molecules

Article

Research on the Effects of Drying Temperature for the Detection
of Soil Nitrogen by Near-Infrared Spectroscopy

Ling Zhou 7, Jiangjun Yao ?*, Honggang Xu 3, Yahui Zhang 3

check for
updates

Citation: Zhou, L.; Yao, J.; Xu, H,;
Zhang, Y.; Nie, P. Research on the
Effects of Drying Temperature for the
Detection of Soil Nitrogen by
Near-Infrared Spectroscopy.
Molecules 2023, 28, 6507. https://
doi.org/10.3390/ molecules28186507

Academic Editors: Giuseppe Vitiello,
Giuseppina Luciani and

Danilo Russo

Received: 1 July 2023
Revised: 24 August 2023
Accepted: 31 August 2023
Published: 7 September 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Pengcheng Nie 34*

College of Information Engineering, Tarim University, 1188 Junken Avenue, Alar 843300, China

Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, 1188 Junken Avenue,
Alar 843300, China

College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road,
Hangzhou 310058, China

Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
Correspondence: yao9698@taru.edu.cn (J.Y.); pcn@zju.edu.cn (P.N.)

Abstract: Nitrogen nitrates play a significant role in the soil’s nutrient cycle, and near-infrared spec-
troscopy can efficiently and accurately detect the content of nitrate-nitrogen in the soil. Accordingly,
it can provide a scientific basis for soil improvement and agricultural productivity by deeply ex-
amining the cycle and transformation pattern of nutrients in the soil. To investigate the impact of
drying temperature on NIR soil nitrogen detection, soil samples with different N concentrations
were dried at temperatures of 50 °C, 65 °C, 80 °C, and 95 °C, respectively. Additionally, soil samples
naturally air-dried at room temperature (25 °C) were used as a control group. Different drying times
were modified based on the drying temperature to completely eliminate the impact of moisture.
Following data collection with an NIR spectrometer, the best preprocessing method was chosen to
handle the raw data. Based on the feature bands chosen by the RFFS, CARS, and SPA methods,
two linear models, PLSR and SVM, and a nonlinear ANN model were then established for analysis
and comparison. It was found that the drying temperature had a great effect on the detection of
soil nitrogen by near-infrared spectroscopy. In the meantime, the SPA-ANN model simultaneously
yielded the best and most stable accuracy, with R? = 0.998, R%, = 0.989, RMSEC = 0.178 g/kg, and
RMSEP = 0.257 g/kg. The results showed that NIR spectroscopy had the least effect and the highest
accuracy in detecting nitrogen at 80 °C soil drying temperature. This work provides a theoretical
foundation for agricultural production in the future.

Keywords: nitrate-nitrogen; near-infrared sensor; drying temperature; PLS; SVM; ANN

1. Introduction

In order for plants to grow and flourish, soil is crucial to agricultural production.
The rate of development, yield, and quality of plants are all influenced by the soil, as it
provides the water, oxygen, nutrients, and strength [1]. Therefore, it is of great importance
to maintain good soil quality, including maintaining and improving soil fertility, structure,
moisture, pH, and biodiversity. Moreover, among the various nutrients in soil, nitrogen is
not only the basis for the formation of plant proteins, chlorophyll, nucleic acids, enzymes,
and other biological molecules but also one of the important elements required for plant
growth [2]. In particular, nitrate—nitrogen is an essential component of nutrient cycling
in soils. Excessive levels of nitrate-nitrogen can lead to environmental problems such as
soil acidification, water eutrophication, and groundwater contamination [3]. Moreover,
nitrate—nitrogen can be converted into nitrite in plants, and nitrite easily combines with
protein to form the carcinogenic substances nitrosamines, which are harmful to human
health [4]. Hence, a close study of soil nitrogen can determine the degree of soil fertility
and offer a scientific basis for plant cultivation, which can provide guiding suggestions
for precise fertilization. It also facilitates the protection of the environment and prevents
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overfertilization and contamination of the soil [5-9]. Accordingly, the rapid and accurate
acquisition of nitrogen content is of great significance to agricultural production and
environmental protection [10].

