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Abstract: In this research, we successfully produced hierarchical porous activated carbon from
biowaste employing one-step KOH activation and applied as ultrahigh-performance supercapacitor
electrode materials. The coconut shell-derived activated carbon (CSAC) features a hierarchical porous
structure in a honeycomb-like morphology, leading to a high specific surface area (2228 m2 g−1) as
well as a significant pore volume (1.07 cm3 g−1). The initial test with the CSAC electrode, conducted
in a 6 M KOH loaded symmetric supercapacitor, demonstrated an ultrahigh capacitance of 367 F g−1

at a current density of 0.2 A g−1 together with 92.09% retention after 10,000 cycles at 10 A g−1.
More impressively, the zinc–ion hybrid supercapacitor using CSAC as a cathode achieves a high-
rate capability (153 mAh g−1 at 0.2 A g−1 and 75 mAh g−1 at 10 A g−1), high energy density
(134.9 Wh kg−1 at 175 W kg−1), as well as exceptional cycling stability (93.81% capacity retention
after 10,000 cycles at 10 A g−1). Such work thus illuminates a new pathway for converting biowaste-
derived carbons into materials for ultrahigh-performance energy storge applications.

Keywords: hierarchical porous activated carbon; coconut shells; ultrahigh-performance; KOH
symmetric supercapacitors; zinc–ion hybrid supercapacitors

1. Introduction

In order to address the escalating demand for energy, continuous advancements have
been achieved in the domain of energy conversion and storage devices [1,2]. Supercapaci-
tors, which may fill the gap between traditional capacitors and rechargeable batteries in
terms of energy storage, have intrigued researchers much because of their high power
density, excellent cycling stability, and swift charge–discharge speed [3–5]. Nevertheless, to
meet the long endurance requirements of actual applications, supercapacitors are deemed
to be designed with a high energy density. The voltage window (V) and the capacitance
(C) of the supercapacitor can be elevated to increase the energy density (E) in accordance
with the formula E = 1/2CV2 [6]. Generally, the working voltage depends on the stable
electrochemical window of the electrolyte, whereas the capacitance is dictated by the physic-
ochemical properties of electrode materials [7,8]. As a result, multiple supercapacitors are
proposed to hasten the energy/power density ratio by creating new electrode/electrolyte
materials and optimizing the design of supercapacitors [9,10].

Due to their high surface area and suitable porous structure, which are the primary
factors affecting electrochemical energy storage in supercapacitors, hierarchical porous
activated carbons (HPACs) have been acknowledged as active electrode materials in vary-
ing supercapacitors [11,12]. Electrolyte ions move swiftly from the macropores to the
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micropores through the mesoporous pathways in hierarchical porous structures, achieving
the necessary adsorption of ions on the substantial specific surface area [13,14]. Thereby,
developing HPACs with a large surface area has been considered an appealing choice for
enhancing supercapacitors’ ability to store energy [15]. Typically, HPACs are produced
from fossil feedstocks or organic polymers using template or physicochemical activation
methods [16–19]. However, the consumption of organic polymers, fossil fuels and tem-
plates unavoidably increases the price of HPACs synthesis, further hindering their broad
use in supercapacitors. Biowaste materials, including pitaya peel [20], corncob [21], bio-
oil [22], durian kernel [23] and sesame husk [24], have been employed to create HPACs
on an industrial large-scale and also served as electrode materials in supercapacitors due
to their unignorable benefit of low cost [25]. Among various biowaste-based superca-
pacitors, zinc–ion hybrid supercapacitors (ZHSs) directly utilize naturally abundant zinc
foils as the anode, biowaste-derived carbons as the cathode materials and neutral elec-
trolytes (ZnSO4 or Zn(CF3SO3)2) for a comparatively high working voltage (~1.8 V in the
aqueous electrolyte) [26,27]. Therefore, such a ZHSs system, which inherits the merits of
high-power supercapacitors and high-energy batteries, have gained extensive interest due
to their superior energy/power ratio, dependable safety, low cost and high theoretical
capacity (~820 mAh g−1) [28,29]. Leveraging the distinctive design of HPACs, derived from
biowaste, as cathode materials can effectively meet the high energy storage performance
and industrial-production demands of ZHSs in today’s market. For instance, Zhang et al.
applied pencil-shaving derived porous carbon as a cathode material and the assembled
ZHSs obtained a superior capacity of 183 mAh g−1 at 0.2 A g−1 in Zn(CF3SO3)2 electrolyte
with 92.2% capacity retention after 10,000 cycles [30]. Chen et al. prepared N, O co-doped
2D carbon nanosheets from poplar wood and achieved a capacity of 111.0 mAh g−1 at
0.1 A g−1 in 2 M ZnSO4 electrolyte [31].

