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Abstract: Rhodiola rosea L. (RRL) is a popular plant in traditional medicine, and Rosavin, a charac-
teristic ingredient of RRL, is considered one of the most important active ingredients in it. In recent
years, with deepening research on its pharmacological actions, the clinical application value and
demand for Rosavin have been steadily increasing. Various routes for the extraction and all-chemical
or biological synthesis of Rosavin have been gradually developed for the large-scale production and
broad application of Rosavin. Pharmacological studies have demonstrated that Rosavin has a variety
of biological activities, including antioxidant, lipid-lowering, analgesic, antiradiation, antitumor and
immunomodulation effects. Rosavin showed significant therapeutic effects on a range of chronic
diseases, including neurological, digestive, respiratory and bone-related disorders during in vitro
and vivo experiments, demonstrating the great potential of Rosavin as a therapeutic drug for diseases.
This paper gives a comprehensive and insightful overview of Rosavin, focusing on its extraction and
synthesis, pharmacological activities, progress in disease-treatment research and formulation studies,
providing a reference for the production and preparation, further clinical research and applications of
Rosavin in the future.

Keywords: Rhodiola rosea L.; rosavin; extraction and synthesis; pharmacological activity; therapeu-
tic effect

1. Introduction

Rhodiola rosea L. (RRL), which belongs to a perennial herbaceous plant of the family
Crassulaceae, is a kind of traditional precious herbal medicine and has been used as an
adaptogen, supplement, medicine or functional food for a long time in Asia and Europe.
The active ingredients and effects of RRL have attracted a lot of attention and research.
Rosavin is one of the main active and characteristic components of RRL. It was first isolated
from RRL root by Russian botanists and chemists, who named the compound “Rosavin”
because of a rose-like aroma, and found it had antifatigue and antistress effects. In recent
years, with the gradual deepening of the research on its pharmacological actions and its
effects on diseases, Rosavin has demonstrated a variety of biological activities and broad
prospects for clinical application.

Searches in major databases (PubMed and CNKI) for a review on Rosavin were not
successful. This situation suggests that it would be of considerable value to provide
a brief overview of Rosavin and its biomedical activities as well as applications. This
paper systematically reviews Rosavin’s sources, pharmacological activities, therapeutic
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effects and mechanisms on related diseases and formulation studies based on national and
international literature research.

2. Botanical Origin and Molecular Structure of Rosavin

RRL, commonly known as Golden Root or Arctic Root, is a perennial herb of the
genus Rhodiola L. in the family Crassulaceae. There are about 90 species of Rhodiola L., but
only about 20 of them have medicinal value, the most important of which are R. crenulate,
R. kirilowii, R. cretinii subsp., R. quadrifida schrenk, R. sacra, etc., and RRL is the most widely
used of them. RRL is mainly distributed in northwestern regions of China, Northern
Europe to Russia, Mongolia, Korea and Japan [1]. The plant grows in the mountains
or cliffs at an altitude of 1800–2700 m in high and cold nonpolluted zones. Because its
growth environment is harsh, it has strong vitality and special adaptability. Modern
pharmacological studies have revealed that RRL has a variety of biological activities,
such as antioxidant [2], antifatigue [3], anti-inflammatory [4,5], antidepressant [6] and
antitumor [7] effects.

RRL contains a variety of active ingredients. More than one hundred compounds have
been extracted from it, including volatile substances, alcohol glycosides and cyanogenic
glycosides, phenylethanol and phenylpropanol compounds, flavonoids, tannin and proan-
thocyanidin constituents, etc. Phenylethanol and phenylpropanol compounds are con-
sidered the representative chemical constituents of RRL [8]. The phenylethanol analog
Salidroside and the phenylpropanol analog Rosavin are the main active components. The
phenylpropanol analogs include Rosavin, Rosarin and Rosin, which are collectively referred
to as rosavins. Other species of Rhodiola L. do not contain rosavins or have very low levels,
and therefore rosavins are considered to be the characteristic constituents of RRL [9].

