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Abstract: Traditional Chinese medicine (TCM) possesses unique advantages in the management of
blood glucose and lipids. However, there is still a significant gap in the exploration of its pharmaco-
logically active components. Integrated strategies encompassing deep-learning prediction models
and active validation based on absorbable ingredients can greatly improve the identification rate
and screening efficiency in TCM. In this study, the affinity prediction of 11,549 compounds from the
traditional Chinese medicine system’s pharmacology database (TCMSP) with dipeptidyl peptidase-IV
(DPP-IV) based on a deep-learning model was firstly conducted. With the results, Gardenia jasminoides
Ellis (GJE), a food medicine with homologous properties, was selected as a model drug. The absorbed
components of GJE were subsequently identified through in vivo intestinal perfusion and oral ad-
ministration. As a result, a total of 38 prototypical absorbed components of GJE were identified.
These components were analyzed to determine their absorption patterns after intestinal, hepatic,
and systemic metabolism. Virtual docking and DPP-IV enzyme activity experiments were further
conducted to validate the inhibitory effects and potential binding sites of the common constituents of
deep learning and sequential metabolism. The results showed a significant DPP-IV inhibitory activity
(IC50 53 ± 0.63 µg/mL) of the iridoid glycosides’ potent fractions, which is a novel finding. Genipin
1-gentiobioside was screened as a promising new DPP-IV inhibitor in GJE. These findings highlight
the potential of this innovative approach for the rapid screening of active ingredients in TCM and
provide insights into the molecular mechanisms underlying the anti-diabetic activity of GJE.

Keywords: deep-learning model; sequential metabolism; DPP-IV inhibitor; Gardenia jasminoides Ellis;
genipin 1-gentiobioside

1. Introduction

Diabetes mellitus (DM) is a common metabolic disease characterized by hyperglycemia [1].
An epidemiological survey showed that the global prevalence of diabetes is increasing
year by year, and it was predicted to rise to 10.2% (578 million) by 2030, with the vast
majority of these cases being type II diabetes (T2D) [2]. Incretin-based therapy has recently
surfaced as a viable treatment option for individuals with T2D [3]. The incretin system
is composed of two hormones, namely, glucagon-like peptide-1 (GLP-1) and glucose-
dependent insulinotropic polypeptide (GIP), which elicit the secretion of insulin from
pancreatic β-cells in reaction to elevated levels of blood glucose [4]. Nonetheless, the
instability of these peptides in vivo presents a significant obstacle due to their limited half-
lives and vulnerability to degradation and inactivation by dipeptidyl peptidase (DPP)-IV
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enzymes [5]. To tackle this issue, a novel category of therapeutic agents for T2D called DPP-
IV inhibitors are increasingly being utilized in clinical settings due to their advantageous
physiological properties in reducing glucose levels. These include trogliptin, vildagliptin,
and sitagliptin [6]. These agents function primarily by extending the degradation time
of GLP-1 within the body, thereby promoting insulin secretion and inducing glucose
concentration-dependent hypoglycemic effects [7]. Nevertheless, clinical investigations
have demonstrated that the chemically synthesized DPP-IV inhibitors that are marketed
are susceptible to adverse effects, such as headache, rash, diarrhea, and abnormal liver
function [8,9]. Traditional Chinese medicine (TCM) is a class of drugs based on natural
plants, many of which are homologous with medicine and food [10]. These drugs are
gaining popularity because of several advantages: they often have fewer side effects and
better patient tolerance, and they are relatively less expensive and are accepted due to a
long history of use [11]. A variety of Chinese medicines, such as Astragalus membranaceus,
Mulberry leaves, and Radix scutellariae, have demonstrated significant efficacy in lowering
blood glucose levels both in vivo and in vitro [12–15]. TCMs can exert hypoglycemic
effects through various mechanisms, such as inhibiting the activity of DPP-IV enzyme [16].
Therefore, screening for effective DPP-IV inhibitors with low side effects from TCMs is one
of the important directions for the development of hypoglycemic drugs.

Drug discovery and development starts with target identification and ends with
clinical trials [17]. Owing to the large number of assays and tests required and a high risk
of failure, the whole process of developing a new drug generally takes 10–20 years as well
as a capital investment, which ranges from USD 0.5 billion to USD 2.6 billion [18,19]. A
major stage in the drug discovery process entails the identification of interactions between
drugs and their respective targets, a task conventionally achieved through rigorous in vitro
experiments. To mitigate the considerable expenditure of time and resources, there has
been a growing emphasis on in silico methodologies [20]. Consequently, rather than
embarking on an exhaustive in vitro exploration, the initial step involves virtual screening,
followed by subsequent experimental validation of potential candidates. The emergence
of drug–target interaction (DTI) based on artificial intelligence has become a crucial tool
in drug discovery, and its progress has substantially improved the effectiveness of novel
drug development [21]. DTI prediction serves as an important step in the process of drug
discovery. More recently, deep-learning-based approaches have rapidly progressed for
computational DTI prediction due to their successes in other areas, enabling large-scale
validation in a relatively short time [22]. In this study, a deep-learning model, DrugBAN,
was employed to identify the compound DPP-IV protein interactions. This is the state-of-
the-art method in the prediction of compound–protein interactions and was reported to
have excellent accuracy [23].

Contrary to the predominant “one target, one drug” approach of Western medicine,
TCM is a multifaceted system that operates through the modulation of multiple physiologi-
cal pathways, utilizing a variety of components and targets [24]. The complex chemical
profile of TCM results in certain components being incapable of producing their intended
effects. Only components that successfully reach the target and maintain an appropriate
blood concentration are deemed therapeutically effective [25,26]. Therefore, targeting the
absorbed ingredients by in vivo metabolic methods can effectively increase the hit rate of
the active compound and simplify the description of the active substance [27]. Through
this approach, Luo et al. introduced an integrated strategy founded upon a sequential
metabolite identification approach, network pharmacology, molecular docking, and surface
plasmon resonance (SPR) analysis. This method led to the successful identification of the
active constituents within Paeoniae Radix Alba [28].

