hz, 1H, pyrimidine-H); 13C NMR
(150 MHz, CDCl3, ppm) δ 176.40, 162.46, 161.04 (d, J = 6.59 Hz), 159.01 (d, J =7.67 Hz), 160.64,
157.93, 150.94, 138.67, 134.01 (t, J = 12.05 Hz), 131.59, 130.75, 127.83, 126.76, 122.36, 115.30,
112.53 (d, J = 25.22 Hz), 112.49 (d, J = 25.22 Hz), 112.05; 19F NMR (565 MHz, DMSO-d6,
ppm) δ −113.49; HRMS (ESI) m/z calculated for C18H11ClF2N4O2S [M + Na]+: 443.01498,
found: 443.01515.

N-(3-(((6-(difluoromethyl)pyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide (4l).
Yellow solid; yield 51.6%; m.p. 121.4–124.7 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.64 (s,
1H, CONH), 9.06 (s, 1H, CONH), 8.97 (s, 1H, pyrimidine-H), 7.89 (t, J = 1.90 Hz, 1H, Ph-H),
7.62–7.60 (m, 1H, Ph-H), 7.53–7.46 (m, 2H, Ph-H), 7.39–7.37 (m, 1H, Ph-H), 7.10 (s, 1H,
pyrimidine-H), 7.05–7.02 (m, 2H, Ph-H), 6.43 (t, J = 54.80 Hz, 1H, pyrimidine-CHF2); 13C
NMR (150 MHz, CDCl3, ppm) δ 174.84, 162.18, 161.14 (d, J = 7.68 Hz), 159.06 (d, J = 7.62 Hz),
158.11, 150.48, 138.59, 133.99 (t, J = 12.06 Hz), 131.53, 130.70,127.70, 126.85, 122.32, 114.11,
112.96, 112.65 (d, J = 26.3 Hz), 112.61 (d, J = 25.23 Hz), 112.18; 19F NMR (565 MHz, DMSO-
d6, ppm) δ −113.39, −120.70; HRMS (ESI) m/z calculated for C19H12F4N4O2S [M + Na]+:
459.05072, found: 459.05093.

2,6-Difluoro-N-((4-(((2-methyl-6-(trifluoromethyl)pyrimidin-4-yl)thio)phenyl)carbamoyl) ben-
zamide (4m). White solid; yield 52.5%; m.p. 159.8–162.9 ◦C; 1H NMR (600 MHz, CDCl3,
ppm) δ 10.71 (s, 1H, CONH), 9.17 (s, 1H, CONH), 7.68–7.66 (m, 2H, Ph-H), 7.56–7.51 (m, 3H,
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Ph-H), 7.07 (t, J = 8.50 Hz, 2H, Ph-H), 6.83 (s, 1H, pyrimidine-H), 2.72 (s, 3H, pyrimidine-
CH3); 13C NMR (150 MHz, CDCl3, ppm) δ 176.15, 168.73, 162.38, 161.12 (d, J = 6.75 Hz),
159.09 (d, J = 7.05 Hz), 154.93 (q, J = 42.90 Hz), 150.97, 139.38, 136.62, 133.69 (t, J = 12.08 Hz),
121.70, 121.50, 112.54 (d, J = 25.05 Hz), 112.51 (d, J = 25.20 Hz), 109.45, 25.81; 19F NMR
(565 MHz, DMSO-d6, ppm) δ−69.11, −113.43; HRMS (ESI) m/z calculated for C20H13F5N4O2S
[M + Na]+: 491.05713, found: 491.05716.