The three compounds of rosavins have similar chemical structures, among which
Rosavin and Rosarin have the same relative molecular weight. Their chemical structures
are both based on Rosin (Figure 1): Rosavin introduces a pyran ring substituted with a
hydroxyl group at the 2,3,4 positions at the primary hydroxyl position of the pyran ring
in the structure of Rosin. In the case of Rosarin, a 2,3-dihydroxyfuran structure with a
hydroxymethyl substitution at the four position is introduced in the same position. In the
extract of RRL, Rosavin is the most abundant component among the three compounds of
rosavins, and it is also the main active ingredient of RRL. The study of Rosavin is of great
significance for the development and utilization of RRL.
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3. Extraction and Synthesis of Rosavin
3.1. Extraction and Isolation of Rosavin

As the main active ingredient and characteristic component of RRL, the traditional
way to obtain Rosavin is to extract it from the underground rhizome of RRL. For this reason,
a variety of methods have been developed for the rapid identification and detection of
Rosavin in RRL extracts, such as high-performance liquid chromatography (HPLC) [10],
HPLC tandem mass spectrometry (MS) [11] and HPLC using a fused-core column [12],
which provide a basis for evaluating the quality of RRL extracts.

The content of Rosavin in different RRL species varies widely, and its level depends on
a variety of factors, such as the plant source [13], plant harvest time [14], plant year [15], etc.
Wang S. et al. used HPLC to detect the content of Rosavin in different species of Rhodiola L.
and found that Rosavin was present in five different origins of RRL plants in China, with
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the content ranging from 0.08% to 0.6%. In contrast, Rosavin was absent in several sources
of R. crenulata, R. cretinii subsp. and R. kirilowii [13].

Different extraction methods significantly affect the content of Rosavin in RRL extracts.
The traditional methods mostly used water or organic extracts and combined them with
auxiliary techniques such as high pressure and microwave to extract Rosavin [16–18].
Kosakowska O. et al. found that ethanol extraction can extract more active components
from RRL than water extraction. The best results were obtained by using 70–75% ethanol,
and the extracted Rosavin content reached 969.71 mg/100 g [19]. In a recent study, Tsvetov
N. et al. applied natural deep eutectic solvents (NADES) for the first time to extract active
ingredients from RRL. The NADES of the choline chloride and tartaric acid combination
extraction were the most efficient, and the Rosavin concentration increased with time and
reached its maximum of about 1000 µg/mL at 60 min of extraction [20].

The conventional isolation and purification of Rhodiola L. extracts require several
steps, such as column chromatography, medium-pressure liquid chromatography, vacuum
column chromatography, semipreparative HPLC or a combination of these techniques.
Mudge E. et al. utilized high-speed countercurrent chromatography to isolate Rosavin from
the methanolic extract of RRL root with a content of 3.4 mg/13.5 g and 97% purity. The
method reduced losses due to irreversible adsorption and reduced solvent usage compared
to conventional separation [21]. Ma C. et al. developed flash column chromatography by
using ionic liquid as an extraction solvent combined with microwave extraction [22]. In
the study, the separation was carried out by using a polyamide column and macroporous
resin flash column in series. Finally, the 98.2% purity of Rosavin was obtained with an
extraction recovery of 60.6%, providing a new method for the large-scale isolation and
purification of Rosavin. To further improve the extraction efficiency of Rosavin, Yang Q.
et al. used the technique of macroporous adsorption resin to separate and purify Rosavin
in RRL and established a process route. Through the high physical adsorption capacity of
the macroporous adsorption resin to achieve an efficient separation effect, the obtained
content of Rosavin was increased from 3.00% to 68.76% with a recovery rate of 85.44%,
which is helpful for the separation and purification of Rosavin in the actual industrial
production [23].