Gardenia jasminoides Ellis (GJE) is the dried and mature fruit of the Rubiaceae plant
Gardenia and a kind of homologous food medicine that is rich in various bioactive com-
pounds that exhibit a diverse range of pharmacological activities. Among them, iridoid
glycosides and yellow pigment are generally considered the main bioactive and charac-
teristic ingredients. GJE has a rich and wide range of cultivation resources, with a low
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price, which contributes to its low-cost characteristics. It is well known and frequently used
not only as an excellent natural colorant, but also as an important traditional medicine
for the treatment of different diseases, such as clearing away heat, cooling the blood,
and eliminating stasis to activate blood circulation. It has demonstrated notable effi-
cacy in anti-inflammatory, hypoglycemic, hepatoprotective, and cholagogic aspects and is
widely used in Chinese clinical prescriptions [29]. Previous studies have reported that the
60% alcoholic extract of GJE exhibited significant hypoglycemic effects and improved
insulin resistance [30,31]. Iridoid glycosides were identified as one of the major kinds of
components in GJE and have demonstrated hypoglycemic effects in animal models [32].
However, the mechanism of action underlying these effects remains unclear. Furthermore,
the absorption and metabolism of GJE and its primary active components also need to be
investigated to evaluate their in vivo activity.

In this study, the interactions between 11,549 compounds from the traditional Chinese
medicine systems pharmacology database (TCMSP) and DPP-IV were first predicted using
a deep-learning model, and GJE was screened as a model drug for further study. Subse-
quently, sequence metabolism was employed to gain a more comprehensive understanding
of the major absorbed components of GJE and their distribution in rats. This was followed
by a comprehensive strategy of molecular docking and in vitro activity analyses to validate
the potential active components in GJE. This approach combines deep-learning prediction,
in vivo uptake distribution, and in vitro activity validation, and all experimental techniques
and methods can be used as mature tools for screening and verifying related compounds.
These tools do not depend on specific compounds, so they can be effectively extended
to the study of more herbal ingredients. This approach holds great potential for similar
studies in the future and can serve as a valuable methodological framework.

2. Results and Discussion
2.1. Validation of Deep-Learning Model

The activities of compounds in TCM were predicted using the drugBAN model,
with the code available at GitHub (https://github.com/peizhenbai/DrugBAN/tree/main,
accessed on 1 June 2022). The DPP-IV dataset was collected from PubChem (https://
pubchem.ncbi.nlm.nih.gov/, accessed on 1 June 2022) and used to train the model, which
employed 80–20 splits for training and testing. Precision–recall curves plotting the true
positive rate against the positive predictive value were then generated (Figure 1). It was
observed that the area under the precision–recall curve (auPRC), which measures the ability
of the model to correctly identify a compound, was favorable with a value of 0.73. This
indicated that the model could more accurately identify DPP-IV-inhibitory compounds in
our training set compared to random prediction (auPRC of 0.28). Further evaluation of
the model’s performance using various metrics such as the AUROC, F1 score, sensitivity,
specificity, accuracy, and threshold score also exhibited superior results in the DrugBAN
model (Table 1).

Table 1. Model performance comparison between trained and random prediction model.

Metrics Trained Model Random Prediction

AUROC 0.8810 0.5000
AUPRC 0.7319 0.2813
F1 score 0.9729 -

Sensitivity 0.9865 -
Specificity 0.9600 -
Accuracy 0.9832 -
Threshold 0.2706 -

https://github.com/peizhenbai/DrugBAN/tree/main
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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Figure 1. The true positive rate against the positive predictive value of DrugBAN and random
prediction model.

2.2. Deep-Learning Model Prediction and Filters

The optimized model was applied to predict the DPP-IV-inhibitory activities of
11,549 compounds from the TCMSP Database (https://old.tcmsp-e.com/index.php,
accessed on 2 June 2022). The interactions were predicted with scores ranging from 0 to 1.
The prediction results for the 11,549 compounds interacting with DPP-IV are shown in
Supplementary Table S1. The top 30 compounds with the best inhibition capacity were
selected to identify their respective sources, and the results are presented in Table 2. We
investigated the major botanical sources of the top 30 compounds and screened them on
the basis of the frequency of their use in herbal medicines in clinical prescriptions, their
level of toxicity (https://db.ouryao.com/, accessed on 2 June 2022), and their potential
for food medicine with homologous properties (http://www.foodmate.net/, accessed on
2 June 2022). Although compounds such as genipin 1-gentiobioside and others did not
exhibit particularly significant affinity, it is worth noting that a considerable portion of the
top 30 hit compounds were derived from GJE. Therefore, GJE was chosen as the model
drug for further investigation.

Table 2. Top 30 compounds’ sources and predicted affinity scores with different sources of DPP-IV.

No. Source of
Compound Compound’s Name TCMSP ID P27487

Score
P28843
Score

P14740
Score

Total
Score

1 Ecliptae Herba Ecliptasaponin D MOL003383 0.9798 0.8247 0.8418 2.6463

2 Xanthium sibiricum
Patr. Strumaroside MOL002294 0.9796 0.8506 0.9227 2.7529

3 Ephedra Herba
2,6-Dimethyl-1,3,5,7-

octatetraene,
E,E-

MOL003935 0.9795 0.7253 0.8179 2.5227

4 Magnolia Officinalis
Rehd Et Wils.

5-allyl-3-(4-
allylphenoxy)pyrocatechol MOL005972 0.9795 0.6784 0.8428 2.5007

5 Myrrha 3β-acetoxy-16β-
hydroxydammar-24-ene MOL001150 0.9793 0.9315 0.9425 2.8533

6 Dictamni Cortex Dictamnoside MOL006254 0.9793 0.7955 0.8364 2.6112

https://old.tcmsp-e.com/index.php
https://db.ouryao.com/
http://www.foodmate.net/
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Table 2. Cont.