Herein, due to the enormous annual production of coconuts (~60 million tons world-
wide), coconut shell was chosen in this study as the possible precursor for the large-scale
manufacturing of HPAC and commercial application in energy storage devices. The coconut
shell-derived carbon activated by KOH (CSAC) we have prepared features a honeycomb-
like morphology, a large specific surface area and hierarchical porous structure. These
attributes equip the CSAC with a high energy storage performance and enduring cycla-
bility, performing well in both conventional symmetric and hybrid supercapacitors. Our
findings underscore the potential of HPAC derived from the coconut shell as an exceptional
electrode material for ultrahigh-performance supercapacitors.

2. Results and Discussion

The thermogravimetric curve of the precursor in Figure 1a was procured under a
nitrogen atmosphere to examine the carbonization of coconut shell. The TG curve appears
to be roughly divided into three regions: the release of absorbed water causes the mass
curve of a coconut shell to drop by around 1.35% in the purple low-temperature region
(30–150 ◦C). The rapid heating rate of 5 ◦C min−1 makes it that the absorbed water in the
coconut shell is difficult to be thoroughly released before 100 ◦C in time. A cliff-like mass
decrease of 75.82% is ascribed to the elimination of pyrolysis products via the disintegration
of bio-mass molecules at the green middle-temperature range of 150–600 ◦C. Further
carbonization causes the TG curve to steadily diminish and reach a plateau at the last
bule high-temperature area between 600 and 900 ◦C, leaving 15.75% of the original mass.
Figure 1b shows the XRD patterns and illustrates the phase formation of all samples. The
absence of prominent potassium compound signals suggests that the carbon samples were
successfully rinsed with diluted HCl and deionized water to bring them to neutrality.
At around 23◦ and 43◦, there are two large diffraction peaks that are attributed to the
(002) and (100) planes of amorphous carbon. The near graphitization degree is certified
by the lack of substantial difference between the diffraction peaks of CSAC and CSC.
Four Gaussian–Lorentzian peaks are fitted in Raman spectra (Figure 1c) to better compare
the graphitization degree: I band observed at 1220 cm−1 is ascribed to the impurities
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near carbon atoms, D band around 1355 cm−1 is attributed to the breathing mode of sp2-
hybridezed structure units which is active in the presence of defects, D′ band positioned
around 1490 cm−1 is caused by the defects from stacked graphene layers and G band,
located at 1590 cm−1, is connected to the vibration of graphitic sp2-type carbon [32,33]. A
higher degree of graphitization caused by KOH activation is indicated by a lower ID/IG
value (1.50) obtained from CSAC, as assessed by comparing the peak area ratio of D
band and G band (ID/IG). In addition, the CSC and CSAC both have the obvious 2D
bands around 2700 cm−1, indicating the existence of layer graphene. The amorphous-like
structure of the activated carbon derived from coconut shell is shown by the results of the
XRD pattern and Raman spectra discussed above.
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(b) XRD patterns and (c) Raman spectra of CSC and CSAC.