3.2. All-Chemical and Biological Synthesis of Rosavin

Due to the relatively single plant sources and low content of Rosavin, its extraction
and isolation are complex and costly. Therefore, its current market price is rather expensive.
Given this, the development of relatively simple, efficient and inexpensive chemical or
biological synthesis methods for Rosavin is worth investigating. In 2006, Patov S.A. et al.
developed a chemical synthesis route of Rosavin based on 1,2,3,4-diisopropylidene- D-
glucopyranose and 2,3,4-tri-O-acetyl-β-L-arabinopryanosylbromide [24]. In the last two
years, Chinese scholars have developed chemical synthesis methods by using safer and
cheaper glucose, arabinopyranose and cinnamyl alcohol as starting materials [25,26]. In
recent years, some scholars have also attempted to carry out the biosynthesis of Rosavin,
and for the first time, natural Rosavin analogs were successfully obtained by using E. coli
expression [27,28]. Rosavin’s chemical and biological synthesis schemes are summarized
(Figure 2). Each of these approaches have their advantages and disadvantages (Table 1).
The development and gradual maturation of the technology of synthesizing Rosavin by
chemical or biological methods have provided the possibility of the scale-up production of
Rosavin, which lays a good foundation for the further drug development of Rosavin, as well
as preventive and therapeutic studies of related diseases and future clinical applications.
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Table 1. All-chemical or biological synthesis of Rosavin.

Typology Raw Materials Advantages and Disadvantages Year and Reference

Chemical
1,2,3,4-diisopropylidene-D-
glucopyranose, 2,3,4-tri-O-Acetyl-β-L-
arabinopryanosylbromide

Synthesis of Rosavin through 4 steps, short
synthesis route, but complex raw materials
preparation and harsh catalytic reaction
conditions.

2006 [24]

Chemical Cinnamyl alcohol, fully acetyl-α-
D-bromoglucose

Synthesis of Rosavin through 7 steps with an
overall yield of 15.92%, low cost, mild conditions,
simple operation and low contamination.

2021 [25]

Chemical β-D-Pentaacetylglucose,
arabinopyranose

Synthesis of Rosavin through 9 steps, long
synthesis route; low production cost, cheap raw
materials, high safety, low pollution, high yield.

2021 [26]

Biological Glucose, E. coli (DH5α, BL21), gene
deletion strains BPHE and BTAL

This route synthesizes a Rosavin analog,
inexpensive and sustainable, but the key enzyme
that catalyzes the conversion of Rosin to Rosavin
is not yet known.

2019 [27]

Biological
Glucose, E. coli (DH5α, BL21),
phenylalanine high-producing strain
BPHE

This route synthesizes a Rosavin analog, green
and sustainable production, batch fermentation
potency of 782.0 mg/L in a 5 L bioreactor.

2022 [28]

4. Pharmacological Activities of Rosavin
4.1. Antioxidant Effect

Oxidative stress is associated with the progression of many diseases, and the imbalance
of the intracellular oxidation–reduction system leads to tissue damage, such as the aging
of the organism [29]. RRL has good antioxidant activity. The four main components
of RRL extract, Salidroside, Tyrosol, Rosavin and Rosarin, inhibited the activities of a
superoxide anion radical (O2−), hydrogen peroxide (H2O2) and hypochlorous acid (HOCl)
in a dose-dependent manner, with Rosavin being the most potent inhibitor of O2− [30]. In
a 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free-radical scavenging assay and Fe2+ reducing-
capacity assay, Rosavin also showed good antioxidant activity and a better reducing
capacity than Gallic acid, Ethyl gallate and Herbacetin [31]. Hydroxyl radicals are known
to be the most harmful free radicals among the reactive oxygen species in the body, capable
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of killing erythrocytes, degrading DNA, etc. The main active ingredients of RRL, Tyrosol,
Salidroside, Rosarin and Rosavin, have a potent hydroxyl radical scavenging ability in
descending order [32]. Aging is a degenerative change induced with age, which is thought
to be related to the side effects of a large number of free radicals. The antiaging effect can
be achieved by the effective scavenging of free radicals. In a rat model of subacute aging
induced by an intraperitoneal injection of D-galactose, the Rosavin-treated group showed a
dose-dependent reversal of the decline in learning and memory due to aging. It was shown
that Rosavin ameliorated D-galactose-induced learning and memory decline in rats, which
may be related to the rebound of the blood oxygen level and protection of enzyme activities,
such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px)
and the reduction in lipid-oxidation-accumulation-products (MDA) production [33]. All of
the above studies have shown that Rosavin has a strong antioxidant capacity through the
effective scavenging of free radicals.

