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Abstract: Indole derivatives have garnered considerable attention in the realm of biochemistry due to
their multifaceted properties. In this study, we undertake a systematic investigation of the vibrational
characteristics of a model indole derivative, 6-isocyano-1-methyl-1H-indole (6ICMI), by employing
a combination of FTIR, IR pump-probe spectroscopy, and theoretical calculations. Our findings
demonstrate a strong dependence of the isonitrile stretching frequency of 6ICMI on the polarizability
of protic solvents and the density of hydrogen-bond donor groups in the solvent when the isonitrile
group is bonded to aromatic groups. Both experimental and theoretical analyses unveil a significant
correlation between the isonitrile stretch vibration of 6ICMI and the solvent acceptor number of
alcohols. Furthermore, the polarization-controlled infrared pump-probe conducted on 6ICMI in
dimethyl sulfoxide provides additional support for the potential use of the isonitrile stretching mode
of 6ICMI as an effective infrared probe for local environments.

Keywords: indole derivative; infrared probe; isonitrile group; vibrational characteristics; infrared
spectroscopy; theoretical calculations

1. Introduction

Indole derivatives have attracted considerable attention in the field of biochemistry
due to their diverse properties. These derivatives exhibit a broad range of beneficial
effects, including anti-cancer [1,2], anti-bacterial [3,4], anti-HIV [5,6], anti-oxidant [7], anti-
diabetic [8,9], anti-inflammatory [10–13], and anti-fungal activities [14,15]. One prominent
example of an indole derivative is Tryptophan (Trp), which has proven valuable in ex-
ploring various protein functions by incorporating different functional groups onto the
indole ring. Specifically, cyano-tryptophans have been used as fluorescent [16–19] and
infrared (IR) probes [20–22], enabling the investigation of local environments surrounding
proteins. Among the cyano-tryptophans, 5-cyanoindole has been employed as an effective
IR probe due to its linear correlation between the nitrile stretching vibration and solvent
parameters [20]. Similarly, 4-cyanoindole has been utilized to assess the hydration status
within a local environment, exploiting its Fermi resonance properties [22]. Furthermore, the
incorporation of 5-cyanoindole-Trp has allowed for the examination of hydrogen-bonding
near the Trp gate of the influenza A M2 proton channel [21]. However, the use of cyano-
tryptophans probes in nonlinear IR spectroscopy encounters certain challenges that limit
their feasibility in measurements. These challenges stem from the relatively weak signal
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generated by the limited transition dipole strength of the cyano-tryptophans probe, as well
as its low concentration within biological samples. Consequently, extensive research efforts
have been dedicated to the development of new IR probes, such as ones incorporating ester
or isonitrile groups onto the indole ring [23–25], to overcome these limitations.

This study aimed to investigate the vibrational properties of new indole derivative,
6-isocyano-1-methyl-1H-indole (6ICMI), depicted in Figure 1. By analyzing its behavior in
various solvents, we can determine its suitability as an excellent IR probe. Initially, Fourier
Transform Infrared (FTIR) spectroscopy was employed to examine the behavior of 6ICMI
in different solvents. The influence of solvents on the vibrational properties of the isonitrile
group was assessed using the well-established Kamlet–Taft empirical parameters [26,27].
In addition, other solvent parameters including the solvent acceptor number (AN), the
solvent donor number (DN), and the Kirkwood–Bauer–Magat (KBM) solvation parameter f
(f = (ε− 1)/(2ε + 1)) were also considered [28,29]. AN is a quantitative empirical parameter
for the electrophilic properties of solvents [30], while DN could describe the nucleophilic
behavior of solvents [31]. All the parameters were presented in detail in Table 1. Fur-
thermore, to gain deeper insights into the sensitivity of the isonitrile stretching vibration
frequency to the solvents, theoretical calculations were conducted for 6ICMI immersed in
various solvent systems. Finally, we employed a model solvent dimethyl sulfoxide (DMSO)
to investigate the dynamics properties of 6ICMI in solvents using polarization-controlled
IR pump-probe measurements.
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Figure 1. Structure of the 6-isocyano-1-methyl-1H-indole (6ICMI).