The SEM and TEM images in Figure 2 show the micro-morphologies and general
pore structure of CSC and CSAC. As depicted in Figure 2a, CSC has a surface covered in
rough fragments or folds, and its coarse fibers have a diameter of 160 µm (Figure 2b). The
optical microscope was also used to inspect the coconut shell to illustrate how fibrous it was
prior to a high-temperature treatment (Figure S1). Figure 2c for the CSAC sample shows a
honeycomb-like feature with a clear porosity structure following a one-step KOH activation
at 800 ◦C for 2 h. In Figure 2d, the linked pores that the CSAC possesses (depicted by red
dotted circles) with an average diameter of ~2.5 µm are visible when closer inspection
is performed. The distinctive porosity architecture and the size of diameter were further
evidenced by the TEM image (Figure 2e). The high-resolution TEM image (Figure 2f) also
showed the presence of the micro- and mesopores as a disorder structure. There is no
obvious lattice fringe in the magnified SAED (inset of Figure 2f), further substantiating the
amorphous state of CSAC. In addition, the unclear concentric rings in the SAED pattern are
estimated with the radius of ~4.76 and 2.94 1/nm, which are connected to the (100) and (002)
planes, respectively. Herein, KOH activation proves effective in inducing a honeycomb-
like morphology with interconnected macropores in coconut shell-derived carbon [23,34].
This network of interconnected macropores serves to facilitate electrolyte ions into the
mesopores/micropores, thereby expediting their access to the carbon materials surfaces.
This mechanism results in the highly efficient use of the substantial specific surface area,
leading to an enhancement in the rate performance.



Molecules 2023, 28, 7187 4 of 14Molecules 2023, 28, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. SEM images of (a,b) CSC and (c,d) CSAC, (e,f) TEM images of CSAC at different magnifi-
cations and diffraction fringes in the selected area electron diffraction. 

The N2 physisorption isotherms of CSC and CSAC are presented in Figure 3a. Ini-
tially, it appears that both CSC and CSAC possess copious micropores leveraging the 
steep absorption of nitrogen under the relative pressure of 0.05. Additionally, the middle 
relative pressure region of the CSAC isotherm exhibits greater adsorption and desorption 
platforms, indicating that KOH activation increases the CSAC sample’s specific surface 
area to 2228 m2 g−1. According to IUPAC classification, the adsorption–desorption iso-
therm of CSC appears to be type-I curve, whereas the CSAC isotherm exhibits type-IV 
features with a typical H2 hysteresis loop in the relative pressure range of 0.4–1.0. In 
CSAC, such a hysteresis loop is assigned to a mesopore feature, which is further verified 
by the pore size distribution. Following KOH activation, there is a noticeable increase in 
pore volume within the range of 0.4 to 5 nm, as seen in Figure 3b. Delving into further 
detail, the values tabulated in Table 1 indicate an increase in total pore volumes and mi-
cropore volumes from 0.19 and 0.15 cm3 g−1 for CSC to 1.07 and 0.64 cm3 g−1 for CSAC. 
This enhancement can be primarily ascribed to the activation reaction of KOH with coco-
nut shell at elevated temperatures. This process not only generates a greater number of 
micropores but also fosters the evolution of these micropores into mesopores. Conse-
quently, such micro-, meso- and macropores characterized by N2 physisorption and SEM 
together formed the honeycomb-like hierarchical porous architecture, which facilitates 
swift ion transportation from the electrolyte to the adsorption site on the surface of inter-
nal micropores. 

Figure 2. SEM images of (a,b) CSC and (c,d) CSAC, (e,f) TEM images of CSAC at different magnifica-
tions and diffraction fringes in the selected area electron diffraction.