4.2. Lipid-Lowering Effect

The imbalance between energy intake and expenditure leads to an increase in the
body’s fat content. Excessive fat accumulation in the body tends to cause a series of
metabolism-related problems. Special natural components are known to reduce lipid ab-
sorption and adipogenesis, increase energy expenditure, etc. Verpeut J.L. et al. found that
rats in the combined application group of RRL extract (containing 3% Rosavin and 1%
Salidroside) and citrus aurantium reduced the weight of visceral fat by 30% compared
with rats in the high-fat-diet model group [34]. In the lipolysis and antilipogenesis study,
the experimental group containing 3% Rosavin and 1% Salidroside significantly induced
higher apoptosis and lipolysis compared to the 3% Salidroside group, significantly reduced
triglyceride (TG) adulteration during the maturation of preadipocytes. The expression
of the genes involved in adipogenesis, SLC2A4 (solute carrier family 2, member 4) and
FGF2 (fibroblast growth factor 2) was significantly decreased. However, the expression of
the genes that inhibit adipogenesis, such as GATA3 (GATA binding protein 3), WNT3A
(wingless-related MMTV integration site 3A) and WNT10B (wingless-related MMTV in-
tegration site 10B), was significantly increased. Mechanistic studies showed that the 3%
Rosavin and 1% Salidroside group significantly downregulated the master regulators of adi-
pogenesis, PPARG (peroxisome proliferator-activated receptor, gamma 2) and FABP4 (fatty
acid binding protein 4), confirming the lipolytic and antiadipogenic activity of Rosavin [35].
A recent study demonstrated that four consecutive weeks of an intraperitoneal injection of
Rosavin significantly reduced serum TG, total cholesterol (TC) and low-density lipoprotein
cholesterol (LDL-C) levels and significantly increased high-density lipoprotein cholesterol
(HDL-C) levels in mice fed a high-sucrose and high-fat diet [36]. The aforementioned
studies have shown the potential of Rosavin in reducing lipid levels, including visceral fat
weight and lipid indices, as well as regulating genes associated with adipogenesis.

4.3. Antifatigue Effect

Fatigue manifests as a decrease in the strength or sensitivity of cells, organs and mus-
cles in response to stress. Adaptogen is a kind of metabolic regulator that helps adapt to the
environment and enhances the body’s nonspecific resistance to harmful stimuli and injuries.
RRL is a representative plant that is recognized as having plant adaptogens. Its four active
components, Salidroside, Rosavin, Syringin and Triandrin, have the most potent adaptogen
activity. A single dose of these adaptogens could significantly improve mental and physical
performance after 30 min, lasting for at least 4–6 h [37]. In an antifatigue study in mice,
Rosavin prolonged forceful swimming time, with significantly higher hepatic glycogen
and myoglycogen content and a lower postexercise creatine lactate concentration [38].
Salidroside has been shown to have strong antifatigue activity [39]. Comparing Rosavin
with the positive control Salidroside, the antifatigue effect of Salidroside was slightly better
than that of Rosavin at the same dosage. However, there was no significant difference in
the antifatigue effect between the high-concentration Rosavin group (360 mg/kg) and the
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Salidroside group (180 mg/kg) [38]. The above study demonstrated the antifatigue activity
of Rosavin.