However, the conventional soil nitrogen testing methods, such as Kjeldahl digestion,
dry combustion, and ion-sensing electrodes, are usually destructive, costly, and time-
consuming [11]. Moreover, since this is affected by the technical level of the operator and
so on, the recognition results will have a certain error and cannot meet the application
of real-time accurate detection scenarios [12,13]. Due to its high efficiency and nonde-
structive accuracy, spectroscopy has been widely used to detect soil nitrogen in recent
years [14]. Near-infrared spectroscopy, which has developed into a mature and major
chemical analysis technique, has especially been applied [15]. For soil, the spectral in-
formation associated with most of the organic radical groups containing hydrogen was
located in the near-infrared region [16,17]. Due to its nondestructive, nonpolluting, and
quick detection process, many scholars have performed research on nitrogen detection
using this technique. In the first place, the use of different algorithms to select the feature
bands on spectral modeling was investigated. Zhang et al. [12] developed two methods
for identifying sensitive bands of soil TN content. The results showed that the eight
sensitive bands selected by the combined ant colony algorithm and mutual information
algorithm (ACO-MI) method had a good mechanism, generality, and predictive ability in es-
timating the total soil nitrogen content. Wang et al. [18] used a public dataset called LUCAS
Soil and proposed a deep-learning-based wavelength screening method for STN features.
With the three other prediction methods, namely ordinary least squares estimation (OLSE),
random forest (RF), and extreme learning machine (ELM) modeling, the results indicated
that the ELM model using STN feature wavelengths performs better. Xiao et al. [19] selected
the characteristic bands of loess, calcareous soil, black soil, and laterite by using competitive
adaptive weighted sampling (CARS) and double least squares and modeled them based on
partial least squares (PLS), inverse interval partial least squares (BIPS), and the backpropa-
gation neural network (BPNN). The results showed that determining the sensitive bands
for different soil types can largely improve the efficiency of nitrogen detection. Secondly,
the soil water content also has a great influence on the spectral detection of nitrogen. Wang
et al. [20] found that for the detection of soil nitrogen, dry soil had a better performance
than moist soil. He et al. [21] treated the soil samples with drying times ranging from 1 h to
8 h, measured the corresponding moisture content at hourly intervals, and modeled the
predictions using partial least squares (PLS) and uninformative variable elimination (UVE).
The experiments suggested that the highest accuracy for the NIR detection of soil nitrogen
was achieved when the soil moisture content was 1.03 percent. An et al. [22] proposed a
moisture absorption correction method (PMAI), which normalized the raw spectral data to
standard spectral data and then used backpropagation network modeling to predict the
total nitrogen content. The results demonstrated that this method can effectively eliminate
the interference of the soil water content on the prediction of the total soil nitrogen content.
Zhou et al. [23] proposed a method of moisture absorption correction index that eliminated
soil moisture interference. A new coupled soil moisture and particle size elimination
method for predicting the total soil nitrogen from discrete near-infrared spectral band
data was then created by combining it with a particle size correction coefficient (PSCI).
In addition, the temperature can also affect the detection of soil nitrogen by using NIR
spectroscopy [24]. Particularly, the drying temperature had an effect on water removal and
urease activity [25]. The effect of soil water content on the determination of soil nitrogen
via NIR spectroscopy was more studied, while the effect of drying temperature on the
determination of nitrogen via NIR spectroscopy was less studied. Coarse samples were
dried at 20 °C for 48 h and used to predict carbon and nitrogen content by using visible
near-infrared spectroscopy and to detect their potential mineralization in nonhomogeneous
soil samples, using comparative methods [26]. Flat-dry samples were dried at 35 °C for
12 h to explore the effects of pretreatment and standardized rewetting of soil samples [27].
Nie et al. [28] studied the effect of drying black, loess, and calcareous soils at different
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temperatures on NIR detection of soil nitrogen, and the results showed that different soil
types have different suitable drying temperatures. In general, drying is usually used to
remove soil moisture and is mostly focused on the detection of soil nitrogen. However, to
our knowledge, there are few optimal drying temperatures considering nitrate-nitrogen
content in the present study, and the mechanism of its influence is not clear. Based on
this, we would like to fill the research gaps in this area and hope to further enhance the
possibility of soil nitrogen detection precision by NIR.

In accordance with the existing studies, this study focused on the effect of soil-drying
temperature on the detection of soil nitrogen by using NIR sensors. After analyzing the
raw soil spectra, preprocessing methods, and characteristic bands, an optimal soil-drying
temperature was derived, and higher prediction accuracy was achieved, with the aim of
improving the theoretical and experimental guidelines for achieving precise fertilization.

2. Results
2.1. Soil Original NIR Spectral Characterization

In this experiment, the spectral information of soil samples with different N concen-
trations at five drying temperatures was collected using a near-infrared sensor. Referring
to Figure 1, the horizontal coordinate of the curve is the wavelength, and the vertical
coordinate of the curve is the average spectral reflectance. The NIR reflectance curves for
soil air-dried at 25 °C, 50 °C, 65 °C, 80 °C, and 95 °C are shown in Figure la—e. Each image
reflects the variation in the reflectance spectra with the wavelengths for soil samples at
different drying temperatures.
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Figure 1. Average NIR reflectance spectra of soils (a) placed at 25 °C, (b) dried at 50 °C, (c) dried at
65 °C, (d) dried at 80 °C, and (e) dried at 95 °C.

The NIR spectra of different soils varied, but the overall trends were similar. It can be
seen that the spectral reflectance vibration in the 900-930 nm and 1680-1700 nm bands is
severe, probably because the NIR sensor has more spectral information overlap and noise
at the edge of the acquisition band [29]. In addition, all spectra have a maximum absorption
peak near 1400 nm, which corresponds to the second overtone of the N-H bond [20].
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The effect of drying temperature on the spectrum shows a certain degree of negative
correlation with the reflectance intensity. As the drying temperature increases from 25 °C to
80 °C, there was an overall increase in the reflection peak near 1680 nm This indicates that
as the soil-drying temperature increases, the spectral absorptivity decreases considerably,
and, thus, the reflectance increases. However, when the drying temperature reaches
95 °C, the spectral reflectance near 1400 nm decreases to within the range of 38 to 42. This,
in turn, suggests that the reflection intensity of the spectrum decreases when the drying
temperature is too high, which similarly took place in Nie et al.’s research [24]. At the
same time, the reflectance curve generally becomes smoother and more concentrated as the
drying temperature increases. The soil spectral curve is the most curved at 25 °C air-dried
placed at room temperature, and the curve becomes smoother and smoother from 50 °C to
65 °C to 80 °C, while the spectral curve is the smoothest and flattest at 95 °C. The reason
for this is that when the soil was placed at 25 °C to air-dry, the soil was affected by the
external environment, and the moisture did not dry completely since the NIR spectrum is
very sensitive to the absorption of moisture. Although the high temperature completely
eliminates the effect of moisture, it perhaps lost some valuable information. For instance,
nitrates are unstable at high temperatures and perhaps volatilize in minor amounts.