The N2 physisorption isotherms of CSC and CSAC are presented in Figure 3a. Ini-
tially, it appears that both CSC and CSAC possess copious micropores leveraging the
steep absorption of nitrogen under the relative pressure of 0.05. Additionally, the middle
relative pressure region of the CSAC isotherm exhibits greater adsorption and desorption
platforms, indicating that KOH activation increases the CSAC sample’s specific surface area
to 2228 m2 g−1. According to IUPAC classification, the adsorption–desorption isotherm
of CSC appears to be type-I curve, whereas the CSAC isotherm exhibits type-IV features
with a typical H2 hysteresis loop in the relative pressure range of 0.4–1.0. In CSAC, such
a hysteresis loop is assigned to a mesopore feature, which is further verified by the pore
size distribution. Following KOH activation, there is a noticeable increase in pore volume
within the range of 0.4 to 5 nm, as seen in Figure 3b. Delving into further detail, the values
tabulated in Table 1 indicate an increase in total pore volumes and micropore volumes
from 0.19 and 0.15 cm3 g−1 for CSC to 1.07 and 0.64 cm3 g−1 for CSAC. This enhance-
ment can be primarily ascribed to the activation reaction of KOH with coconut shell at
elevated temperatures. This process not only generates a greater number of micropores but
also fosters the evolution of these micropores into mesopores. Consequently, such micro-,
meso- and macropores characterized by N2 physisorption and SEM together formed the
honeycomb-like hierarchical porous architecture, which facilitates swift ion transportation
from the electrolyte to the adsorption site on the surface of internal micropores.

The wide-scan XPS survey spectra, as depicted in Figure 4a, confirm the main com-
position of the C (284.5 eV) and O (531.6 eV) species in CSC and CSAC samples, which is
attributed to the predominance of cellulose and lignin in the coconut shell. As evident in
Table 1, the surface status was noticeably affected by the KOH activation. As a result of this
KOH activation at a high temperature, there is a substantial increase in the C content, from
81.02 at.% for CSC to 88.08 at.% for CSAC. The high-resolution spectra are further presented
in Figure 4b for C 1s and Figure 4c for O 1s. High-resolution C 1s spectra exhibit three
resolved peaks located at 284.4, 285.7 and 288.5 eV, correspondingly associated with the
C−C/C=C (C-1), C−O (C-2) and O−C=O (C-3) groups [35]. In terms of the deconvoluted
O 1s region, three fitted peaks are distinguished at 531.4 eV, 532.6 eV and 533.6 eV, which
are credited to quinone oxygen (O-1), phenol groups (O-2) and carboxyl groups (O-3) [36].
Even though the oxygen content is not as abundant as in CSC, CSAC exhibits more exposed
oxygen sites on its surface due to an ample specific surface area (2228 m2 g−1). Such oxygen
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groups on the surface effectively hasten the electrochemical storage activities by enabling
electron transfer and providing additional pseudocapacitance.
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Table 1. Pore characteristics, surface elemental compositions and capacitances of CSC and CSAC a.

Samples SBET (m2 g−1) V total (cm3 g−1) Vmicro (cm3 g−1) C (at.%) O (at.%) Ct (F g−1) CE (F g−1) CP (F g−1)

CSC 204 0.19 0.15 81.82 18.18 121 87 34
CSAC 2228 1.07 0.64 88.08 11.92 367 314 53

a SBET, specific surface area; Vtotal, the total pore volume calculated from the Density Functional Theory (DFT)
method; Vmicro, the pore volume of the micropores; Ct, the total electrochemical capacitance at 0.2 A g−1 tested in
two-electrode system using KOH electrolyte; CE, electric double-layer capacitance; CP, pseudocapacitance.
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The electrochemical performances of pyrolyzed products are initially appraised in the
symmetric supercapacitor in 6 M KOH electrolyte at 0–1.0 V. CV profiles (Figure 5a) and at
10 mV s−1 display a quasi-rectangular shape within both the CSC and CSAC electrodes,
implying ideal capacitive performance. In addition, CSAC displays a more extensive CV
profile area than CSC, indicating a higher specific capacitance achieved. Figure 5b exhibits
that the CV profiles of the CSAC electrode nearly maintain the rectangular-like shapes from
5 to 100 mV s−1, illustrating excellent reproducible capacitive behavior. To delve further
into the charge storage kinetics, CV curves of CSC and CSAC were explored at various
scan rates, as in the following Equation (1):