4.4. Analgesic Effect

The use of analgesics can effectively relieve the pain caused by most diseases and side
effects of clinical treatments. Many active ingredients in traditional Chinese medicine have
analgesic activity [40]. RRL ethanol extract (containing 2.7% Rosavin and 2.5% Salidroside)
in combination with B vitamins significantly reduced formalin-injection-induced pain in
mice synergistically. The analgesic effect of the RRL extract was inhibited by blocking
NO synthesis, cGMP synthesis or K+ channels, indicating that the analgesic activity of
the extract is related to the NO/cGMP/K+ pathway. This antinociceptive effect could be
reverted in the presence of antagonists of the 5-HT1A, GABA/BDZs and opioid receptors,
suggesting that the action mechanism of the analgesic activity of the extract involved the
5-HT1A and GABA/BDZs receptors [41]. Oxaliplatin is currently the first-line treatment
drug for advanced colorectal cancer, but the pain caused by an oxaliplatin injection is its
typical adverse reaction. Mice developed cold pain in 3–5 days after a single oxaliplatin
injection, which was significantly ameliorated by Rosavin. Moreover, the duration of its
analgesic effect was positively correlated with the dosage of Rosavin. The analgesic activity
of Rosavin disappeared after the 5-HT depletion by the pretreatment. Further studies found
that 5-HT1A receptor antagonists blocked the analgesic activity of Rosavin, confirming
that Rosavin attenuates oxaliplatin-induced cold pain through the activation of 5-HT1A
receptors [42]. Those studies have shown that Rosavin has strong analgesic activity and the
mechanism is related to 5-HT1A.

4.5. Antiradiation Effect

Radiation-protective drugs are widely used in radiation environments. But conven-
tional antiradiation agents, such as amifostine and nilestriol, have possible drawbacks
including narrow safety windows, high toxicity and poor stability [43]. It is expected that
scholars will search for novel antiradiation drugs from nontoxic and low-toxic natural
components. After the irradiation of AHH-1 (human peripheral blood B lymphocytes)
using 10 Gy γ-rays, Isoquercitrin, Salidroside, Rosavin, Rosarin and Arbutin were all able
to significantly increase the proliferative activity of AHH-1 cells after radiation damage,
and Rosavin showed the strongest antiradiation activity. A total of 25 µM Rosavin in-
creased cell viability from approximately 60% to 90% after 10 Gy γ-rays irradiation [44].
After the irradiation of IEC-6 (rat small intestinal crypt epithelial cells), the proliferation
activity of the cells was enhanced to different degrees after the intervention of Salidroside,
Rosavin and Arbutin, among which 12.5 µM Rosavin had the most potent protective effect,
increasing the cell viability to 85.56 ± 4.93% [45]. The above studies demonstrated the
strong radiation resistance of Rosavin in cells.

4.6. Antitumor Effect

Neovascularization in tumors is necessary for tumor growth and metastasis formation.
The daily administration of 8 µg of Rosavin significantly reduced neovascularization in mice
after the transplantation of L-1 sarcoma cells [46]. Recent studies have shown that Rosavin
inhibits cell proliferation, clone formation, migration and invasion and promotes apoptosis
and G0/G1 phase blockage. It decreases p-ERK/ERK (extracellular regulated protein
kinases) and p-MEK/MEK (mitogen-activated protein kinase) protein levels, suggesting
that Rosavin exerts its anti-small-cell-lung-cancer effects by inhibiting the MAPK/ERK
(mitogen-activated protein kinase/extracellular regulated protein kinases) pathway [47].
These results suggest that Rosavin has potential antitumor effects and is expected to be a
novel anticancer drug.
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4.7. Immunomodulation Effect

Chen W. et al. investigated the protective effects of the main components of RRL on the
immune system of mice, including Salidroside, Tyrosol and Rosavin. They found that the
different active ingredients acted on different immune target cells. Rosavin has a significant
proliferative effect on B lymphocytes and promotes the transformation of quiescent T
lymphocytes to lymphoblasts while increasing the phagocytosis of monocytes, indicating
the extensive immune activity of Rosavin [48]. It has also been shown that the main
active components of RRL can alter the growth of human Jurkat T cells and apoptosis of
mouse T cells, as well as the expression of surface markers and ERK phosphorylation. The
strongest activity was observed for Rosavin and Rosarin, with an IC50 of 68 µM and 74 µM,
respectively. Mechanistic studies have shown that Rosavin inhibits the upregulation of a
TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL) after T lymphocyte
stimulation through the ERK pathway, whereas Rosarin shows the opposite effect [49].
The modulatory effect of Rosavin on immune cells suggests its potential in regulating
autoimmune diseases.