Table 1. Frequency parameters and solvent parameters for 6ICMI in different solvents. The center
frequency (w0(NC), cm−1), and the shoulder frequency (w1(NC)) of the isonitrile stretching band of
6ICMI in various solvents and each solvent with its Kamlet–Taft parameters, π* (polarizability), β
(hydrogen bond acceptor), α (hydrogen bond donor), and ε (dielectric constant) are listed in the table.
Other solvent parameters like AN (acceptor number), DN (donor number), and f (KBM solvation
parameter) are listed in the table as well.

Solvent w0(NC) w1(NC)
a π* β α ε AN b DN f

n-octanol 2122.6 2139.4 0.4 0.81 0.77 10.3 32 0.431
acetonitrile 2128.2 0.75 0.31 0.19 37.5 18.9 14.1 0.480
1,4-dioxane 2124.9 0.55 0.37 0 2.2 10.3 14.3 0.222

N,N-
Dimethylformamide

(DMF)
2125.0 0.88 0.69 0 38.2 16 26.6 0.481

dimethyl sulfoxide
(DMSO) 2125.2 1 0.76 0 47.2 19.3 29.8 0.484

2-propanol 2123.9 2139.7 0.48 0.95 0.76 20.2 33.5 36 0.464
methanol (MeOH) 2125.5 2141.5 0.6 0.62 0.93 33 41.3 30 0.478

tetrahydrofuran (THF) 2123.8 0.58 0.55 0 7.5 8 20 0.406
n-butanol 2123.6 2140.6 0.47 0.88 0.79 17.8 36.8 29 0.459
toluene 2123.7 0.54 0.11 0 2.4 0.1 0.241

n-propanol 2123.9 2140.8 0.52 0.9 0.84 20.1 37.3 19.8 0.464
ethanol(EtOH) 2124.3 2140.7 0.54 0.77 0.83 24.5 37.1 32 0.470

dichloromethane
(DCM) 2128.1 0.82 0.1 0.13 8.9 20.4 1 0.420

a Blanks in this column indicate the absence of distinct shoulder peaks observed for 6ICMI in the corresponding
solvent. b Blanks in this column signify the lack of available data to the best of our knowledge.
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2. Results and Discussion
2.1. FTIR Spectroscopy

A study was conducted to examine the isonitrile stretching vibration of 6ICMI in
a selected pure solvent at room temperature (Figure S1). The obtained spectra showed
the presence of at least two distinct peaks. One peak was consistently observed around
2102 cm−1, while the other peak exhibited unique spectral features depending on the
solvents employed. To analyze the isonitrile vibrational spectral characteristics, each peak
was fitted using a pseudo-Voigt function profile, which yielded a satisfactory fit to the
experimental data obtained from all solvents studied (Table 1). The isonitrile stretching
frequency of 6ICMI was previously determined to be approximately 2120 cm−1 based on
reference work [24,32], and it was found to be significantly influenced by the choice of
solvents. However, the peak observed at around 2102 cm−1 appeared to be independent
of the solvents used. The precise assignment of this peak remains uncertain, but it is
hypothesized that it may arise from the presence of Fermi resonance in 6ICMI. Previous
studies have utilized Fermi resonance to elucidate the hydrogen-bonding characteristics
of different probes [22]. Consequently, it is imperative to conduct further research to
explore the nature of this peak and expand our understanding in future investigations.
In this paper, our focus is solely on the spectral characteristics of the isonitrile vibration
of 6ICMI above 2110 cm−1 in different solvents. Therefore, any discussion or analysis in
the subsequent sections disregards the lower left peaks. To facilitate the comparison, the
Supplementary Materials contain extensive spectral data related to the isonitrile vibration
of two compounds: 5-isocyano-1-methyl-1H-indole (5ICMI) and 2-naphthyl isocyanide
(2NI). These dates are presented in Table S1 and Table S2, respectively.