No. Source of
Compound Compound’s Name TCMSP ID P27487

Score
P28843
Score

P14740
Score

Total
Score

7 Radix Paeoniae Rubra 1-O-β-D-glucopyranosyl-8-
O-benzoylpaeonisuffrone MOL006993 0.9793 0.6134 0.7151 2.3078

8 Tribulifructus Spirostanol MOL008580 0.9792 0.7898 0.9191 2.6881

9 Gardenia jasminoides
Ellis Genipin 1-gentiobioside MOL009038 0.9792 0.7189 0.7703 2.4684

10 Dysosmae Verspiellis
Rhixoma Et Radix

(E)-4-[(1S)-2,6,6-trimethyl-1-
cyclohex-2-enyl]but-3-en-2-

one
MOL011707 0.9791 0.8813 0.886 2.7464

11 A. Dahurica (Fisch.)
Benth. Et Hook Daturic acid MOL011501 0.9788 0.844 0.8818 2.7046

12 Polygonati Rhizoma Sibiricoside B MOL009762 0.9787 0.8104 0.8806 2.6697

13 Gardenia jasminoides
Ellis Shanziside MOL004560 0.9786 0.8053 0.8381 2.622

14 Croci Stigma Carthamin MOL001413 0.9786 0.6905 0.8393 2.5084
15 Ginkgo Semen Amentoflavone MOL012037 0.9786 0.9096 0.9011 2.7893
16 Pulsatilliae Radix 5,6,7-Trimethoxycoumarin MOL011997 0.9786 0.9096 0.9011 2.7893

17 Arum Ternatum
Thunb.

(Z)-3-(4-hydroxy-3-
methoxyphenyl)prop-2-

enoic
acid

MOL010389 0.9784 0.8322 0.9062 2.7168

18 Gardenia jasminoides
Ellis Gardenoside MOL004554 0.9784 0.8015 0.7198 2.4997

19 Hedysarum
Multijugum Maxim. Isoflavanone MOL010398 0.9784 0.8322 0.9062 2.7168

20 Imperatae Rhizoma Bifendate MOL010387 0.9784 0.8322 0.9062 2.7168

21 Gardenia jasminoides
Ellis Geniposidic acid MOL001668 0.9782 0.8552 0.8563 2.6897

22 Hedysarum
Multijugum Maxim. AstragalosideIII_ MOL010406 0.9782 0.8322 0.9062 2.7166

23 Carthami Flos Carthamin-precursor MOL002779 0.9782 0.6842 0.838 2.5004
24 Impatientis Semen Hosenkosides C MOL008609 0.9782 0.8973 0.9492 2.8247

25 Isatidis Radix 5-(methoxymethyl)-2-furoic
acid MOL011822 0.9782 0.8899 0.9447 2.8128

26 Gardenia jasminoides
Ellis

1,8-dihydroxy-3-Methylol-
9,10-anthraquinone MOL010471 0.9776 0.6499 0.7134 2.3409

27 Radix Cynanchi
Paniculati Tomentogenin MOL005622 0.9774 0.9162 0.9443 2.8379

28 Isatidis Radix

3-[2′-(5′-
hydroxymethyl)furyl]-

1(2H)-isoquinolinone-7-O-
β-D-glucoside

MOL011727 0.9774 0.8676 0.9538 2.7988

29 Gardenia jasminoides
Ellis Scandoside MOL003135 0.9780 0.8923 0.8477 2.718

30 Eupatorium Fortunei
Turcz Taraxasteryl palmitate MOL000605 0.9780 0.8676 0.9538 2.7994

2.3. Identification of the Absorbed Components in Gardenia jasminoides Ellis

In order to provide a more comprehensive understanding of the major constituents
of GJE and their distribution in rats, plasma samples obtained from different sites and
different methods were analyzed using a sequential metabolism process [33], as reported
previously. Briefly, the mesenteric vein/femoral vein plasma and the abdominal aorta
plasma were collected from in situ intestinal perfusion and gavage, respectively. The mesen-
teric vein plasma samples were metabolized by enzymes of the intestinal wall, and both
the intestine and liver contributed to the metabolic processes of the femoral vein plasma
samples. Following metabolism by multiple organs and bacterial flora throughout the
body, the abdominal aorta plasma samples served as a state of equilibrium. By comparing
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these samples, a clearer understanding of the absorption and metabolism site of GJE extract
can be obtained. The extract of GJE was analyzed, and the results showed that a total
of 46 components were identified, including iridoid glycosides, organic acids and their
derivatives, monoterpenoids, and flavonoids, as illustrated in Supplementary Table S1.
Moreover, a total of 38 prototype compounds were identified from drug-treated plasma
samples through a meticulous comparison of their molecular formulas, fragment ions,
and retention times with those of the parent compounds, with 38 in the mesenteric blood
(MB) group, 25 in the femoral venous blood (FVB) group, and 14 in the abdominal aorta
(AA) group, as illustrated in Table 3. DPP-IV is secreted by intestinal cells and enters the
bloodstream to rapidly degrade GLP-1, thereby inhibiting its ability to stimulate insulin
secretion [4,5]. Therefore, components absorbed in the mesenteric vein and systemic circu-
lation were all included in the analyses. It is of significance to note that the predominant
absorbed compounds in rat plasma were iridoid glycosides, which was consistent with the
results predicted by the deep-learning model. Taken together, the above study could give
a comprehensive map of the dynamic metabolic process of GJE, which would effectively
narrow the range of potentially bioactive components of GJE.

Table 3. Identification of compounds from Gardenia jasminoides Ellis and the absorbed components in
different plasma samples.