The above pharmacological activities and detailed functional roles of Rosavin were
summarized in Table 2.

Table 2. Various pharmacological activities of Rosavin.

Pharmacological
Activity Functional Roles Experiment Models Author and Reference

Antioxidant

inhibit the activities of O2−, H2O2 and HOCl In vitro Huang S. [30]
inhibit DPPH activity and reduce Fe2+ In vitro Zhong L. [31]
scavenge hydroxyl radicals In vitro Ma T. [32]
rebound SOD, CAT, GSH-PX enzyme activities
and reduce MDA level Mouse Tan H. [33]

Lipid lowering

reduce the weight of visceral fat Mouse Verpeut J. [34]
lipolysis and antilipogenesis through PPARG
and FABP4

Primary human
visceral adipocytes Pomari E. [35]

reduce serum TG, TC and LDL-C, increase
HDL-C Mouse Albadawy R. [36]

Antifatigue

improve mental and physical performance Rat Panossian A. [37]
prolong forceful swimming time, increase
hepatic glycogen and myoglycogen content
and reduce postexercise creatine lactate
concentration

Mouse Zhang H. [38]

Analgesic

reduce formalin-injection-induced pain via
NO/cGMP/K+ pathway and 5-HT1A receptors Mouse Montiel-Ruiz R. [41]

ameliorate cold pain caused by oxaliplatin
injection via 5-HT1A-receptors-related pathway Mouse Li D. [42]

Antiradiation

increase cellular proliferative activity after
radiation damage

Human peripheral blood B
lymphocyte line AHH-1 Ma T. [44]

increase cellular proliferative activity after
radiation damage

Rat small intestinal crypt
epithelial cell line IEC-6 Zhou W. [45]

Antitumor

reduce tumor neovascularization Mouse Skopiñska-Ró E. [46]
inhibit cell proliferation, migration and
invasion and promote apoptosis and G0/G1
phase blockage via MAPK/ERK pathway

Human SCLC cell lines H69,
H446 and H526 Liu R. [47]

Immunomodulation

enhance immune response, stimulate the
proliferation of B lymphocytes, promote the
transformation of T lymphocytes

Primary mouse immune cells Chen W. [48]

alter the growth and the apoptosis of T cells
via ERK pathway

Human Jurkat cell line (ATCC
TIB-152), primary mouse T

cells
Marchev A. [49]
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5. The Role of Rosavin in the Treatment of Chronic Diseases and Related Mechanisms

Chronic diseases are a significant global health concern. The most common chronic
diseases include cardiovascular diseases, cancer, diabetes, obesity, neurological disorders,
autoimmune disorders, chronic kidney disease and many others. Chronic diseases often
require long-term management and treatment, involving lifestyle modifications, slowing
disease progression, preventing complications and improving life quality. The treatments
often take years to obtain benefits, which may be realized more quickly by effective primary
care and early intervention. This section describes Rosavin’s protective and therapeutic
effects in animal model studies of neurological, digestive, respiratory and bone-related
chronic diseases.

5.1. Nervous System Diseases

Alzheimer’s disease (AD) is a progressive neurodegenerative disease. The pathogene-
sis has not been fully elucidated, and no good treatment has yet been developed. Recently,
some scholars conducted a study on the anti-AD efficacy of Rosavin by using a Caenorhab-
ditis elegans dementia model. The model group nematodes produced a large amount
of β-amyloid (Aβ) in vivo, while the Rosavin-treated group experienced a significantly
reduced paralysis rate, prolonged nematode lifespan and improved locomotor ability. The
Rosavin treatment significantly increased SOD and CAT activity in the nematodes and
reduced reactive oxygen species (ROS) levels and MDA content in vivo [50]. The research
suggests that Rosavin has an anti-AD effect, and the mechanism may be related to the
amelioration of oxidative stress.