When the drying temperature is 80 °C, it can be seen that the effect of the drying
temperature on soil nitrogen detection in the NIR band is reduced to a relatively low level,
and, at this point, the spectral reflectance curves of soil nitrogen are neither too concentrated
nor too dispersed. The results show that the gradient of the reflectance curve became more
pronounced and better detected with the increasing soil nitrogen concentration under
such dry conditions. After the analysis based on the raw spectra, further studies will be
performed regarding the data processing.

2.2. Full-Band Data Analysis

With soil spectral reflectance as the independent variable and nitrogen concentration
as the dependent variable, the soil samples were divided into training and prediction sets
in the ratio of 7:3, and then the original spectra and the other five pretreatment spectra were
modeled and analyzed by using PLS, respectively. The predicted results using different
pretreatment methods at different drying temperatures are given in Table 1 and Figure 2.

Table 1. The prediction effects with different spectral pretreatments and different drying temperatures
by using the partial least squares (PLS).

c Calibration Set Prediction Set
Method rou N
erods P R? RMSEC (g/kg) R RMSEP (g/kg) RPD
25°C 0.907 0.428 0.833 0.509 1.244 7
50 °C 0.944 0.380 0.876 0.472 1.341 7
RAW 65 °C 0.929 0.402 0.874 0.474 1.336 7
80 °C 0.867 0.464 0.662 0.607 1.043 8
95 °C 0.877 0.456 0.718 0.580 1.091 9
25°C 0.977 0.308 0.919 0.425 1.490 6
50 °C 0.954 0.362 0914 0.431 1.468 5
MA 65 °C 0.975 0.315 0.963 0.349 1.815 6
80 °C 0.960 0.351 0.970 0.331 1.913 6
95 °C 0.951 0.369 0.895 0.453 1.396 6
25°C 0.966 0.339 0.865 0.482 1.313 9
50 °C 0.948 0.374 0.895 0.453 1.396 7
WT 65 °C 0.979 0.300 0.912 0.433 1.461 9
80 °C 0.925 0.407 0.768 0.552 1.146 9
95 °C 0.931 0.400 0.802 0.531 1.192 10
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Table 1. Cont.
c Calibration Set Prediction Set
Methods rou N
P R? RMSEC (g/kg) R} RMSEP (g/kg) RPD
25°C 0.976 0.311 0.881 0.467 1.354 10
50 °C 0.985 0.275 0.937 0.399 1.587 10
MSC 65 °C 0.985 0.276 0.920 0.423 1.495 10
80 °C 0.929 0.403 0.723 0.577 1.096 9
95 °C 0.932 0.398 0.733 0.572 1.107 10
25°C 0.959 0.353 0.941 0.392 1.615 5
50 °C 0.976 0.311 0.973 0.322 1.967 6
SG 65 °C 0.977 0.306 0.964 0.347 1.824 5
80 °C 0.975 0.312 0.977 0.309 2.05 7
95 °C 0.964 0.343 0.951 0.375 1.689 7
25°C 0.944 0.383 0.845 0.491 1.245 8
50 °C 0.968 0.336 0.912 0.426 1.435 8
SNV 65 °C 0.966 0.341 0.864 0.474 1.287 8
80 °C 0.959 0.354 0.782 0.543 1.164 10
95 °C 0.932 0.398 0.733 0.572 1.107 10
RAW
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Figure 2. The determination coefficients of the partial least squares (PLS) method after different
spectral pretreatments.

It can be seen that the effect of modeling with PLS after pretreatment from using
different methods at different temperatures is not exactly the same. The effect of each
pretreatment algorithm does not differ much at low and medium temperatures, while
the effect is very unstable at high temperatures, especially at 80 °C and 95 °C. The most
obvious performance is at 80 °C and 95 °C. This shows that high drying temperatures
are not conducive to the detection of soil nitrogen, although it completely eliminates the
moisture effect.

Although the effect of each pretreatment method varies for different temperatures, it is
certain that the R? of the raw unpreprocessed spectral information is essentially the lowest
regardless of the temperature, indicating that some preprocessing of the spectral data helps
to improve the modeling accuracy. After a comprehensive comparison, the best lifting
results were obtained with the SG algorithm for all temperatures, according to Table 1. It
mathematically builds a polynomial regression to fit the curve and estimate its value at the
center of a window of approximation. The algorithm preserves essential features and the
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data trends, while allowing for simple and fast denoising [30]. This, in part, makes it the
best preprocessing method in this study. Consequently, the band selection would be based
on the SG preprocessed data.

2.3. Feature Wavelength Selection

The full-band-based NIR spectral dataset contains 400 wavelengths of data, which
make up a large amount of data, with lots of redundant information unrelated to the spectral
response of soil N. Therefore, random forest (RFFS), competitive adaptive reweighted
sampling (CARS), and continuous projection algorithm (SPA) feature wavelength selection
algorithms were used to find the feature wavelengths associated with the soil nitrogen
content. The maximum number of selected variables was set at 35, and wavelength
variables were selected from 400 spectral variables based on the minimum error. The
number of characteristic wavelengths and bands selected from the five datasets are shown
in Table 2.