i = k1v + k2v1/2 (1)

where k1v refers to the current density related to a fast kinetic response, which are primarily
surface-dominated, k2v1/2 equals the current density resulting from slow kinetic processes,
which is mainly associated with the diffusion of ions. As plotted in Figures 5c and S2, the
devices of CSC and CSAC exhibit a fast kinetic capacitance of 90 and 296 F g−1, respectively.
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The GCD curves of CSC- and CSAC-based devices, performed at 0.5 A g−1 (Figure 5d),
exhibit a triangle-like distribution with a small Ohmic drop, implying optimal electrical
double-layer capacitive characteristics. Furthermore, the GCD curves of CSAC-based
devices are distinguished by isosceles triangles and good linearity at current densities from
0.2 to 10 A g−1 (Figure 5e), which align well with CV results. The specific capacitance of
a CSAC electrode, derived from discharge curves, reveals an exceptionally high value of
367 F g−1 at 0.2 A g−1 and retains 316 F g−1 at 10 A g−1. The electrochemical properties of
both CSC and CSAC electrodes, derived from CV and GCD curves under different scan
rates/current densities, are tabulated in Table S1. As depicted in Figure 5f, the electrical
double-layer capacitance (CE) calculated from the intercept with a vertical coordinate gives
314 F g−1 for CSAC and 87 F g−1 for CSC, respectively. A detailed comparison of Ct (the
total electrochemical capacitance), CE and Cp (pseudocapacitance) are tabulated in Table 1.
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Figure 5. Electrochemistry characterizations of CSC and CSAC electrodes tested in the 6 M KOH
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The Nyquist diagrams in Figure 6a illustrate that the CSAC-based device achieves a
much lesser equivalent series resistance (Rs) of 0.23 Ω as well as charge transfer resistance
(Rct) of 0.41 Ω than the CSC-based device. According to the related Bode plots (Figure 6b)
and Randles plots (Figure 6c), the relaxation time constant τ value and diffusive resistance
σ value of a CSAC-based device is 0.59 s and 0.24 Ω s−0.5, respectively, indicating a quick
frequency response and swift access of ions to the internal interaction site. The long-term
cycle life of a CSAC-based device, shown in Figure 6d, reveals excellent electrochemical
stability. The capacitance has decayed from 316 F g−1 to 291 F g−1 (retention of 92.09% with
coulombic efficiency of 93.04%) at the high current density of 10 A g−1 after 10,000 cycles,
highlighting superior reversibility. Figure 6e presents the Radar chart containing six
parameters (specific capacitance, SBET, Vtotal, Vmicro, Rs and Rct) for a clear comparison of
the CSC and CSAC samples. Table S2 tabulates the electrochemical properties of CSAC and
other biomass-derived carbons-based symmetric supercapacitors. Reflecting upon all these
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results, the outstanding performance of CSAC can be mainly ascribed to one-step KOH
activation, which not only generates the honeycomb-like morphology with a hierarchical
porous structure, enhancing the exposure degree of a large surface area with more O active
sites, but it also induces a high graphitization with low disordering, which in turn improves
the charge carrier transport and conductivity.
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The as-prepared CSAC exhibits a hierarchical porous structure, large specific surface
area and high electrical conductivity, which all foster greater acceptability and a more
concise transfer pathway for electrolyte ions and electrons. Encouraged by the above
remarkable characteristics and the small hydrated radii of SO4