Microglia belong to the mononuclear phagocyte system and are intrinsic immune
effector cells within the central nervous system. Microglia and their mediated neuroinflam-
mation play an important role in the damage-repair and disease processes in the CNS and
are involved in a variety of neurological disorders [51]. In a neuroinflammatory model
of corticotropin-releasing hormone (CRH)-stimulated BV2 (microglial cells), RRL extract
(containing 2.7% Rosavin and 1% Salidroside) reversed CRH-induced neuroinflammation
by controlling NF-κB (nuclear translocation of the nuclear factor) through a mechanism
that may be related to MKK2 (mitogen-activated protein kinase kinase 2), ERK1/2 and
JNK (stress-activated protein kinase), leading to a reduced expression of HSP70 (heat shock
protein) [52].

Depression is a common mental disorder characterized by low mood, slow thinking
and delayed and reduced speech and movement as typical symptoms. Clinical studies have
shown that RRL extract exhibits antidepressant activity in patients with mild to moderate
depression [53]. In mouse depression modeling experiments, a single oral administration of
RRL extract containing 3% Rosavin and 1% Salidroside showed significant antidepressant
and anxiolytic activity, but the exact mechanism is still unclear [54].

An ischemia–reperfusion (I/R) injury is a common pathophysiological state of is-
chemic stroke. Recent studies have shown that different concentrations of Rosavin can
inhibit the inflammatory response, neuronal apoptosis and ROS production induced by
oxygen–glucose deprivation and reoxygenation (OGD/R) stimulation of human cerebral
microvascular endothelial cells. In vivo studies showed that Rosavin could protect mice
from brain injury in the middle cerebral artery occlusion (MCAO) model and reduce I/R-
induced inflammation. At a high dose (10 mg/kg), it could almost completely inhibit
neuronal apoptosis in the mouse brain and increase blood–brain barrier permeability by
inhibiting autophagy. Further mechanistic studies showed that the protective effect of
Rosavin on I/R mice may be related to the MAPK-mediated MMPs pathway [55].

5.2. Digestive System Diseases

Radiation-induced intestinal injury (RIII) is a common complication of radiation ther-
apy for abdominal or pelvic tumors. In vitro studies have shown that the four active
components in RRL, Salidroside, Herbacetin, Rosavin and Arbutin, all have protective
effects on intestinal epithelial cells in the RIII model, with Rosavin having the strongest
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protective effect. The Rosavin therapy significantly reduced the levels of TNF-α and inter-
leukin IL-1β; attenuated neutrophil infiltration; elevated the anti-inflammatory cytokine
IL-10; moreover reduced the MDA levels; and increased the activities of the antioxidant
enzymes SOD, CAT and GSH-Px. The Rosavin therapy markedly improved intestinal
damage and increased the survival rate in the irradiated rats [45]. This study suggests that
Rosavin can be an effective drug for the treatment of RIII. The protective mechanism is
related to inhibiting the inflammatory response and oxidative stress.

Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the
intestinal tract, mainly including Crohn’s disease and ulcerative colitis, with a gradually
increasing incidence [56]. Alterations in the balance of the intestinal microbiota are associ-
ated with the pathogenesis of IBD. R. crenulata extract, whose main active ingredients are
Salidroside and Rosavin, significantly alleviated the pathological abnormalities of dextran
sulfate sodium (DSS)-induced colitis in mice. It restored the richness and diversity of
intestinal flora, increased beneficial microorganisms, reduced pathogenic bacteria and
protected against colitis in mice [57]. In another study, the combination of Rosavin with
12 probiotics, prebiotics and zinc was used to attenuate DSS-induced colitis in mice. The
coadministration significantly reduced the levels of proinflammatory cytokines (TNF-α,
IL-6, IL-1β and IL-17) in the colonic tissues, as well as increased the levels of the Foxp3
(forkhead box P3) and the anti-inflammatory factor IL-10. Drug combinations also reduced
the levels of α-SMA (α-smooth muscle actin) and Col I (collagen type I) and improved
intestinal fibrosis compared to the control group. Therefore, the drug combination of
Rosavin with probiotics, prebiotics and zinc can modulate inflammatory cytokines and
fibrosis progression [58]. Rosavin is expected to be an important treatment drug for IBD.