Table 2. Characteristic wavelength selection results based on RFFS, CARS, and SPA.

Methods Temperature Variable Number Proportion
25°C 11 2.75%
50 °C 31 7.75%
RFFS 65 °C 16 4%
80 °C 28 7%
95°C 16 4%
25°C 24 6%
50 °C 24 6%
CARS 65 °C 30 7.5%
80 °C 30 7.5%
95°C 33 8.25%
25°C 18 4.5%
50 °C 8 2%
SPA 65 °C 14 3.5%
80 °C 14 3.5%
95°C 12 3%

It is obvious that the number of variables in each dataset was greatly reduced after
the selection of feature wavelengths. The number of wavelengths selected by RFFS ranged
from 11 to 31, the number of wavelengths selected by CARS ranged from 24 to 33, and the
number of wavelengths selected by SPA ranged from 8 to 18. For each temperature dataset,
SPA selected fewer feature wavelengths than CARS and RFFS selected, as shown in Table 2.

To show the differences in the positions of the feature wavelengths selected by the
algorithms more graphically, Figure 3 shows the results of the algorithms filtering the
feature parameters for the average soil spectra at 80 °C, and the RFFS, CARS, and SPA
methods are marked with different colored vertical lines in the figure. The different
algorithms at the same drying temperature selected a different number of variations and
wavelength bands, indicating that the drying temperature had a great influence on the
wavelength variables selected by the algorithm. According to Figure 3, it is evident that the
feature wavelengths selected by CARS and RFFS basically covered the locations where these
differences occur, and there is a certain degree of overlap between the sites. However, the
SPA, although less selective than these in both, covered these bands with large fluctuations
in the spectral curve.
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Figure 3. Screening results of each algorithm for the average spectrum of soil dried at 80 °C.

Therefore, the characteristic wavelengths chosen by these three methods were closely
related to the nitrogen content in the soil. However, in the previous literature [21,29], the char-
acteristic wavelengths of soil N were rarely selected for analysis. Even when a characteristic
wavelength selection algorithm was used, the location of its bands was not specifically or
visually analyzed. To demonstrate whether the selected wavelengths are reliable, a further
analysis was performed using machine-learning and deep-learning modeling.

2.4. Prediction Model and Analysis of Soil Nitrogen Content under Different Drying Temperatures

In this study, PLS, SVM, and ANN models for predicting soil nitrogen content were
developed based on the feature bands selected by the above three algorithms, respectively.
A total of 132 samples were divided into two datasets by using the holdout cross-validation
method; 92 of the samples were used as the training dataset, and the remaining 40 samples
were used as the validation dataset. Furthermore, the modeling results are plotted as a
1:1 relationship diagram, making it easy to visualize the fitting effect of each model.

2.4.1. Partial Least Squares Modeling

The results of the PLS model developed by the automatic adjustment of optimal
parameters method are shown in Figure 4 and Table 3.
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Figure 4. Relationship between actual and predicted values of soil N content based on the PLS model:
(a) RFFS-PLS, (b) CARS-PLS, and (c) SPA-PLS.
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Table 3. Results of PLS modeling based on different feature selection algorithms.

Methods  Temperature  R? RMSEC (g/kg) R’% RMSEP (g/kg) RPD

25°C 0.847 0.479 0.868 0.479 1.320

50 °C 0.932 0.401 0914 0.423 1.444

RFFS-PLS 65 °C 0.971 0.326 0.956 0.364 1.737
80 °C 0.976 0.313 0.957 0.356 1.716

95°C 0.896 0.439 0.852 0.493 1.283

25°C 0.973 0.320 0.959 0.358 1.766

50 °C 0.983 0.286 0.975 0.315 2.088

CARS-PLS 65 °C 0.981 0.294 0.974 0.320 1.979
80 °C 0.985 0.278 0.982 0.292 2.170

95°C 0.975 0.313 0.960 0.356 1.777

25°C 0.972 0.321 0.952 0.372 1.700

50 °C 0.967 0.335 0.969 0.334 1.896

SPA-PLS 65 °C 0.981 0.292 0.972 0.326 1.939

80 °C 0.984 0.284 0.975 0.312 1.959

95°C 0.976 0.336 0.957 0.362 1.750

According to Figure 4, it is clear that the SPA-based PLS model fits a little better at
all five temperatures. However, comparing RMSEP and RPD according to Table 3, it can
be found that the performance of the CARS-based PLS model will be better and more
stable when the two R? values are similar. In this case, the R? at each temperature is above
0.97, the R% is above 0.95, and the RPD reach 2.170 at 80 °C. The results show that the soil
nitrogen is significantly correlated with the selected sensitive bands. This suggests that the
accuracy of training and prediction is acceptable when we conduct qualitative studies of
soil nitrogen, for example, when only a rough estimate of the nitrogen content in the soil
is required. Overall, in terms of PLS modeling, the best prediction is based on the feature
bands selected by the CARS algorithm.

2.4.2. Prediction Model of Soil Nitrogen Content Based on Support Vector Machine

The results based on the developed support vector machine prediction model for soil
nitrogen are shown in Figure 5 and Table 4.

RFFS-SVM CARS-SVM
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65°C v 80°C e 65°C v 80°C 3,
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Figure 5. Relationship between actual and predicted values of soil N content based on SVM model:
(a) RFFS-SVM, (b) CARS-SVM, and (c) SPA-SVM.