2,6-Difluoro-N-((4-(((6-(trifluoromethyl)pyrimidin-4-yl)thio)phenyl)carbamoyl) benzamide
(4n).White solid; yield 51.2%; m.p. 181.6–184.9 ◦C; 1H NMR (600 MHz, CDCl3, ppm)
δ 10.71 (s, 1H, CONH), 9.04 (s, 1H, CONH), 9.04–9.00 (m, 1H, pyrimidine-H), 7.69 (d,
J = 8.50 Hz, 2H, Ph-H), 7.56 (d, J = 8.50 Hz, 2H, Ph-H), 7.26 (s, 1H, pyrimidine-H), 7.12 (d,
J = 1.40 Hz, 1H, Ph-H), 7.07 (t, J = 10.20 Hz, 2H, Ph-H), 13C NMR (150 MHz, CDCl3, ppm)
δ 176.08, 162.16, 161.20 (q, J = 6.00 Hz), 158.45, 154.63, 150.43, 139.52, 136.68, 133.96 (t,
J = 12.30 Hz), 121.57, 121.26, 112.90 (d, J = 30.9 Hz), 112.88 (d, J = 31.8 Hz), 112.52 (d,
J = 3.65 Hz); 19F NMR (565 MHz, DMSO-d6, ppm) δ −69.04, −113.38; HRMS (ESI) m/z
calculated for C19H11F5N4O2S [M + Na]+: 477.04166, found: 477.04151.

N-(4-(((6-(difluoromethyl)-2-methylpyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluoroben-
zamide (4o). White solid; yield 56.4%; m.p. 210.5–213.8 ◦C; 1H NMR (600 MHz, CDCl3,
ppm) δ 10.70 (s, 1H, CONH), 9.44 (s, 1H, CONH), 7.64 (d, J = 6.40 Hz, 1H, Ph-H),
7.58–7.52 (m, 3H, Ph-H), 7.27 (d, 1H, Ph-H), 7.06 (t, J = 8.30 Hz, 2H, Ph-H), 6.79 (s, 1H,
pyrimidine-H), 6.37 (t, J = 54.90 Hz, 1H, pyrimidine-CHF2), 2.69 (s, 3H, pyrimidine-CH3);
13C NMR (150 MHz, CDCl3, ppm) δ 175.56, 168.05, 162.20, 161.17 (d, J = 5.56 Hz), 159.13 (d,
J = 5.57 Hz), 150.55, 139.24, 136.70, 133.88 (t, J = 11.85 Hz), 122.15, 121.47,114.33, 112.65 (d,
J = 26.85 Hz), 112.62 (d, J = 32.55 Hz), 109.29, 25.72; 19F NMR (565 MHz, DMSO-d6, ppm) δ
−113.67, −120.58; HRMS (ESI) m/z calculated for C20H14F4N4O2S [M + Na]+: 473.06671,
found: 473.06658.

N-(4-(((6-(difluoromethyl)pyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide (4p).
White solid; yield 50.6%; m.p. 179.5–182.6 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.70 (s,
1H, CONH), 9.22 (s, 1H, CONH), 8.95 (s, 1H, pyrimidine-H), 7.66 (d, J = 8.70 Hz, 2H, Ph-H),
7.56–7.54 (m, 3H, Ph-H), 7.08–7.05 (m, 3H, Ph-H), 6.43 (t, J = 54.80 Hz, 1H, pyrimidine-
CHF2); 13C NMR (150 MHz, CDCl3, ppm) δ 175.37, 162.14, 161.20 (d, J = 6.30 Hz), 159.16 (d,
J = 6.60 Hz), 159.12, 158.07, 150.44, 139.34, 136.69, 133.95 (t, J = 12.30 Hz), 121.75, 121.51,
112.69 (d, J = 25.65 Hz), 112.66 (d, J = 25.65 Hz), 112.23; 19F NMR (565 MHz, DMSO-d6, ppm)
δ −113.45, −120.68; HRMS (ESI) m/z calculated for C19H12F4N4O2S [M + Na]+: 459.05075,
found: 495.05093.