Peak
No. tR/min Measured

Mass
Error
(ppm)

Molecular
Formula Prototypical Compounds MB FVB AA

1 0.91 [M − H]−

191.055 9 1.555 C7H12O6 Quinic acid + + +

2 0.98 [M − H]−

173.045 3 1.512 C7H10O5 Shikimic acid - - -

3 2.65 [M − H]−

391.124 5 1.134 C16H24O11 Shanzhiside isomers + + +

4 2.81 [M − H]−

403.124 1 0.183 C17H24O11
Deacetylasperulosidic acid

methyl ester - - -

5 2.84 [M − H]−

389.108 7 0.883 C16H22O11 Scandoside + + -

6 2.98 [M − H]−

373.113 7 0.639 C16H22O10 Gardoside * + + -

7 3.13 [M − H]−

391.124 5 1.221 C16H24O11 Shanziside * + + +

8 3.32 [M − H]−

403.124 1 1.101 C17H24O11 Gardenoside + + +

9 3.35 [M − H]−

373.113 6 0.478 C16H22O10 Geniposidic acid * + + +

10 3.38 [M − H]−

403.124 1 −0.561 C17H24O11 Feretoside + + +

11 3.48 [M − H]−

405.139 9 0.503 C17H26O11 Shanziside methyl ester * + + +

12 3.57 [M − H]−

375.129 4 0.715 C16H24O10 Mussaenosidic acid + + +

13 3.73 [M − H]−

345.155 2 0.775 C16H26O8 Jasminoside D + + +

14 3.96 [M − H]−

327.144 7 0.832 C16H24O7 Zataroside B + + +

15 4.04 [M − H]−

353.087 6 1.028 C16H18O9 5/3-O-Caffeoyl-quinic acid + + -

16 4.2 [M − H]−

549.181 5 −0.883 C23H34O15 Genipin 1-gentiobioside - - +

17 4.87 [M − H]−

387.129 4 0.693 C17H24O10 Geniposide * + + +
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Table 3. Cont.

Peak
No. tR/min Measured

Mass
Error
(ppm)

Molecular
Formula Prototypical Compounds MB FVB AA

18 5.34 [M − H]−

345.155 2 0.775 C16H26O8 Jasminoside B + + -

19 5.49 [M − H]−

353.087 4 0.405 C16H18O9 Chlorogenic acid + + -

20 6.33 [M − H]−

179.034 8 1.832 C9H8O4 Caffeic acid + + -

21 6.39 [M − H]−

183.102 3 1.206 C10H16O3 Jasminodiol + + +

22 6.62 [M − H]−

503.176 9 0.883 C22H32O13

2-methyl-lerythritol-4-O-(6-O-
transsinapoyl)-β-D-

glucopyranoside
+ + -

23 7.01 [M − H]−

359.134 7 1.372 C16H24O9 Ixoroside + + +

24 7.44 [M − H]−

429.139 8 0.335 C19H26O11 10-acetyl geniposide + + -

25 7.57 [M − H]−

519.150 6 0.614 C25H28O12
6′-O-trans-coumaroyl geniposidic

acid + - -

26 8.24 [M − H]−

551.176 8 0.643 C26H32O13
6-O-trans-p-coumaroyl

Gardenoside methyl ester + - -

27 9.89 [M − H]−

491.213 3 0.954 C22H36O12 Jasminoside S/H/I + - -

28 10.16 [M − H]−

579.172 1 1.174 C27H32O14 6′-O-trans-sinapoyl gardoside + - -

29 10.43 [M − H]−

565.192 4 0.574 C27H34O13
11-(6-O-trans-

sinapoylglucopyranosyl)gardendiol + - -

30 10.79 [M − H]−

609.146 3 1.216 C27H30O16 Rutin - - -

31 11.6 [M − H]−

465.101 8 0.938 C21H20O12 Isoquercitrin - - -

32 11.86 [M − H]−

593.151 3 1.121 C27H30O15 Nicotiflorin + - -

33 12.12 [M − H]−

755.240 8 1.306 C34H44O19
6′′-O-trans-sinapoylgenipin

gentiobioside + - -

34 12.62 [M − H]−

725.230 2 1.201 C33H42O18
6′′-O-trans-feruloyl genipin

gentiobioside + - -

35 12.69 [M − H]−

695.219 2 0.742 C32H40O17
6′′-O-trans-p-coumaroylge nipin

gentiobioside + - -

36 13.08 [M − H]−

551.213 3 0.742 C27H36O12 6′-O-trans-sinapoyl Jasminoside L + - -

37 13.34 [M − H]−

975.371 0 0.044 C44H64O24 trans-crocin I/cis-crocin I - - -

38 14.07 [M − H]−

593.187 7 1.095 C28H34O14 6′-O-sinapoylgeniposide + - -

39 14.64 [M − H]−

515.119 1 0.251 C25H24O12 3,5-Dicaffeoylquinic acid + + -

40 15.51 [M − H]−

533.166 3 0.786 C26H30O12 6′-O-p-coumaroylgeniposide + + -

41 15.67 [M − H]−

659.162 1 1.366 C31H32O16

3,4-dicaffeovl-5-(3-hydroxy-3-
methyl glutaroyl) quinic

acid
+ + -

42 16.44 [M − H]−

559.145 5 0.616 C27H28O13 3-caffeoyl-4-sinapoylquinate + + -

43 17.45 [M − H]−

535.218 3 0.716 C27H36O11
6′-O-trans-sinapoyl jasminoside

A - - -

44 18.57 [M − H]−

533.202 5 0.419 C27H34O11 6′-O-trans-sinapoyl jasminoside C + - -
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Table 3. Cont.