Table 1 presents the results obtained from the dissolution of 6ICMI in various solvents.
As shown in Figure 2, a single peak corresponding to the isonitrile stretch was observed in
aprotic solvents such as acetonitrile, 1,4-dioxane, DMF, DMSO, THF, and toluene. How-
ever, when 6ICMI was dissolved in alcohols, the appearance of two distinct stretching
peaks suggested the coexistence of non-hydrogen-bonded and hydrogen-bonded isonitrile
groups within the alcohol solvents (represented by the dashed line in Figure 2). Firstly, we
discuss the isonitrile stretch vibration of the former, which was observed at approximately
2123 cm−1, denoted as w0(NC). Comparing the w0(NC) value of 6ICMI with that in n-octanol,
a shift of approximately 6 cm−1 was observed in acetonitrile (see Table 1). This shift in the
stretching frequency can be attributed to the impact of the solvent’s polarizability, which
induced a local electric field affecting the w0(NC) value and causing the frequency shift.
When we transitioned from toluene to acetonitrile, about a 4 cm−1 shift of w0(NC) was
observed in the aprotic solvents. This observed shift suggests a decrease in the π* or ε
parameters, as other factors remained fairly constant between these two solvents. Hence,
this observed shift can be associated with changes in the π* or ε parameters.
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Furthermore, it has been demonstrated that the hydrogen-bonding capability of the
solvent exerts a substantial impact on the isonitrile stretching vibration. For instance,
similar to the behavior observed in 5ICMI, a solvent switch from THF to methanol (MeOH),
characterized by comparable π* and β values but differing α values, caused an about
2 cm−1 shift in the w0(NC) of 6ICMI. Additionally, in protic solvents, the bandwidth of
the isonitrile stretching mode was slightly broader compared to that in aprotic solvents
(Figure 3). This broadening can be attributed to the H-bonding interactions between the
samples and solvents, consistent with the previous findings [22,24]. In aprotic solvents,
the frequency and bandwidth of the isonitrile stretch vibration were comparable, despite
significant differences in the corresponding polarizabilities of the solvents. These findings
collectively suggest that the w0(NC) of 6ICMI is sensitive to the hydrogen-bonding donor
(HBD) ability of the solvents.
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Figure 3. Comparison of the w0(NC) of 6ICMI in pure THF and in a binary solvent with a volume
ratio of THF to methanol of 1:1 (VTHF:VMeOH = 1:1).

These comparisons offer compelling evidence regarding the influence of solvent
polarizability and hydrogen-bonding capacity on the sensitivity of the isonitrile group.
However, a comprehensive quantitative analysis of the FTIR spectra is necessary to better
comprehend the specific contributions of these interactions. While Figure S2 shows that
there is not a straightforward linear relationship between the w0(NC) of 6ICMI and solvent
parameters across all examined solvents, Figure 4 indicates that the results suggest a
discernible dependence of w0(NC) on the KBM solvation parameters, except in non-polar
solvents. It is important to note that the KBM model used in this study is a simplified
theoretical approach [29] which may not fully capture the intricacies of real solutes and
solvents. Nevertheless, it suggests a correlation between the symmetric stretching of
isonitriles and the polarity and proticity of solvents. Protic solvents, such as alcohols,
have the capability to form hydrogen bonds, which can influence the isonitrile band.
Additionally, the polarizability of the solvent can also have an impact on the isonitrile band.
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To differentiate between the solvatochromic effects attributed to hydrogen bonding
and polarizability, we initially directed our attention towards aprotic solvents with a
Kamlet–Taft parameter (α) value of zero (as indicated in Table 1). We investigated the
correlations between w0(NC) and those parameters in these aprotic solvents. However,
no linear relationships were observed between w0(NC) and any the solvent parameters
(Figure S3). These findings align with previous studies [24,32]. Interestingly, a strong linear
relationship was observed between w0(NC) and polarizability (π*) when α was not zero
(Figure 5A) (R2 = 0.99, where R-squared signifies the coefficient of determination for linear
regression). This suggests that w0(NC) can serve as a sensitive indicator of the polarizability
of protic solvents when the isonitrile group is bonded to an indole ring. Notably, the slope of
the linear relationship for 6ICMI was slightly larger than that of 5ICMI (14.7 vs. 13.3). This
observation suggests that the w0(NC) of 6ICMI displayed a higher degree of responsiveness
to variations in the dielectric constant of solvents when compared to that of 5ICMI. As a
result, 6ICMI possesses the potential to serve as a more sensitive infrared probe.
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Subsequently, we conducted further investigations to clarify the relationship between
w0(NC) and the polarizability of protic solvents in cases where the isonitrile group is not
bonded to an indole ring. Remarkably, our findings revealed a robust linear relationship
(R2 = 0.98) even when the isonitrile group was attached to a naphthalene ring (Figure 5B).
However, a previous report indicated that no significant linear relationship was observed
when the isonitrile group was bonded to an aliphatic carbon [32]. These results suggest
that the presence of bulky volume groups, such as an indole ring or a naphthalene ring,
confers stability to the isonitrile group, thereby mitigating interference from neighboring
groups concerning the polarizability of protic solvents. Therefore, it can be reasonably
concluded that the isonitrile group can effectively function as a probe to evaluate the
polarizability of protic solvents when it is attached to bulky groups such as an indole ring
or a naphthalene ring.