N-(4-(((6-ethyl-5-fluoropyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide (4q).
Yellow solid; yield 54.3%; m.p. 171.2–173.7 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ
10.63 (s, 1H, CONH), 9.51 (s, 1H, CONH), 8.55 (d, J = 2.20 Hz, 1H, pyrimidine-H), 7.59 (d,
J = 10.20 Hz, 2H, Ph-H), 7.54–7.45 (m, 3H, Ph-H), 7.05 (t, J = 8.50 Hz, 2H, Ph-H), 2.90–2.76 (m,
2H, pyrimidine-CH2), 1.32 (t, J = 7.60 Hz, 3H, CH3); 13C NMR (150 MHz, CDCl3, ppm) δ
162.21, 161.13 (d, J = 6.75 Hz), 159.10 (d, J = 7.50 Hz), 156.96 (d, J = 18.75 Hz), 155.94 (d,
J = 15.90 Hz), 153.45 (t, J = 4.16 Hz), 153.42, 153.37, 151.33, 150.69, 138.57, 136.93, 136.73,
133.78, 133.70, 133.62, 121.25, 120.93, 120.59, 112.58 (d, J = 25.20 Hz), 112.55 (d, J = 25.20 Hz),
112.33 (t, J = 21.60 Hz), 24.03, 11.78; 19F NMR (565 MHz, DMSO-d6, ppm) δ−113.34, −135.67;
HRMS (ESI) m/z calculated for C20H15F3N4O2S [M + Na]+: 455.07559, found: 459.07600.

2,6-Difluoro-N-((4-(((2-(methylthio)pyrimidin-4-yl)thio)phenyl)carbamoyl)benzamide (4r).
Yellow solid; yield 49.9%; m.p. 170.9–173.5 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.64 (s,
1H, CONH), 9.04 (s, 1H, CONH), 8.13 (d, J = 5.40 Hz, 1H, pyrimidine-H), 7.68–7.58 (m, 2H,
Ph-H), 7.54 (d, J = 8.40 Hz, 3H, Ph-H), 7.07 (t, J = 8.70 Hz, 2H, Ph-H), 6.47 (d, J = 5.50 Hz, 1H,
pyrimidine-H), 2.42 (s, 3H, pyrimidine-SCH3); 13C NMR (150 MHz, CDCl3, ppm) δ 172.73,
172.19, 162.38, 161.11 (d, J = 6.75 Hz), 159.08 (d, J = 6.75 Hz), 155.62, 150.96, 138.78, 136.81,
133.71 (t, J = 12.60 Hz), 122.84, 121.11, 112.55 (d, J = 25.50 Hz), 112.52 (d, J = 25.35 Hz),
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112.27 (t, J = 21.90 Hz), 112.17, 14.05; 19F NMR (565 MHz, DMSO-d6, ppm) δ −114.80;
HRMS (ESI) m/z calculated for C19H14F2N4O2S2 [M + Na]+: 455.04181, found: 455.04184.

N-(4-(((2-chloro-5-(methylthio)pyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide
(4s). Yellow solid; yield 52.7%; m.p. 170.9–173.5 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ
10.60 (s, 1H, CONH), 8.44 (s, 1H, CONH), 8.20 (s, 1H, pyrimidine-H), 7.67 (d, J = 8.10 Hz,
2H, Ph-H), 7.51 (d, J = 8.60 Hz, 3H, Ph-H), 7.07 (t, J = 8.90 Hz, 2H, Ph-H), 2.56 (s,
3H, pyrimidine-SCH3), 13C NMR (150 MHz, CDCl3, ppm) δ 170.34, 162.58, 160.01 (d,
J = 7.05 Hz), 158.35 (d, J = 7.05 Hz), 156.53, 154.99, 150.44, 139.69, 136.77, 129.58, 121.20,
120.91, 112.70 (d, J = 20.85 Hz), 112.67 (d, J = 20.40 Hz); 19F NMR (565 MHz, DMSO-d6,
ppm) δ −113.38; HRMS (ESI) m/z calculated for C19H13ClF2N4O2S2 [M + Na]+: 489.00284,
found: 489.00287.

N-(4-(((2-chloro-5-methoxypyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide
(4t). White solid; yield 54.0%; m. p. 199.1–203.4 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ
10.58 (s, 1H, CONH), 8.39 (s, 1H, CONH), 7.87 (s, 1H, pyrimidine-H), 7.66 (d, J = 8.30 Hz,
2H, Ph-H), 7.52 (d, J = 8.50 Hz, 3H, Ph-H), 7.07 (t, J = 9.00 Hz, 2H, Ph-H), 4.01 (s,
3H, pyrimidine-OCH3); 13C NMR (150 MHz, CDCl3, ppm) δ 162.58, 162.03, 160.00 (d,
J = 6.90 Hz), 158.34 (d, J = 6.75 Hz), 150.57, 150.44, 149.17, 139.55, 139.01, 136.89, 121.19,
120.51, 112.71 (d, J = 20.70 Hz), 112.68 (d, J = 20.40 Hz), 57.65; 19F NMR (565 MHz, DMSO-
d6, ppm) δ−113.41; HRMS (ESI) m/z calculated for C19H13ClF2N4O3S [M + Na]+: 473.02567,
found: 473.02572.