Peak
No. tR/min Measured

Mass
Error
(ppm)

Molecular
Formula Prototypical Compounds MB FVB AA

45 19.58 [M − H]−

345.061 4 0.95 C17H14O8

5,7,3′,4′-tetrahydroxy-6,8-
dimethoxy

flavone
+ - -

46 21.75 [M − H]−
813.319 2 1.286 C38H54O19 Crocin II - - -

Note: MB: mesenteric blood; FVB: femoral venous blood; AA: abdominal aorta. * means components were
compared with reference standards. + means that the component is absorbed into the blood. - means that the
component is not absorbed into the blood.

2.4. Molecular Docking Studies

The compounds that could be predicted by deep-learning models and could also
be absorbed into the bloodstream (e.g., genipin 1-gentiobioside, shanziside, geniposide,
geniposidic acid, shanziside methyl ester, scandoside) were used for molecular docking
to verify their interactions with the DPP-IV binding site to verify the credibility of the
docking. The constructed conditional parameters were used to re-dock the sitagliptin.
The parameters were judged to be reasonable based on whether the root mean square
deviation (RMSD) was less than or equal to 2 Å [34]. The obtained RMSD value was 1.6079,
indicating that the parameters were suitably set to reproduce the original binding pattern
of the ligand receptor and were suitable for predicting the conformation of the ligand. The
results indicated that the GJE components had been docked successfully with DPP-IV, as
listed in Supplementary Table S2. Docking scores of the above six compounds absorbed
into the blood and sitagliptin with DPP-IV are listed in the table below (Table 4).

Table 4. LibDock scores for 6 prototype compounds and sitagliptin.

Num Name Libdock Score

1 Genipin 1-gentiobioside 142.425
2 Shanzhiside 142.425
3 Sitagliptin 136.846
4 Gardenoside 132.894
5 Geniposidic acid 127.404
6 Shanzhiside methyl ester 107.752
7 Scandoside 107.136

Understanding the molecular basis of ligand binding to receptors provides insights
useful for rational drug design [35]. Based on Libdock scores, the docking of compounds
with DPP-IV was analyzed using genipin 1-gentiobioside as an example. As a reference,
sitagliptin and the three amino acid residues of the DPP-IV binding site each formed three
hydrogen bonds (Figure 2B), and the C- and N-terminal residues established salt bridges
with Glu205 and Glu206 (Figure 2A). Additionally, hydrophobic interactions were noted,
which have been demonstrated to augment the inhibition of DPP-IV [36,37]. Regarding the
docking mode of six compounds, it was found that, like sitagliptin, each compound could
form various hydrogen bonds and hydrophobic interactions with key amino acid residues
at the DPP-IV binding site. As shown in Figure 2D, the interaction between receptor
and ligand occurred through hydrogen bond, hydrophobic, and electrostatic interactions.
The molecule could establish five hydrogen bonds with DPP-IV, involving four oxygen
atoms and one hydrogen atom from the glycosyl side chain. Additionally, it can engage
with five residues located at the binding site of DPP-IV, specifically at positions Ser209,
Glu205, Glu206, Pro550, and Gln553. The carboxymethyl and cyclopentane structures of the
compound could form hydrophobic interactions with His126 and Phe357. As previously
mentioned, they facilitated the substrate’s binding to the catalytic site of the enzyme. The
docking pose of genipin 1-gentiobioside and 6 key residues are shown in Figure 2C.
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specific residues of sitagliptin in the binding pockets/active sites of DPP-IV. (B) A 2D view of the
interaction of sitagliptin with DPP-IV. (C) The specific residues of genipin 1-gentiobioside in the
binding pockets/active sites of DPP-IV. (D) A 2D view of the interaction of genipin 1-gentiobioside
with DPP-IV.

Overall, this integrated method combining UPLC-HRMS with computer analysis
is effective for screening active ingredients from complex traditional Chinese medicine
systems. Therefore, based on the virtual screening and docking process described above,
combined with commercially available monomers, these six compounds were selected
for subsequent DPP-IV inhibition experiments. The molecular structures of these six
compounds and sitagliptin are shown in Figure 3.
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2.5. In Vitro Activity Assay

The IC50 value for the positive control, sitagliptin, was 28.91± 0.33 nM, which was sim-
ilar to that reported in the literature [38] and demonstrated the suitability of this system for
activity determination. The present study identified that GJE showed certain inhibitory ac-
tivity on DPP-IV (IC50 2270± 230 µg/mL, Figure 4A). As shown in Figure 4C, the inhibitory
activity showed a considerable concentration dependence manner. As shown in Figure 4B,
the six GJE compounds inhibited the activity of DPP-IV, and genipin 1-gentiobioside (2)
exhibited better anti-DPP-IV activity. The order of potency of the compounds tested was
2 > 6 > 4 > 1 > 5 > 3. This is consistent with the order of activity predicted by the DTI
model. All compounds demonstrated concentration dependence. As the DPP-IV inhibitory
activity demonstrated moderate potency, no activity assay at a higher concentration was
conducted. The content of iridoid glycosides in GJE extract can be increased from 5.31%
to 31.72% after D101 macroporous resin treatment, which indicates that this macroporous
resin can be successfully used to enrich and purify iridoid glycosides in GJE, and it ex-
hibits the most notable inhibitory activity (IC50 53 ± 0.63 µg/mL) (Figure 4D). There is
presumed to be a cooperative interaction between individual compounds on the inhibitory
activity of DPP-IV.
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Figure 4. The DPP-IV inhibitory activity of Gardenia jasminoides Ellis extract, six iridoid glycosides,
and iridoid glycosides. (A) The inhibition rate–concentration curve of GJE extracts. (B) Inhibitory
activities of constituents 1–6 of GJE on DPP-IV in vitro. Final concentration of each sample: 1 mM.
Data were expressed as mean ± SEM of triplicate experiments. (C) Concentration dependency
inhibitory activity of the iridoid glycosides of GJE. (D) The inhibition rate–concentration curve of the
iridoid glycosides.