Furthermore, we also discovered a pronounced linear dependency (R2 = 0.95) between
w0(NC) and the density of HBD groups in the solvent (Figure 6A). The density of HBD
groups can be determined using the formula ρn/M, where ρ denotes the density of the
solvent, M corresponds to the molar mass of each solvent, and n represents the count of
HBD groups in each solvent molecule. Similar findings have been reported for other IR
probes [24,33,34]. These observations indicate that the w0(NC) of 6ICMI exhibits sensitivity
to the local density of HBD groups, as well. Comparing the sensitivity between 6ICMI and
5ICMI, it shows that the slope for 6ICMI in this linear relationship exceeded that of 5ICMI
(151.5 vs. 138.0). This indicates that 6ICMI is more suitable as an IR probe than 5ICMI.
Interesting, a similar linear relationship was observed for 2NI, as depicted in Figure 6B.
Hence, it can be inferred that the isonitrile group is an excellent choice as a highly sensitive
infrared probe to detect the density of HBD groups within a local environment, particularly
when it is attached to aromatic groups.
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Finally, we examined the occurrence of a secondary peak at approximately
2140 cm−1 in alcohols, which we qualitatively attribute to the stretching mode of the
hydrogen-bonded isonitrile group (w1(NC)). This attribution is supported by our previous
research [24] and our following calculations. To understand the relationship between w1(NC)
and the corresponding solvent Kamlet–Taft parameters, we conducted an investigation.
It was found that there was no linear correlation between these parameters, as depicted
in Figure S4. Similarly, we did not observe a linear correlation between w1(NC) and the
density of the HBD, either, as depicted in Figure S5. However, a noteworthy outcome arose
during our investigation. We identified a strong linear correlation between w1(NC) and AN
(R2 = 0.97), as illustrated in Figure 7A. AN is an empirical parameter developed by Gutmann
based on the P-NMR chemical shifts of triethylphosphane oxide in different solvents [28]
and serves as an indicator of solvent electrophilicity. This linear correlation between w1(NC)
and AN was also evident for 5ICMI, as demonstrated in Figure 7B. Based on these findings,
it can be inferred that the isonitrile group can serve as a valuable probe for evaluating
the electrophilicity of protic solvents, despite the weaker intensity of the shoulder peak
compared to the main peak in these solvents.
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2.2. Quantum Chemical Calculation

In order to gain insight into the underlying molecular factors contributing to the
solvent sensitivity observed in the isonitrile stretch frequency, we conducted theoretical
calculations on 6ICMI across various solvent environments. First, 6ICMI was optimized in
the gas phase and in the conductor-like dielectric continuum model (CPCM) implicit solva-
tion model. Solvation energies, frequencies, and the isonitrile bond length are shown in
Table 2. Predictions for gas-phase 6ICMI are shown; no experimental spectra documenting
the gas-phase characteristics of 6ICMI have been reported in the available references and
associated experiments, to the best of our knowledge.
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Table 2. The 6ICMI in implicit solvent. Properties of the isonitrile group for 6ICMI as predicted
by CPCM implicit solvent with no solvent ligand are listed in the table, such as solvation energies
Esolvation (kcal/mol), dipole moment m (Debye), w0(NC) (cm−1), N≡C bond length L(NC) (Å), and
f. Changes are reported with gas phase 6ICM as the reference state. The solvation energies are
zero-point corrected.