2− (3.79 Å), an aqueous
ZHS device (Zn//ZnSO4(aq.)//CSAC) is further assembled to probe into its practical
application. Figure 7a depicts the working principle of a ZHS device. Benefitting from the
integration of a battery-type anode and supercapacitor-type cathode, the energy storage in
the ZHSs is mainly through the reversible Zn2+ deposition/stripping onto the Zn anode
as well as through the anion adsorption/desorption on the surface of the CSAC cathode.
Therefore, all electrochemical results reported in Figure 7b–g confirm that a ZHS device
may attain the noted energy and power densities. As depicted in Figure 7b, the CV curves
of the ZHS device show no peaks in oxygen and hydrogen generation at various scan
rates, indicating that the ZHSs can operate well from 0.05 to 1.8 V. Furthermore, these
undesirable rectangular profiles illustrate a varied electrochemical performance of the
CSAC cathode and Zn anode in a ZHS device. Simultaneously, the preceding Equation
(1) was used to quantify the different process-controlled contributions of the ZHSs, where
k1v refers to capacitive contribution and k2v1/2 denotes the diffusion contribution. As
illustrated in Figures 7c and S3, the capacitive-driven process provides about 52.83% of
the total storage capacity at the scan rate of 1 mV s−1. As the scan rate increased to
20 mV s−1, there was a gradual uptick in the capacitive contribution ratio to 82.89%, while
the diffusion contribution ratio correspondingly declined to 17.11%. This change validates
the capacitive-dominant nature from the CSAC cathode and expedited electrochemical
kinetics at a high scan rate. GCD curves were applied to determine the specific capacity
at varying current densities (Figure 7d). Based on the calculation, the discharge specific
capacities of the ZHSs, when employing the CSAC cathode, reach 153, 125, 110, 98, 84
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and 75 mAh g−1 at current densities of 0.2, 0.5, 1, 2, 5 and 10 A g−1. This performance
led to a capacity retention of 49%. Encouragingly, as depicted in Figure 7e, the capacity
in terms of rate performance reverted to 140 mAh g−1 after 120 cycles at a reset current
of 0.2 A g−1, indicating an excellent reversibility of the ZHSs. Additionally, near-linearity
without a notable potential plateaus feature in GCD curves suggests both electrochemical
double-layer capacitive and pseudocapacitive mechanisms in a hybrid device. Figure 7f
displays the Ragone plots for both symmetric and hybrid supercapacitors. The KOH-loaded
symmetric device of CSAC exhibits an energy density of 12.75 Wh kg−1 at a power density
of 100 W kg−1 [37–39]. Inspired by the outstanding capacity and wide potential window, a
greater energy density of 134.9 Wh kg−1 was achieved by the ZHSs at a power density of
175 W kg−1. Even more specifically, CSAC-based ZHSs still retained an energy density of
62.6 Wh kg−1 at an ultrahigh power density of 8750 W kg−1. As presented in Figure 7g, a
high specific capacity of 70 mAh g−1 was obtained at 10 A g−1 after 10,000 cycles, coupled
with 93.81% capacity retention and high coulombic efficiency. Nyquist plots of CSAC-
based ZHSs depicted in Figure S4 exhibit relatively low Rs (2.23 Ω) and Rct (10.22 Ω)
values. The exceptional electrochemical performance of the CSAC cathode-based ZHS
device, in comparison to various ZHS devices as reported in Table 2, can be primarily
attributed to the unique characteristics of a CSAC [40–51]. This includes its honeycomb-like
morphology, hierarchical porous structure, large specific surface area, suitable O content
and high conductivity, which collectively enhance ion diffusion and electron transport.
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Table 2. Electrochemical performance comparison of aqueous ZHSs based on different cathodes b.

Cathode
Materials Electrolyte V (V) Clc (mAh g−1) Chc (mAh g−1) E (Wh kg−1) Ref.