This study found that the fraction of iridoid glycosides in GJE has significant inhibitory
activity on DPP-IV. Genipin 1-gentiobioside has been identified as a novel and promising
DPP-IV inhibitor, potentially serving as a lead compound for type 2 DM treatment. At the
same time, extracting the active parts of natural products for the treatment of diabetes is
also a promising strategy. However, it is important to note that the binding ability and
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selectivity of natural products towards the protein target require further enhancement
when compared to commercially available drugs. To address this, future research should
focus on designing and synthesizing a series of derivatives based on the ligand–receptor
interaction mode results, aiming to improve the compounds’ affinity towards the target.

3. Materials and Methods
3.1. Materials

GJE was supplied by Beijing Tong Ren Tang Co., Ltd. (Beijing, China), which was
identified by Prof. Jingjuan Wang (Beijing University of Chinese Medicine, Beijing, China).
A voucher specimen has been deposited in B401 Laboratory of School of Chinese Materia
Medica, Beijing University of Chinese Medicine (voucher No. 21122101). Methanol, MS-
grade acetonitrile (purity ≥ 99.9%), and formic acid (purity ≥ 99) were provided by
Thermo Fisher Scientific (Fairlawn, NJ, USA). Absolute ethanol (purity ≥ 99.9%) was
supplied by Tianjin Damao Chemical Reagent Factory (Tianjin, China). Gardenoside,
genipin, scandoside, genipin 1-gentiobioside, geniposidic acid, shanzhiside, shanzhiside
methyl ester, and gardoside (purity ≥ 98%) were purchased from Nanjing Dilger Medical
Technology Co., Ltd. (Nanjing, China). Recombinant human DPP-IV was provided by
ProSpec (Rehovot, Israel). D101 adsorption resin was purchased from Tianjin Bailens
Biotechnology Co., Ltd. (Tianjin, China).

3.2. Deep-Learning Model Predicts Compound Affinity for DPP-IV
3.2.1. Data Collection and Preparation

The training dataset for this study was obtained from PubChem, comprising com-
pounds that have been experimentally confirmed through assay. After representing them
by SMILES, the collected compounds were curated to eliminate duplicates, inorganic mate-
rial, and mixtures. Additionally, the protein sequences were extracted from the UniProt
protein database using the UniProt ID as a reference. Accordingly, a dataset contain-
ing 1691 protein-drug samples was obtained, in which 536 were positive samples and
1155 were negative ones. A protein-drug sample is positive if the IC50 is less than 10 µM,
or it is negative if the IC50 is greater than 10 µM. The data were divided into a training set
(422 positive samples, 930 negative samples), a validation set (62 positive samples,
107 negative samples), and a test set (52 positive samples, 118 negative samples) with
a guaranteed ratio of positive to negative samples.

3.2.2. Deep-Learning Model

The deep-learning model used in this work builds on that applied in DrugBAN [35]
(https://github.com/peizhenbai/DrugBAN/tree/main, accessed on 2 June 2022), a deep-
learning bilinear attention network (BAN) framework with adversarial domain adaption
to explicitly learn pair-wise interactions between drugs and targets. For each compound-
protein pair, firstly, a graph-based molecular representation was generated from the com-
pound’s simplified molecular-input line-entry system (SMILES) string, and a protein rep-
resentation was encoded by 1D convolutional neural network (1D CNN) blocks from the
protein sequence. Then, a bilinear attention network module was used to learn local inter-
actions between encoded drug and protein representations. Finally, the interaction score
was output by a fully connected classification layer. More detailed information is available
in Ref. [39].

3.2.3. Model Optimization and Evaluation

A binary activity value of 0 (no inhibition of DPP-IV activity) or 1 (possesses DPP-IV
inhibitory activity) was assigned to each compound-protein pair in this work. To evaluate
the model performance, we used the area under the receiver operating characteristic curve
(AUROC) and the area under the precision–recall curve (AUPRC) as the major metrics.
The training was performed for 100 epochs using random 80–10–10 training–validation–
testing splits of the dataset. By default, and consistent with previous work [39], the binary

https://github.com/peizhenbai/DrugBAN/tree/main
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cross entropy was used as the loss function. Precision–recall curves were generated by
comparing the prediction score to the withheld activity value for each compound-protein
pair in the testing subset using scikit-learn. In addition, we also report accuracy, sensitivity,
and specificity at the threshold of the best F1 score (Supplementary Table S1).

3.2.4. Model Prediction

For the final model, we used the full data (training, valid, and test data) to train. The
model was then deployed to predict the compounds in HSD and the DPP-IV protein target
score. There were several different source DPP-IV protein targets we selected to pair with
each compound. Mouse, rat, and human DPP4 enzymes are very similar in structure,
and the inhibitory effect of some inhibitors on the mouse enzyme may occur with the
human enzyme as well. In the existing data study, some inhibitors used rat enzymes, some
used mouse enzymes, and some used human enzymes to perform the experiment. These
data were used as our training data to train the model. We wanted to make predictions
for enzymes from different animals so as not to miss some compounds. The detailed
information is shown in Table 5.

Table 5. Selected DPP-IV proteins information.

UniProt ID Protein Organism

P27487 Dipeptidyl peptidase 4 Homo sapiens (human)
P28843 Dipeptidyl peptidase 4 Mus musculus (mouse)
P14740 Dipeptidyl peptidase 4 Rattus norvegicus (rat)

3.3. Preparation of Sample Solutions

The GJE was crushed into a fine powder using a grinder and subsequently subjected to
sonication twice with 50% ethanol, at a solid–liquid ratio of 1:10 and at room temperature,
for a duration of 20 min each time, using approximately 300 g of GJE powder. Then, the
supernatant was transferred into an evaporating dish and concentrated using a water bath
at 55 ◦C to 300 mL (1 g/mL), which was used for animal studies and macroporous resin
column chromatography. The GJE solution (1 g/mL) was subjected to chemical analysis
by diluting it to a concentration of 10 mg/mL crude drug. Six reference standards were
individually dissolved in methanol using a 10 mL volumetric flask and stored at 4 ◦C. Prior
to LC-MS analysis, the sample solution was filtered through a 0.22 µm pore size filter.