From Figure 5, it can be found that the SPA-based SVM model fits better at each
temperature under different feature selection methods. According to Table 4, their Rf,
values are above 0.95, and their RMSEP values are around 0.3. Meanwhile, the RPD is
more stable between 1.6 and 1.8 for different temperatures. This indicates that the support
vector machine model using linear kernel functions has an overall improvement in model
performance at each temperature compared to PLS, thus suggesting that it has a better
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generalization capability and can be better adapted to the linearly differentiable case. For
SVM modeling, the SPA-based method of selecting feature bands to detect soil nitrogen is
the most effective. However, the RPD of both PLS and SVM models did not reach 2, so it
could not be practically applied to the detection of soil nitrate-nitrogen.

Table 4. Results of building SVM models based on different feature selection algorithms.

Methods  Temperature  R? RMSEC (g/kg) RIZ, RMSEP (g/kg) RPD
25°C 0.832 0.488 0.850 0.487 1.255

50°C 0.988 0.267 0.946 0.378 1.619

RFFS-SVM  65°C 0.970 0.327 0.951 0.368 1.663
80 °C 0.939 0.393 0.950 0.370 1.652

95 °C 0.867 0.463 0.867 0.472 1.294

25°C 0.949 0.378 0.941 0.385 1.587

50 °C 0.969 0.343 0.953 0.365 1.675

CARS- 65 °C 0.976 0.308 0.961 0.348 1.755
SVM 80 °C 0.976 0311 0.962 0.346 1.767
95°C 0.838 0.463 0.880 0.460 1.330

25°C 0.978 0.307 0.956 0.359 1.705

50°C 0.965 0.340 0.962 0.346 1.770

SPA-SVM 65 °C 0.977 0.311 0.969 0.329 1.860
80 °C 0.985 0.280 0.970 0.325 1.880

95 °C 0.959 0.351 0.953 0.363 1.683

2.4.3. Prediction Model of Soil Nitrogen Content Based on Artificial Neural Network

The results according to ANN modeling are shown in Figure 6 and Table 5. The
correlation coefficient values of the modeling of nitrogen predicted by the ANN algorithm
are high overall, while the RMSEP values are low, and the relative analytical errors” RPDs
are stable—basically above 2—especially after drying at 80 °C, based on Table 5.
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Figure 6. Relationship between actual and predicted values of soil nitrogen content based on the
ANN model: (a) REFS-ANN, (b) CARS-ANN, and (c) SPA-ANN.

Combined with Figure 6, this shows that, as far as ANN modeling is concerned, the
SPA-based method of selecting characteristic bands to detect soil nitrogen works best,
indicating that the model can be used for quantitative predictive analysis. In general, the
accuracy of the artificial neural network model was greatly compared with both the PLS
and SVM models; thus, we may consider that there is still some nonlinear relationship
between soil nitrogen and the selected sensitive waveform. The artificial neural network
modeling approach can handle nonlinear relationships, meaning that it can better adapt to
complex data and patterns [31]. ANN is also fault-tolerant, so even if some of the data or
network nodes fail, it can still provide a useful result. Taken together, the modeling of soil



Molecules 2023, 28, 6507

10 0of 18

R? of the prediction set

1.00

0.95

0.90

0.85

0.80

25°C 50°C

Temperature

(a)

spectra using the ANN algorithm can be used to predict soil nitrate—nitrogen content with
good results in this study.

Table 5. Results of ANN models based on different feature selection algorithms.

Methods  Temperature R? RMSEC (g/kg) Rf, RMSEP (g/kg) RPD
25 °C 0.985 0.280 0.964 0.350 1.847

50 °C 0.996 0.198 0.984 0.282 2.196

REFS- 65 °C 0.994 0.215 0.986 0272 2279
ANN 80 °C 0.993 0.229 0.981 0.294 2107
95 °C 0.983 0.282 0.898 0.434 1.360

25°C 0.984 0.291 0.927 0.407 1.502

50 °C 0.990 0.249 0.982 0.287 2128

CARS- 65 °C 0.997 0.181 0.983 0.280 2181
ANN 80 °C 0.998 0.166 0.988 0.260 2378
95 °C 0.993 0.224 0.876 0.467 1325

25 °C 0.996 0.199 0.984 0.279 2221

50 °C 0.998 0.173 0.987 0.267 2323

SPALANN  65°C 0.993 0.228 0.987 0.267 2314
80 °C 0.998 0.178 0.989 0257 2411

95 °C 0.997 0.176 0.986 0.281 2352

3. Discussion
3.1. Comparison of the Three Modeling Methods

In this study, three modeling methods, namely PLS, SVM, and ANN, were used for
modeling and analysis to investigate the effect of drying temperature on the detection
of soil nitrate-nitrogen content via the use of NIR sensors. The comparison of the PLS
model, SVM model, and ANN model based on different preprocessing methods is shown
in Figure 7.

RFFS-SVM RFFS-ANN
RFFS-PLS 1.00 . [ CARS-ANN|
[ CARS-PLS = C’;fizxx 100 B SPA-ANN
[ SPA-PLS .
B 095
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80°C 95°C 25°C 50°C 65°C 80°C 95°C 0.80

25°C 50°C 65°C 80°C 95°C
Temperature
Temperature

(b) (c)

Figure 7. Histogram of actual and predicted values of soil N content for different models: (a) modeling
results based on PLS, (b) modeling results based on SVM, and (c) modeling results based on ANN.