CSAC 1 M ZnSO4 0.05–1.8 152 (0.2 A g−1) 75 (10 A g−1) 134.9 This work
BN-LDC 1 M ZnSO4 0.2–1.8 127.7 (0.5 A g−1) 42.8 (10 A g−1) 97.6 [40]

PANI 2 M ZnCl2 0.7–1.7 142.3 (0.2 A g−1) 81.1 (4 A g−1) 117.5 [41]
AC 2 M ZnSO4 0.2–1.8 121.0 (0.1 A g−1) 41.0 (1 A g−1) 84 [42]

OPCNF-20 1 M ZnSO4 0.2–1.8 136.4 (0.1 A g−1) 38.7 (20 A g−1) 97.7 [43]
HNPC 1 M ZnSO4 0–1.8 177.8 (4.2 A g−1) 108.2 (33.3 A g−1) 107.3 [44]
TFMA 2 M ZnSO4 0.1–1.8 107.0 (1 A g−1) 53 (10 A g−1) 110.8 [45]
C-0.6 2 M ZnSO4 0.2–1.8 181.7 (0.05 A g−1) 66.7 (20 A g−1) 145.2 [46]

HPCS-900 2 M ZnSO4 0.1–1.7 104.7 (0.1 A g−1) 40.2 (20 A g−1) 90.2 [47]
CSGC 2 M ZnSO4 0.2–1.8 138.8 (0.1 A g−1) 85.6 (20 A g−1) 111.1 [48]

N-HHPC 2 M ZnSO4 0.1–1.8 140.7 (0.2 A g−1) 101.3 (100 A g−1) 130.2 [49]
AC-CS 1 M Zn(CF3SO3) 0–1.8 85.7 (0.1 A g−1) 38.1 (2 A g−1) 52.7 [50]
NPC 1 M ZnSO4 0–1.8 136.2 (0.3 A g−1) 69.2 (15 A g−1) 81.1 [51]

b V, the practical working voltage; Clc, the specific capacity at low specific current; Chc, the specific capacity at
high specific current; E, the energy density.

3. Materials and Methods
3.1. Preparation of Coconut Shell-Derived Activated Carbon

Coconut shells were sourced from a local fruit market near Jiujiang University. Initially,
these shells were chopped into small fragments and thoroughly cleaned to remove the
residual dust. The fragments were then oven-dried at 60 ◦C for 48 h, after which they
were ground into powder. This obtained coconut shell powder was mixed with KOH in
a weight ratio of 1:1, and then activated at 800 ◦C for 2 h under a nitrogen atmosphere,
maintaining a heating rate of 2 ◦C min−1. The resulting mixture was washed with dilute
HCl and deionized water until it reached a pH of 7, and then oven-dried overnight at 60 ◦C
to yield the coconut shell-derived activated carbon (denoted as CSAC). For comparison,
the coconut shell-derived carbon (abbreviated as CSC) was also prepared without adding
KOH, following the same procedure. Figure 8 provides a schematic diagram depicting the
CSAC preparation process and its subsequent application in supercapacitors.
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3.2. Characterization

An STA800 thermogravimetric analyzer (PerkinElmer, Waltham, MA, USA) was em-
ployed to perform the thermogravimetric analysis of coconut shell from room temperature
to 900 ◦C under nitrogen with a heating rate of 5 ◦C min−1. The compositional phases
and crystallographic structure of the carbon samples were examined by the XRD patterns
generated by a Bruker Focus D8 Advance diffractometer (Karlsruhe, Germany) with Cu Kα

radiation (λ = 1.54 Å). Raman spectra were procured with a Renishaw Inviaspectrometer
(London, British), using an excitation wavelength of 532 nm, an excitation power of 1.5 mW
and an acquisition time of 55 s. The surface structures and morphology characterizations of
carbon samples were visualized by an S-4800 field-emission scanning electron microscope
(SEM, Tokyo, Japan) and JEOL JEM-2100 transmission electron microscope (TEM, Tokyo,
Japan), while the coconut shell was observed with an SZ810 optical microscope (OPTEC,
Chongqing, China). The samples were degassed at 200 ◦C for 2 h, and then tested on a
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Micromeritics ASAP 2460 analyzer (Norcross, GA, USA) at −196 ◦C to obtain the nitrogen
physisorption isotherms. The specific surface areas were evaluated from the Brunauer–
Emmett–Teller (BET) method, and the pore size distributions were calculated based on the
nonlocal density functional theory (DFT) model. The surface chemical compositions were
detected by an AXIS Ultra DLD X-ray photoelectron spectrometer (XPS, Shimadzu, Kyoto,
Japan) equipped with Al Kα radiation. All samples charging were calibrated using the C 1s
peak (284.4 eV) as an internal standard.