3.4. Enrichment of the Iridoid Glycoside Extract of GJE with Macroporous Resin

A D-101 macroporous resin column was used for the enrichment of the iridoid glyco-
side extract of GJE. Firstly, the effects of sample flow rate, sample concentration, elution
solvent type, concentration, flow rate, and dosage on the adsorption efficiency were investi-
gated separately. The enriched iridoid glycoside from the GJE extract was quantified by
HPLC, using geniposide, genipin 1-gentiobioside, and geniposidic acid as the standard
materials. The results showed that the best purification process, with a sample flow rate
of 1 mL/min, a sample volume of 2.0 g of raw drug/g resin, an elution solvent of 30%
ethanol, an elution flow rate of 2 mL/min, and a dosage of 30 mL, could effectively enrich
and purify the iridoid glycosides of GJE.

3.5. Animals

Sprague–Dawley rats (males, 200–250 g) were procured from Spfanimals Labora-
tory Animal Technology Co., Ltd. (Beijing, China). The animals were maintained under
controlled conditions of a 12 h light/dark cycle, a temperature range of 25–27 ◦C, and a
relative humidity of 50–70%. Prior to the commencement of the study, the rats underwent
an acclimatization period of no less than 7 days, during which they were provided ad
libitum access to standard laboratory chow and water. Additionally, the animals were
subjected to a 12 h water fast before the initiation of the experimental procedures. All
protocols involving animal treatment in this study were ethically reviewed and approved
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by the Animal Ethics Committee of Beijing University of Chinese Medicine, under approval
number BUCM-4-2022061502-2062.

3.6. Animal Experiments
3.6.1. In Vivo Metabolic Experiments

The in situ closed-loop technique is a well-established method utilized for the inves-
tigation of intestinal absorption. This approach enables the emulation of physiological
conditions, allowing for the assessment of intestinal absorption over a predetermined
timeframe. Notably, this model permits the precise measurement of absorption within
specific anatomical segments of the rat intestine, namely, the jejunum, ileum, and colon [40].
The surgical procedures for IPVS were executed following established protocols outlined in
the literature [41]. As shown in Figure 5, prior to the initiation of the perfusion surgery, five
to seven rats were selected as blood donors for each experiment. Approximately 50–70 mL
of blood was extracted from the abdominal aorta using a heparinized syringe and then
incubated in a 37 ◦C water bath. This blood was subsequently prepared for transfusion
into the recipient rat via the jugular vein, compensating for any blood loss through the
mesenteric vein. The recipient rat was anesthetized through intraperitoneal administration
of anesthetics, positioned supine on the operating table, and had its left external jugular
vein exposed and cannulated with a 24-gauge i.v. catheter, facilitating the transfusion of
blood from the donor reservoir. The abdominal cavity was meticulously opened along
the abdominal line to expose the jejunum and the mesenteric/femoral veins. The jejunal
segment ends were incised surgically, and two silicone tubes were carefully inserted and
secured through a small incision. The jejunal segment was flushed with 37 ◦C saline until
the effluent was clarified. Subsequently, the inlet tube was connected to the syringe pump.
A catheter containing heparinized saline was then cannulated into the mesenteric vein
(for intestinal wall metabolism) or femoral vein (for hepatic metabolism) and secured
using instant glue. In cases involving the examination of intestinal wall absorption, the
hepatic portal vein required ligation. The GJE solution (1 g/mL) was incubated in a water
bath at 37 ◦C to maintain temperature. The solution was then pumped at a flow rate
of 0.2 mL/min, and blood was pumped at a flow rate of 0.3 mL/min.
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Within a span of two hours, mesenteric/femoral vein blood was collected into hep-
arinized centrifuge tubes. Plasma was obtained through centrifugation of blood samples at
4000 rpm for 10 min, followed by protein precipitation using methanol. Following vortex-
ing for 10 min, the mixture underwent centrifugation at 8000 rpm for an additional 10 min.
The resulting organic layer was carefully transferred to a separate tube and subsequently
dried under a stream of nitrogen at 40 ◦C. The resulting residue was then reconstituted in
200 µL of methanol for subsequent LC/MS analysis.

3.6.2. Intragastric Administration

The rats were randomly divided into eight groups (three animals each). Subsequently,
the treatment groups received a 4 mL oral gavage of GJE solution (1 g/mL), and the
corresponding control groups were administered 4 mL of saline. Prior to experimentation,
the rats underwent anesthesia via intraperitoneal injection of chloral hydrate (400 mg/kg).
Subsequently, blood samples were collected from the abdominal aorta at specific time
intervals (0.5, 1, 1.5, and 2 h), with three rats sampled at each time point. At the end of this
study, all rats were sacrificed by conducting abilateral thoracotomy.

3.7. UPLC-Q Exactive-Orbitrap HRMS Analysis

Chromatographic separation was conducted using a Waters ACQUITY UPLC BEH
Shield RP C18 column (100 mm × 2.1 mm, 1.7 µm) at a column temperature of 30 ◦C. The
analytes were eluted through gradient elution using 0.1% formic acid in water (A) and
acetonitrile (B) at a flow rate of 0.3 mL/min. A linear gradient of solvent B (v/v) was
applied as follows: 0–1 min, 10% B; 1–4 min, 10–15% B; 4–18 min, 15–30% B; 18–24 min,
30–50% B; 24–28 min, 50–100% B; 28–31 min, 100% B; 31–32 min, 100–10% B; 32–35 min,
10% B. The injection volume was 5 µL.