According to Figure 7, the prediction models of both PLS and SVM have high corre-
lation coefficients but are unstable. Moreover, ANN is overall higher than both machine-
learning models at each dry temperature. For instance, it can be seen that after drying
at 80 °C, CARS-PLS and SPA-SVM both reach the highest correlation coefficients of the
prediction set, 0.982 and 0.970, respectively, according to Tables 3 and 4. Meanwhile,
SPA-ANN has a high correlation coefficient of 0.989 at this temperature, according to
Table 5. In short, different algorithms have different effects on soil nitrogen detection
at the same temperature. The accuracy and stability of the ANN prediction model are
better than that of the PLS and SVM models. The explanation for this may be that PLS
can better handle the problem of multiple correlations of variables but not the nonlinear
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problem, and SVM can deal with the issue of nonlinear feature interactions, but sometimes
it is hard to find a suitable kernel function. However, ANN, as a deep-learning model,
has better adaptiveness and can automatically adjust the model parameters according to
the changes in data. Moreover, it is robust to noise and outliers and can handle more
complex data situations, so that the model accuracy can reach a high level [32]. In addition,
although it performed best in this study, a large number of experiments are still needed to
verify its stability as a measure of its application value, or a more simplified model can be
continuously explored in subsequent studies.

3.2. Correlation Analysis of Soil-Drying Temperature and Model Accuracy

Based on some of the available studies, the soil-drying temperature has a significant
effect on the detection of nitrogen in the NIR region. In this study, 11 different concentration
gradients of nitrogen solutions were equipped and mixed evenly with soil; they were then
placed at 25 °C for air-drying for 24 days, 50 °C for 36 h, 65 °C for 24 h, 80 °C for 18 h, and
95 °C for 12 h. This was followed by pressing the soil samples and collecting their spectral
data for the modeling analysis.

It can be seen first that the different modeling accuracies at varying temperatures
are distinct, which is shown by the large gap between the algorithms at 25 °C and 95 °C,
according to Figure 8. This shows that the drying temperature does have a great influence
on the detection of soil nitrogen. Due to the influence of different temperatures and the
differences in the principles of different feature selection methods, they pick out different
feature bands combined with different modeling methods, resulting in different modeling
effects.

—=— RFFS-PLS

—e— CARS-PLS
—=4— SPA-PLS

—v— RFFS-SVM
1.00 —— CARS-SVM
' 0.984 0.987 0.987 0.989 0086 —— SPA-SVM
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—e— CARS-ANN
—~— SPA-ANN
3
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=
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S
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25°C 50°C 65°C 80°C 95°C

Temperature

Figure 8. Comparison of modeling performance at different temperatures.

Secondly, there is a gradual improvement in the overall performance of each model as
the temperature increases. From 50 °C to 80 °C, the R%, increased for most of the models.
This is perhaps due to the fact that the effect of moisture gradually decreases with the
increasing temperature. In addition, microbial activity at moderately dry temperatures
may also lead to the nitrification of nitrogen compounds, thus causing nitrogen losses [33].
Whereas the greatest effect was observed at 25 °C, this may be due to the fact that low
drying temperatures may not be able to completely dehydrate the soil. To the best of our
knowledge, moisture also has a large effect on the NIR detection of soil nitrogen.

Finally, the high drying temperature is not conducive to the accurate NIR detection of
soil nitrogen. A comprehensive comparison shows that the best performance was achieved
at temperatures up to 80 °C. However, as the drying temperature increased from 80 °C to
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95 °C, the performance of the models clearly decreased overall. This suggests that although
the effect of moisture is completely eliminated at 95 °C, chemical processes such as thermal
decomposition and volatilization may occur at higher temperatures [34]. In conclusion,
appropriate drying temperatures can be of great help in the accurate detection of soil
nitrogen by near-infrared.

4. Materials and Methods
4.1. Experiment Design

Soil samples were collected from Huai’an, Jiangsu Province, China, which is located
between 32°43/00"-34°06'00" N and 118°12/00”-119°36/30" E. It is a transitional area
between the southern warm temperate zone and the northern subtropical zone, with both
northern and southern climatic characteristics. There are four distinct seasons: a warm and
rainy spring, a hot and humid summer, a cool and dry autumn, and a cold and slightly
rainy winter, with an average annual temperature of about 14 °C and annual precipitation
of about 900 mm. Due to its flat topography and the influence of the Yangtze River basin
and the Huai River basin, this area has a wide variety of soil types. The sandy loess
used in this study is characterized by looseness, porosity, good permeability, and low
water retention.

Soil samples were prepared as follows: Firstly, the collected soil was uniformly sieved
and ground with a 60-mesh (about 0.25 mm) sieve under laboratory conditions, and a
nitrogen solution containing 0.5-2.5 g/kg (with a concentration gradient of 0.2 g/kg)
was prepared by mixing sodium-nitrate solution with distilled water. Next, the nitrogen
solution was thoroughly mixed and blended with the soil samples. A total of 11 nitrogen
concentrations were used, and 12 samples were replicated for each concentration gradient.
Lastly, the experiments were conducted in five groups, and the drying conditions of the
four groups of soil samples were 36 h at 50 °C, 24 h at 65 °C, 18 hat 80 °C, and 12 h at 95 °C
to fully eliminate the effect of soil moisture on the detection of nitrogen in NIR. A control
group was simultaneously set up, and the last group of soils was dried naturally at room
temperature (i.e., 25 °C) for 24 days.