Solvent Esolvation m ∆m Cacl.w0(NC) ∆w0(NC) L(NC) ∆L(NC) f

Vacuum 5.8551 2121.26 1.1784
Toluene −14.0895 6.7521 0.8970 2124.49 3.24 1.1769 −0.0014 0.241

THF −22.2480 7.3319 1.4768 2126.51 5.26 1.1761 −0.0022 0.406
DCM −22.9351 7.3831 1.5280 2126.67 5.41 1.1761 −0.0023 0.420

Ethanol −25.1526 7.5509 1.6958 2127.13 5.88 1.1759 −0.0025 0.470
MeOH −25.4537 7.5740 1.7189 2127.19 5.93 1.1758 −0.0025 0.478

Acetonitrile −25.5372 7.5805 1.7254 2127.21 5.95 1.1758 −0.0025 0.480
DMSO −25.7478 7.5967 1.7416 2127.25 5.99 1.1758 −0.0026 0.484

According to the information presented in Table 2, the calculated value of w0(NC) for
6ICMI closely align with the experimental result. Additionally, the CPCM model exhib-
ited remarkable agreement with the KBM relationship in accurately predicting frequency
shifts, as depicted in Figure 8. The dipole moment of 6ICMI increased proportionally with
the solvent’s dielectric constant, as supported by a strong correlation (R2 = 0.995). Conse-
quently, the w0(NC) of 6ICMI experienced a commensurate blueshift from its gas-phase value.
A sharp rise in frequency was observed as the dielectric constant increased from unity in
vacuum (w0(NC) = 2117.3 cm−1) to 3.2 in toluene (w0(NC) = 2120.5 cm−1) (Table 2). However,
selecting solvents with higher dielectric constants than toluene had a minimal impact on
the frequency, since the scaling factor asymptotically approached the value of the half. The
“plateau” region was observed from THF with ε of 7.5, where the dichloromethane (DCM),
ethanol, methanol, acetonitrile, and DMSO yield calculated frequencies within 1 cm−1 of
each other (Table 2). Experimentally, no such plateau region was present in the observed
frequencies (Table 1), indicating that the alterations in the distribution of electron density
contributing to the isonitrile vibration shift cannot be solely attributed to electrostatics.
Thus, local interactions between the first solvation shell and the solute, particularly for
protic solvents, must be considered.
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Considering the minimal discrepancies observed in the w0(NC) calculations of 6ICMI
and isocyanobenzene (ICB) performed under identical conditions, we selected ICB in ex-
plicit solvents as simplified models to investigating the hydrogen bonding interactions
between solute and solvent molecules. Multiple conformations of the ICB–solvent com-
plexes were subsequently optimized, with an emphasis on protic solvents interacting with
the isonitrile group, as shown in Figure 9. These complexes were further optimized in an
implicit solvent environment. The B3LYP/6-31+G(d,p) level of theory was employed to
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calculate zero-point corrected binding energies (or solvation energies in the case of implicit
solvent) and frequencies. The corresponding results are listed in Table 3.
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Table 3. Properties of the isonitrile group of ICB interacting with explicit solvent ligand in implicit
solvent are listed in the table, such as solvation energies Esolvation (kcal/mol), w1(NC) (cm−1), N≡C
bond length L(NC) (Å), AN, and f. Solvation energies calculated as (Ecomplex,CPCM − Esolute,vacuum −
Esolvent,CPCM).

Explicit
Solvent Esolvation

Calc.
w1(NC)

Exp.
w1(NC)

∆w1(NC) L(NC) ∆L(NC) AN f

Vacuum 2122.66 1.17836
2-propanol −28.3289 2153.88 2139.70 31.22 1.17318 −0.00518 33.5 0.464
n-butanol −29.7850 2155.17 2140.60 32.51 1.17300 −0.00536 36.8 0.459
Ethanol −29.9885 2155.36 2140.70 32.70 1.17297 −0.00539 37.1 0.470

1-propanol −29.9892 2155.44 2140.80 32.78 1.17297 −0.00539 37.3 0.464
MeOH −30.5860 2156.34 2141.20 33.68 1.17283 −0.00553 41.3 0.478

Although the calculated frequencies of these complexes exhibited higher values than
their corresponding experimental counterparts, the observed trend in the changes of w1(NC)
remained consistent (Figure 10A). The interaction between solvents and the isonitrile group
led to a blueshift in the stretching frequency compared to the vacuum, accompanied by
a proportional reduction in the length of the isonitrile bond. Interestingly, a strong linear
correlation (R2 = 0.96) was observed between w1(NC) of these complexes and AN, which
closely agreed with the relationship observed in experiments (Figure 10B). Consequently,
this suggests that the isonitrile group bonded to the aromatic group could indeed serve as
an effective IR probe for detecting the local environment.
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2.3. Polarization-Controlled IR Pump-Probe Spectroscopy