3.3. Electrochemical Measurements

All electrochemical performances of carbon samples were evaluated using CR2032
coin-type cells. For symmetric supercapacitors, a homogeneous slurry was created by
combining the as-prepared carbon, acetylene black and polytetrafluoroethylene (PTFE) in
ethanol and N-methyl-2-pyrrolidinone (NMP) solution at a ratio of 8:1:1. The working
electrode was then created by pressing the dry slurry under 15 MPa on nickel foam. A
single electrode had approximately 2 mg cm−2 active material. Two identical working
electrodes were assembled in the 6 M KOH-loaded symmetric supercapacitor, where a piece
of filter paper was applied as a separator. The electrochemical measurements, compris-
ing cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) and electrochemical
impedance spectroscopies (EIS), were conducted on a coin-type device using a Chenhua
electrochemical workstation (CHI660D, Shanghai, China). The specific capacitance (C,
F g−1) of the individual electrode in the symmetric supercapacitor was determined based
on the CV and GCD curves, according to the following Equations (2) and (3):

CCV = 4×
∫

idV
2× ∆V ×m× r

(2)

CGCD = 4× I × ∆t
∆V ×m

(3)

where ∆V (V) is the operation potential window, r (V s−1) is the scan rate, m (g) is the total
mass of both electrodes and ∆t (s) is the discharging time. i (A) in Equation (2) and I (A) in
Equation (3) is the response current and the discharging current, respectively.

The ZHSs were also assembled in a CR2032 coin cell, employing zinc foil (12 mm in
diameter), 1 M ZnSO4 solution and a glass fiber membrane as the anode, the electrolyte
and the separator, respectively. The CSAC cathode electrode included a CSAC powder
(80 wt.%), conductive acetylene black (10 wt.%) and poly(vinylidene fluoride) (PVDF,
10 wt.%). N-methyl-2-pyrrolidinone (NMP) solution was added to this mixture to form a
uniform slurry. This was then coated on stainless steel foil and subsequently dried in a
vacuum oven at 60 ◦C for 24 h. The CV and EIS measurements of ZHS were conducted on a
Chenhua electrochemical workstation, while the GCD and long circles tests were evaluated
by a CT2001 battery testing system (LAND, Wuhan, China).

4. Conclusions

In summary, we have successfully synthesized a hierarchical porous activated carbon
from coconut shells via one-step KOH activation. The resultant CSAC materials feature
exceptional properties including a honeycomb-like morphology, hierarchical porous struc-
ture, large specific surface area and commendable electrical conductivity. Thanks to these
distinct advantages, a CSAC electrode manifests superior electrochemical performances in
symmetric and hybrid supercapacitors. An ultrahigh specific capacitance of 367 F g−1 was
achieved by a CSAC electrode in a 6 M KOH loaded-symmetric supercapacitor, maintaining
92.09% capacity retention even after 10,000 cycles at 10 A g−1. More notably, the ZHSs
using CSAC as a cathode achieve a high-rate capability (153 mAh g−1 at 0.2 A g−1 and
75 mAh g−1 at 10 A g−1), high energy density (134.9 Wh kg−1 at 175 W kg−1), as well as
outstanding cycling stability (93.81% capacity retention after 10,000 cycles at 10 A g−1). Pos-
sessing excellent energy storage performance affirms that coconut shell-derived HPAC is a
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prospective candidate in ultrahigh-performance supercapacitors for industrial large-scale
applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28207187/s1. Refs. [52–66] are cite in the Supplementary
Materials.
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