4.2. Spectrum Measurements

The NIR spectrometer used in this experiment was a reflection interferometer with
two integrated tungsten—halogen lamps from Isuzu Optical Corporation (Shanghai, China).
It can collect spectral information, including intensity, reflectance, and absorbance, in the
range of 900-1700 nm. The device has an optical resolution of 10 nm and a signal-to-noise
ratio of 5000:1 in a 1 s scan, and it has dimensions of 120 x 85 x 54 mm and weighs 900 g.
The NIR spectrometer is shown in Figure 9. In this study, the spectral data were collected
by using Isuzu Optics NIRez 2.0, a software for this spectroscopic instrument.

The device should be warmed up for 15 min before the spectroscopic measurement,
and the calibration of the blackboard and whiteboard should be performed. To maintain
the integrity of the original soil spectra and the speed of the detection process, the spectral
acquisition parameters were set at 400 points, and three scans were set to use the average
value as the spectral information of the samples. When scanning soil samples, the samples
should be covered entirely with the light source window to avoid light leakage. It should
be noted that its smooth side was chosen for collection to avoid the effects of cracks. In
this study, the reflectance values of the spectra were recorded and used for subsequent
modeling.
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Figure 9. Experimental instrument—portable NIR spectrometer.

4.3. Spectral Analysis

Near-infrared light is a kind of electromagnetic wave between infrared and visi-
ble light. Its spectral information comes from the overlap of internal vibrations of O-H,
C-H, N-H, and other hydrogen-containing groups with multi-frequencies and combined
frequencies, which can be reflected in the characteristic signals of its spectral region of
organic matter [35]. Furthermore, the spectral signal is stable and easy to obtain. According
to Lambert’s absorption law, the spectral properties vary with the composition or structure
of the material, and the spectra from different groups vary in regard to the position and
intensity of the absorption peaks [36]. It is also affected by the nonuniform distribution
of soil surface texture, density, and internal composition, making it difficult to eliminate
all redundant information, such as overlap, from the spectral data [37-39]. Thus, to re-
duce spectral noise, baseline drift, and interference from other backgrounds, as well as to
distinguish overlapping peaks for the purpose of qualitative or quantitative analysis of
complex mixtures, five different preprocessing methods were used in this study to analyze
the spectral information [40].

In this case, the Savitzky-Golay (S-G) smoothing algorithm uses a weighted average
method to quantify the data in the moving window by polynomial least-squares fit and
emphasizes the centrality of the centroid [41]. The basic idea of the multiplicative scattering
correction (MSC) algorithm is to use the ideal spectrum to represent all spectra linearly
regressed with the sample spectrum and to use the slope and intercept of the linear equation
to correct the original spectrum [42]. The principle of the standard normal variation
(SNV) algorithm is that the absorbance values at each wavelength point satisfy a certain
distribution in each spectrum, and the spectral correction is performed according to this
assumption [43]. The principle of the moving average smoothing (MA) algorithm is to filter
out random noise from the original data by calculating the average of the samples and using
it as a new data point. Wavelet transform (WT) can localize the analysis in time (space)
frequency and gradually refine the signal (function) in multiple scales through the telescopic
translation operation. Thus, the signal is decomposed into different frequency components.
It makes the noise in the signal separate from the signal for denoising purposes [44—-46].

4.4. Feature Band Selection Methods

NIR spectra can provide a large amount of spectral and spatial information related to
soil nitrogen vitality properties. However, they also contain overlapping and redundant
information, so it is necessary to use feature selection algorithms to obtain representative
and important wavelengths to reduce irrelevant information and improve computational
speed. By means of feature extraction techniques, the original high-dimensional spectral
data are mapped or transformed to a lower dimensional space (while still retaining some
of the necessary features of the original data), thus avoiding dimensional catastrophes
to a large extent. This makes subsequent tasks, such as classification or clustering, not
only more stable, efficient, and easy to handle but, more importantly, also yields better
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generalization performance [47]. In this study, the main data analysis software used was
PyCharm 2023.1.2 (Community Edition) software.

4.4.1. Random Forest Feature Selection Algorithm

The random forest feature selection (RFFS) method is based on the properties of
the random forest algorithm (RF). The random forest algorithm is an integrated learning
algorithm based on decision trees that are constructed to perform classification or regression
by building multiple decision trees [48]. Moreover, feature selection is a randomized
approach to split each node and, thus, compare the errors generated in different cases.
That is, the Gini coefficient (gini) and out-of-bag (OOB) error rate are used as evaluation
metrics to measure the contribution of different feature wavelengths. Next, the importance
of different features can be calculated by taking the average values and sorting them in
descending order. Then, based on this order, the corresponding proportion of feature
wavelength variables is eliminated to obtain a new set of feature wavelengths. The above
process is repeated on this basis until m features remain (m is a value set in advance).
Finally, the error rate of each feature wavelength collection obtained in the above process is
compared, and the feature spectral collection with the lowest error rate is selected as the
best combination of feature wavelength variables [49].