To investigate the lifetimes of vibrational and orientational relaxation of the isonitrile
stretch mode in the 6ICMI when dissolved in solvents, we conducted IR pump-probe
measurements with polarization control. We specifically chose DMSO as a representative
solvent. Figure 11A shows the corresponding frequency-resolved IR pump-probe signals of
6ICMI dissolved in DMSO. These signals consist of positive and negative components that
arise from different transition pathways. The positive peak corresponds to the ground-state
bleach (GSB) and stimulated emission (SE), which involve transitions from the ground state
to the first excited state and back. On the other hand, the negative peak arises from excited-
state absorption (ESA), which involves a transition from the first excited state to the second
excited state. Therefore, the negative peak centered at 2102 cm−1 was attributed to GSB and
SE, while the positive peak centered at 2125 cm−1 was associated with ESA. The difference
in frequency between the GSB and ESA peaks provided information about the vibrational
anharmonicity and line-broadening effects. As time progressed, the energy relaxation
process caused the signal to decay and eventually reach zero at longer time delays.
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In order to determine the vibrational lifetime of w0(NC) for 6ICMI in DMSO, we per-
formed an analysis of the time profiles by observing the integrated peak areas of the positive
peaks (Figure 11B). These profiles were then fitted using a single exponential function. The
results obtained revealed a time constant of 6.26 ± 0.13 ps, which corresponded to the
vibrational lifetime of 6ICMI in DMSO. It is worth noting that this vibrational lifetime was
slightly longer compared to that of 5-isocyano-1H-indole (5ICI) (6.3 vs. 5.4 ps) [24]. It was
significantly longer than the lifetimes observed for other vibrational modes, such as the
azido stretching mode and the nitrile group stretching mode [32].

Furthermore, we also determined the orientational relaxation time constant for the
isonitrile stretch of 6ICMI in DMSO (Figure 11C). The decay of anisotropy was fitted using
a single exponential function, yielding a time constant of 21.0 ± 1.1 ps, which was still
longer than the orientational relaxation time of 5ICI (21.0 vs. 15.6 ps) [24]. It exceeded
the relaxation time displayed by the isonitrile stretch of isonitrile-derivatized alanine in
DMF by a significant margin, as well [32]. These findings suggest that the relatively longer
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orientational relaxation time associated with the isonitrile stretch in 6ICMI provides an
opportunity to gain more efficient insights into local intermolecular interactions, similar to
those observed with 5ICI. Overall, these results indicate that 6ICMI functions as a sensitive
infrared probe, enabling the investigation of local environments with greater effectiveness.

3. Materials and Methods
3.1. Materials and Sample Preparation

The compound 6ICMI was obtained from Sigma-Aldrich. Various solvents were ac-
quired from either Sigma-Aldrich or J&K Scientific and utilized without further purification.
Prior to use, the 6ICMI compound was dissolved in the appropriate solvent to achieve a
final concentration of approximately 50 mM. Subsequently, the prepared sample solutions
were placed between two CaF2 windows, with a spacer of either 100 or 200 µm, for con-
ducting spectroscopic measurements in this study. All the sample solutions were freshly
prepared before each experimental procedure.

3.2. Spectroscopic Measurements

All Fourier Transform Infrared (FTIR) spectra were acquired using a Bruker VERTEX
70 spectrometer with a frequency resolution of 0.5 cm−1 at 22 ◦C. Detailed information on
the experimental configuration for ultrafast IR spectroscopy can be found elsewhere [35].
In brief, the setup involved the independent operation and synchronization of a picosecond
(ps) amplifier and a femtosecond (fs) amplifier using the same seed pulse generated from
a Ti-sapphire oscillator. The ps amplifier drove an Optical Parametric Amplifier (OPA)
to generate approximately 1 ps Mid-IR pulses, with a bandwidth of around 18 cm−1, at
a repetition rate of 1 kHz. The fs amplifier, on the other hand, powered another OPA to
produce approximately 140 fs Mid-IR pulses, with a bandwidth of roughly 200 cm−1 and
also at a repetition rate of 1 kHz.