N-((4-(((2-chloro-6-methylpyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide (4u).
White solid; yield 58.1%; m.p. 173.9–175.8 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.69 (s,
1H, CONH), 9.09 (s, 1H, CONH), 7.66 (d, J = 8.20 Hz, 2H, Ph-H), 7.55 (d, J = 8.00 Hz, 3H,
Ph-H), 7.07 (t, J = 8.80 Hz, 2H, Ph-H), 6.46 (s, 1H, pyrimidine-H), 2.35 (s, 3H, pyrimidine-
CH3); 13C NMR (150 MHz, CDCl3, ppm) δ 176.06, 169.06, 162.15, 161.19 (d, J = 7.05 Hz),
160.16, 159.15 (d, J = 6.45 Hz), 150.46, 139.25, 136.76, 134.01 (t, J = 12.90 Hz), 122.15, 121.51,
114.28, 112.71 (d, J = 25.80 Hz), 112.68 (d, J = 27.00 Hz), 111.94, 23.98; 19F NMR (565 MHz,
DMSO-d6, ppm) δ −113.40; HRMS (ESI) m/z calculated for C19H13ClF2N4O2S [M + Na]+:
457.03064, found: 457.03080.

N-(4-(((2-chloropyrimidin-4-yl)thio) phenyl)carbamoyl)-2,6-difluorobenzamide (4v). White
solid; yield 54.3%; m.p. 199.6–202.9 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.66 (s, 1H,
CONH), 8.64 (s, 1H, CONH), 8.20 (d, J = 5.40 Hz, 1H, pyrimidine-H), 7.74–7.66 (m, 2H,
Ph-H), 7.61–7.52 (m, 3H, Ph-H), 7.08 (t, J = 8.70 Hz, 2H, Ph-H), 6.65 (d, J = 5.50 Hz, 1H,
pyrimidine-H); 13C NMR (150 MHz, CDCl3, ppm) δ 176.82, 161.97, 161.23 (d, J = 5.40 Hz),
159.17 (d, J = 4.58 Hz), 160.66, 157.74, 150.02, 139.38, 136.75, 134.18 (t, J = 11.25 Hz), 121.93,
121.60, 115.24, 112.78 (d, J = 25.65 Hz), 112.74 (d, J = 25.20 Hz); 19F NMR (565 MHz, DMSO-
d6, ppm) δ−113.40; HRMS (ESI) m/z calculated for C18H11ClF2N4O2S [M + Na]+: 443.01495,
found: 443.01515.

N-(4-(((5-bromo-2-chloropyrimidin-4-yl)thio)phenyl)carbamoyl)-2,6-difluorobenzamide (4w).
Yellow solid; yield 54.3%; m.p. 248.7–252.1 ◦C; 1H NMR (600 MHz, CDCl3, ppm) δ 10.61 (s,
1H, CONH), 8.36 (s, 1H, CONH), 8.32 (s, 1H, pyrimidine-H), 7.69 (d, J = 8.40 Hz, 2H, Ph-H),
7.54–7.49 (m, 2H, Ph-H), 7.07 (t, J = 8.70 Hz, 3H, Ph-H); 13C NMR (150 MHz, CDCl3, ppm)
δ 172.11, 162.57, 160.01 (d, J = 6.90 Hz), 159.30, 158.38, 158.33 (d, J = 7.05 Hz), 150.44, 139.91,
136.78, 121.24, 120.74, 116.16, 112.70 (d, J = 20.40 Hz), 112.67 (d, J = 20.40 Hz); 19F NMR
(565 MHz, DMSO-d6, ppm) δ −113.37; HRMS (ESI) m/z calculated for C18H10BrClF2N4O2S
[M + Na]+: 520.92517, found: 520.92566.