4.4.2. Competitive Adaptive Reweighted Sampling Algorithm

The competitive adaptive reweighted sampling (CARS) method is a feature variable
selection method that combines Monte Carlo sampling with regression coefficients of the PLS
model. It mimics the principle of “survival of the fittest” in Darwin’s theory [50]. The adaptive
weighted sampling (ARS) algorithm combined with an exponential decay function is used in
each sampling process. The PLS modeling retains the wavelength variables with the larger
absolute weights of the regression coefficients and removes the wavelengths with the smaller
weights of the regression coefficient values. The PLS modeling is then built based on the new
subset. After several calculations, the subset of variables with the smallest root-mean-square
error is selected based on ten-fold cross-validation. This subset contains the wavelength
variables as the best combination of characteristic wavelength variables [51].

4.4.3. Successive Projections Algorithm

The successive projections algorithm (SPA) is a forward variable selection algorithm
for multivariate calibration to select the wavelength with the least redundancy [52]. It is
based on the principle of first calculating the correlation between each feature variable
and the target variable by calculating the correlation between each feature variable. Then,
the target variables after the projection analysis are used to retain the most useful feature
information. Specifically, it utilizes projection analysis of vectors by projecting wavelengths
onto other wavelengths. The magnitudes of the projection vectors are then compared, and
the wavelength with the largest projection vector is retained as the wavelength to be selected.
Subsequently, based on the calibration model, the projected feature wavelengths are linearly
combined to obtain the final feature spectral set and to realize the data dimensionality
reduction [53]. SPA selects the combination of the near-infrared spectral variables with
minimum redundancy and minimum covariance.

4.5. Model Evaluation Index

The regression model evaluates the detection performance of the established model by
the coefficient of determination (R?; Equation (1)), the root-mean-square error of prediction
(RMSEP; Equation (2)), and the residual prediction deviation (RPD; Equation (3)). In this
study, the coefficient of determination, R?, reflects the ability of the constructed model
to interpret the sample spectra, and RMSEP refers to the error between the predicted
and actual nitrogen content. The RPD assesses the overall performance of the model. In
general, the higher the R?> and RPD and the lower the RMSEP, the better the performance
of the prediction model. In this paper, R? and R represent the correlation coefficients of
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the calibration and prediction sets, respectively, and RMSEC and RMSEP represent the
root-mean-square error of the calibration and prediction sets, respectively. In addition,
Mouazen et al. [54] classified the RPD values as follows. An RPD greater than 3 is a good
quantitative forecast. Values between 2.5 and 3.0 mean that the model will have good
predictive power. RPD values between 2.0 and 2.5 indicate that approximate quantitative
prediction is possible. An RPD value between 1.5 and 2.0 means that the model is poor and
needs to be improved. RPD values below 1.5 indicate that the model has poor predictive
power and is not recommended.

R=Y" -9/ Y (i —9)% (1)

RMSEP = \/ 27:1 (9 —vi)?*/n, ()

RPD = SD,/RMSEPy/n/(n —1), ©)

where §; is the predicted value, ; is the mean of the observed value, y; is the observed
value, and 7 is the number of predicted/observed values. SD), is the standard deviation of
the prediction dataset.

5. Conclusions

The effects of drying temperature for the detection of soil nitrogen by near-infrared
sensors were investigated. To begin with, the NIR reflectance spectral characteristics
of soil samples at five different drying temperatures were explored, and then different
preprocessing methods were applied to denoise the original real-time spectral signals of the
soil. The modeling and analysis were made on the basis of PLS, and the best preprocessing
method SG algorithm was selected to perform the smoothing of the spectra. Next, the RFFS,
CARS, and SPA algorithms were selected to determine the characteristic bands, and the
filtered reflectance spectra were used to establish the PLS model, SVM model, and ANN
model for predicting soil nitrogen content. The findings provided a rapid, convenient,
and environmentally friendly method for the real-time detection of soil nitrogen. They
also provided a theoretical basis for the development of soil management and precision
agriculture. The main conclusions are as follows.

(1) The analysis of soil reflectance spectral characteristics showed that the whole soil
spectral curve shifted along the vertical direction with the change of drying tempera-
ture, which indicated that the varying of temperature and nitrate-nitrogen content of
the drying soil would lead to a change in soil NIR reflectance. However, the spectral
curved near 1400 nm at each drying temperature exhibited a very clear downward
trend, indicating that hydrogen-containing groups of nitrogen, such as N-H, have
stronger absorption in this band.

(2) PLS,SVM, and ANN regression models for predicting the soil nitrate-nitrogen content
were developed using three feature selection algorithms, RFFS, CARS, and SPA,
respectively. The results revealed that the PLS and SVM models could better estimate
the soil nitrate-nitrogen concentration, but the accuracy and stability were inferior
to that of the ANN model. Therefore, the authors concluded that they were not
applicable to this study. The best accuracy of both the SPA-based ANN model and the
highest correlation coefficient was reached at a drying temperature of 80 °C, indicating
that the accuracy of ANN modeling based on deep learning was greatly improved
and had a great advantage in predicting soil nitrate-nitrogen content in real-time.

(3) The soil-drying temperature has a significant effect on the detection of soil nitrate—
nitrogen in NIR. As the drying temperature increased, the accuracy became better,
while the accuracy dropped after the temperature reached 80 °C —95 °C, illustrating
that high drying temperatures were not conducive to the NIR detection of soil nitrate—
nitrogen. In summary, the selection of a suitable drying temperature was of great
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relevance to improve the accuracy of NIR detection of soil nitrogen. In future research,
it may be possible to explore additional preprocessing algorithms and feature selection
methods, as well as to investigate the effect of drying time in addition to temperature.
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