The MS conditions were as follows: alternate switching (−)/(+) ESI full scan mode,
the capillary temperature was 320 ◦C, auxiliary temperature was 250 ◦C, positive spray
voltage was set at +3.5 kV, negative spray voltage was set at −3.0 kV, shealth gas (N2) flow
was 35 Arb, aux gas flow rate was 10 Arb. Full MS scans were acquired in the range of m/z
100–1500, and the collision energy was set at 20, 30, and 40 eV. The MS/MS experiments
were set as data-dependent scans. Data acquisition and processing were accomplished with
Xcalibur software (version 4.2; Thermo Fisher Scientific).

3.8. Molecular Docking

The molecular docking process was conducted using the LibDock module of Discov-
ery Studio 2019 software (Accelrys Software Inc., San Diego, CA, USA). The molecular
structures of the compounds were obtained from the ChemSpider website
(www.chemspider.com, accessed on 2 June 2022), and the crystal structure of DPP-IV,
with the inhibitor vildagliptin bound in the active site, was obtained from the protein data
bank (PDB ID:6B1E). Water molecules and co-crystallized ligands were removed from the
protein structure. Atom types, charges, and hydrogen atoms were assigned to both the
protein and ligand structures. A radius of 12 Å was set for the docking process, and the
catalytic domain of DPP-IV consists of Ser630, Asp708, and His740 [42]. Also, Glu205 and
Glu206 play a critical role in the activity of this enzyme [34,43]. Next, the 38 candidate
ligand compounds were subjected to the “prepare ligands” module to match with the
receptor. Subsequently, the ligands with diverse conformations were rigidly superimposed
onto the map to ascertain the optimal interaction and energy optimization. The optimal
conformation of each compound could be determined based on its highest docking score,
followed by the arrangement of the compounds in descending order of their respective
docking scores.

3.9. In Vitro DPP-IV Inhibition Assay

The DPP-IV inhibition assay was employed for in vitro biological activity evaluation of
compounds [44]. Based on the results of DTI model prediction and the prototypical uptake

www.chemspider.com
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of major components of GJE in rats, the iridoid glycosides’ potent fractions of GJE were
enriched with macroporous resin, and the DPP-IV inhibitory activity of iridoid glycosides’
potent fractions and six iridoid glycosides, namely, geniposide (1), genipin 1-gentiobioside
(2), scandoside (3), geniposidic acid (4), shanzhiside methyl ester (5), and shanzhiside (6),
were tested (0.02, 0.05, 0.1, 0.2, 0.4, 0.8, and 1 mM). Sitagliptin was used as a positive control,
and the assay was performed in 96-well microplates based on optimized conditions. Briefly,
test compounds at various concentrations (40 µL), diluted with assay buffer (0.1 M Tris-HCl
buffer, 0.1 M NaCl, and 1 mM EDTA, pH = 8.0), were added to a 96-well clear-bottom
microtiter plate. Subsequently, 20 µL of 1.75 mM Gly-Pro-pNA was added and thoroughly
mixed, followed by a 10 min incubation at 37 ◦C. The reaction was initiated by adding
40 µL of 0.4 µg/mL human recombinant DPP-IV. A control group without the inhibitor
was also included. After a 30 min incubation, absorbance was measured at 405 nm using a
Skanlt RE absorbance reader (Thermo Scientific, San Jose, CA, USA), and IC50 values were
calculated using the provided equation:

DPP-IV inhibition(%) =

[
1− A(sample)−A(sample control)

A(negative reaction)−A(negative control)

]
× 100%

In the provided experimental setup: A(sample control) included both the sample
and substrate (Gly-Pro-pNA). A(negative reaction) comprised DPP-IV and substrate.
A(negative control) solely contained the substrate. The term IC50 denotes the concen-
tration of inhibitors necessary to suppress 50% of DPP-IV activity.

4. Conclusions

This study presents a novel approach containing deep-learning model prediction,
absorption and metabolism characteristics, virtual screening, and target activity screening.
This powerful approach can be effectively employed for the discovery of potential active
ingredients or lead compounds in TCM. This finding presents a novel avenue for the explo-
ration of potent and low-toxicity DPP-IV inhibitors derived from herbal medicine. This
study found that the effective fraction of iridoid glycosides in GJE has significant inhibitory
activity on DPP-IV, which will guide the effective development of GJE as a hypoglycemic
Chinese medicine in the future. In addition, it can also be used as a dietary supplement
for the prevention and adjuvant treatment of diabetes. In contrast, the compound genipin
1-gentiobioside has been identified as a promising novel DPP-IV inhibitor that is effective,
low-cost, and non-toxic, and its potential as a lead compound for the management of T2D
warrants further investigation. In our research, we utilized the DrugBAN model [39] to
swiftly forecast the activity of over 10,000 traditional Chinese medicine compounds in
a dataset. This computational methodology yielded outcomes within a brief one-week
period. Conversely, conventional experimental techniques not only involve significant
financial costs but also necessitate several months to obtain the corresponding activity
data. These findings demonstrate that combining experiment with computation and deep
learning can enable one to efficiently discover DPP-IV inhibitory compounds in TCM and
rapidly elucidate their potential mechanisms of action. Despite the promising nature of
our deep-learning approach, it is imperative to acknowledge its inherent limitations. Deep-
learning techniques are commonly restricted by the quality and diversity of the utilized
training data. Although our dataset comprised 1691 compound-protein samples, providing
an adequate number of active compounds for training models with predictive capabilities,
enhancing the structural diversity within the training set is imperative. This augmentation
will enable models to better discern the chemical substructures responsible for conferring
activity, thereby facilitating the discovery of a wider array of structurally diverse inhibitors.
Overall, this innovative method has great potential for the rapid screening of active ingre-
dients in TCM and provides a new research idea and material basis for the development of
new T2D drugs.
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