3.3. Biological Activity Assay
3.3.1. In Vitro Antifungal Activity Test

The in vitro antifungal activities of the target compounds 4a–4w against Botrytis cinerea
in cucumber, Botrytis cinerea in tobacco, Botrytis cinerea in blueberry, Phomopsis sp., and
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Rhizoctonia solani were tested according to the reported method [29]. Each of the target
compounds (5 mg) was dissolved in 1 mL of DMSO, followed by addition of 9 mL of an
aqueous solution containing Tween-20 and 90 mL of potato dextrose agar (PDA) medium.
Subsequently, the resulting PDA medium mixture was poured into 6 Petri dishes to prepare
PDA plates. Afterward, mycelial discs with a diameter of 0.4 cm were aseptically placed
at the center of each PDA plate and incubated at 28 ◦C for a period of 3−4 days until the
mycelia reached a diameter range between 6 and 7 cm. DMSO was utilized as a negative
control, while hymexazol served as a positive control. The inhibition rate I (%) is calculated
using the following formula, where C (cm) and T (cm) represent the fungal diameters of
untreated and treated PDA plates, respectively.

Inhibition rate I (%) = (C − T)/(C − 0.4) × 100 (1)

3.3.2. In Vitro Antibacterial Activity Test

The in vitro antibacterial activities of the target compounds 4a–4w against Xanthomonas
oryzae pv. oryzicola and Xanthomonas citri subsp. citri were tested according to the reported
method [30]. Each target compound (7.5 mg) was dissolved in 150 µL of DMSO and then a
mixture solution of 80 and 40 µL was poured into 15 mL centrifuge tubes containing 4 mL
of a 0.1% Twain aqueous solution. Next, the resulting mixture solutions (1 mL) were added
to test tubes containing 4 mL nutrient broth (NB) medium to prepare test solutions with
concentrations of 200 and 100 µg/mL, respectively. Then, NB medium (40 µL) containing
Xanthomonas oryzae pv. oryzicola or Xanthomonas citri subsp. citri was added to each test
tube mentioned above. The inoculated test tubes were incubated at a temperature of
30 ◦C and a speed of 180 rpm for up to 48 h until the OD595 values reached between
0.6–0.8 during the logarithmic growth phase as determined by monitoring on a Multiskan
Sky1530 spectrophotometer (Thermo Scientific, Wilmington, Poland). DMSO served as the
negative control while thiodiazole copper served as a positive control. Inhibition rate I (%)
was calculated using the following formula, where C represents the corrected turbidity
value of the untreated NB mediums, and T is the corrected turbidity value of the treated
NB mediums.

Inhibition rate I (%) = (C − T)/C × 100 (2)

3.4. Molecular Modeling

The SDH enzyme plays a crucial role in the Krebs cycle, making it an appealing target
for the development of SDHIs based on antifungal agents [31]. In order to investigate the
mechanism of action and target interaction, we selected the binding modes between SDH
and the highly active compound 4l as an example, using Discovery Studio 2.5 software
(Accelrys Inc., San Diego, CA, USA). The three-dimensional (3D) structure of compound 4l
was depicted using ChemDraw Ultra 20.0 software (PerkinElmer, Waltham, MA, USA). The
protein SDH receptor (PDB: 2FBW) structure was obtained from the RCBs PDB database
(https://www.rcsb.org/structure/2FBW, accessed on 1 August 2023). A molecular docking
study was conducted to investigate the binding mode of compound 4l with SDH utilizing
the CDOCKER program of the Discovery Studio 2.5 software following the reported
methodology [32].

4. Conclusions

In this study, a total of 23 novel benzoylurea derivatives containing a pyrimidine
moiety were synthesized through condensation, acylation, and thioetherification reactions.
Compounds 4j and 4l reveal good antifungal activity against Rhizoctonia solani, with EC50
values of 6.72 and 5.21 µg/mL, respectively, which were similar to that of hymexazol
(6.11 µg/mL). Molecular docking simulation revealed that compound 4l interacted with
SER-17 and SER-39 through the hydrogen bond. This study provides a foundation for the
further development of novel benzoylurea derivatives containing a pyrimidine moiety,
which can be used to control plant fungal and bacterial diseases.

https://www.rcsb.org/structure/2FBW
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