For the polarization-selective IR pump-probe experiments, the ps IR pulse acted as
the pump beam, while the fs IR pulse served as the probe beam and underwent frequency
resolution using a spectrograph. To selectively measure the parallel or perpendicular
polarized signal relative to the pump beam, two polarizers were introduced into the
probe beam path. Vibrational lifetimes were determined by analyzing the rotation-free
signal using the equation Slife = S|| + 2S⊥, where S|| and S⊥ represent the parallel and
perpendicular signals, respectively. Rotational relaxation times were derived from the
anisotropy that varied with the waiting time, calculated as r(t) = (S|| − S⊥)/(S|| + 2S⊥).

3.3. Computational

Electronic structure calculations were conducted employing Gaussian 09, revision
A.02 [36], with an optimization of structures and a calculation of vibrational frequencies
performed at the B3LYP/6-31+G(d,p) level. In the optimized geometry of the molecules, no
imaginary frequency modes were observed, indicating the presence of a true energy mini-
mum on the potential energy surface. Single point energy calculations were subsequently
carried out on the optimized structures. In order to account for the solvation effects, the
conformational analysis of 6ICMI was investigated both in a vacuum and employing the
CPCM solvation models [37]. Computational investigations encompassed six solvents:
toluene, DCM, DMF, acetonitrile, MeOH, ethanol, and THF. In order to assess the influence
of hydrogen bonding, explicit solvent molecules including MeOH, ethanol, 1-propanol,
2-propanol, and n-butanol were included. These explicit solvent systems were studied
in various configurations wherein the solvent molecules engaged in hydrogen bonding
interactions with the isonitrile group of 6ICMI. Moreover, these explicit solvent systems
were investigated both in combination with implicit solvents and in a vacuum.
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4. Conclusions

In summary, this study aimed to investigate the vibrational characteristics of 6ICMI
utilizing FTIR, IR pump-probe spectroscopy, and theoretical calculations. The obtained
results provided insights into the relationship between the frequency of the isonitrile group
and the solvent parameters of KBM. Notably, a strong linear correlation was observed
between the center frequency of the isonitrile stretching mode and the polarizability of polar
solvents. Both experimental and theoretical analyses indicated that the isonitrile stretch
vibration of 6ICMI significantly depended on the solvent acceptor number of alcohols, thus
suggesting that the isonitrile frequency could serve as an indicator of solvent polarizability
and electrophilicity.

Additionally, this research established a notable relationship between the isonitrile
stretching frequency of 6ICMI and the density of hydrogen-bond donor groups in solvents,
highlighting its superiority over 5ICMI. Furthermore, the investigation of the dynamic prop-
erties of 6ICMI in DMSO revealed a surprising result: the lifetime of the isonitrile stretching
vibration of 6ICMI, when dissolved in DMSO, exceeded that of isonitrile-derivatized
alanine in DMF and 5ICI in DMSO. These findings provide conclusive evidence to sup-
port the potential application of 6ICMI as an excellent infrared probe for evaluating local
environments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28196939/s1, Figure S1: The isonitrile stretching vibration
of 6ICMI in selected solvents; Figure S2. No linear relationships were observed between w0(NC) of
6ICMI and any solvent parameters in all studied solvents; Figure S3. No linear relationships were
observed between w0(NC) of 6ICMI and any solvent parameters in aprotic solvents; Figure S4. No
linear relationships were observed between w1(NC) of 6ICMI and any other Kamlet–Taft parameters
in studied solvents; Figure S5. No linear relationships were observed between w1(NC) of 6ICMI and
the density of hydrogen-bond donor groups in solvents; Table S1. Frequency parameters and solvent
parameters for 5ICMI in different solvents. The center frequency (w0(NC), cm−1) and the shoulder
frequency (w1(NC)) of the isonitrile stretching band of 5ICMI in various solvents and each solvent
with its Kamlet–Taft parameters, π*(polarizability), β (hydrogen bond acceptor), α (hydrogen bond
donor), and ε (dielectric constant) are listed in the table. KBM solvent parameter f is listed in the table
as well; Table S2. Frequency parameters and solvent parameters for 2NI in different solvents. The
center frequency (w0(NC), cm−1) of the isonitrile stretching band of 2NI in various solvents and each
solvent with its Kamlet–Taft parameters, π*(polarizability), β (hydrogen bond acceptor), α (hydrogen
bond donor), and ε (dielectric constant) are listed in the table.
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