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and
ranges from simple steatosis to steatohepatitis (NASH), fibrosis, related liver cirrhosis and
hepatocellular carcinoma [59]. In a recent study, treatment with different concentrations of
Rosavin in a high-sugar–high-fat-diet-induced rat NASH model resulted in dose-dependent
reductions in the serum levels of glutamic transaminase (AST), glutamic-pyruvic acid
aminotransferase (ALT), alpha-fetoprotein (AFP) and total bilirubin in rats with NASH,
as well as markedly reduced hepatic steatosis and hepatic fibrosis. Mechanistic studies
showed that Rosavin targeted hepatic cell-death-related genes by upregulating the HSPD1,
TNF, MMP-14 (matrix metalloproteinase 14), ITGB1 (integrin β1) and their upstream
noncoding RNA regulators. Ultimately, Rosavin decreased the protein levels of IL-6, TNF-α
and Caspase-3 (cysteine protease 3) and thereby improved the hepatic inflammation and
apoptosis in NASH rats [36]. These studies have confirmed that Rosavin improves the
deterioration in both liver functions and the lipid profile in NASH and has the potential to
attenuate NASH disease progression.

5.3. Respiratory Diseases

Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease
characterized by alveolar epithelial cell damage and inflammatory cell infiltration [60].
In bleomycin-induced pulmonary fibrosis mice, Rosavin significantly improved the lung
index and lung histopathology structure and decreased inflammatory cell infiltration and
proinflammatory cytokine expression in lung tissue, which indicated that Rosavin had a
protective effect against bleomycin-induced pulmonary fibrosis in mice. Further mechanis-
tic studies revealed that the expression of Nrf2 (nuclear factor erythroid 2-related factor
2) was increased, whereas the expression of NF-κB, TGF-β1 (transforming growth factor)
and α-SMA was suppressed in the lung tissues of the Rosavin-treated mice. Additionally,
Rosavin downregulated the expression of hydroxyproline (HYP) and MDA and increased
the activity of SOD and GSH-Px, suggesting that the protective function of Rosavin on
pulmonary fibrosis may be related to inhibiting inflammatory responses and enhancing the
antioxidant capacity. The study revealed that Rosavin could be a promising drug for the
treatment of pulmonary fibrosis [61].
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Inflammation and oxidative stress induced by airborne fine particulate matter PM2.5
increase the morbidity and mortality of respiratory diseases. In a rat model of lung injury
induced by a tracheal drip injection of PM2.5 suspension, significant ferroptosis-related
ultrastructural changes were observed. An intraperitoneal injection of Rosavin alleviated
the lung injury caused by PM2.5 and corrected ferroptosis-related structural alterations.
Pretreatment with Rosavin reduced the levels of tissue iron and MDA and increased
glutathione levels in the lung tissue. Mechanistic studies showed that Rosavin upregulated
the expression of Nrf2 and other ferroptosis-related proteins, whereas a specific ferroptosis
agonist RSL3 was able to reverse the protective effect of Rosavin and the intracellular
phosphatidylinositol kinase (PI3K) inhibitor LY294002 decreased the upregulation of Nrf2
induced by Rosavin [62]. The study suggests that Rosavin can prevent PM2.5-induced lung
injury through antiferroptosis via the PI3K/Akt/Nrf2 signaling pathway.

Sepsis is a systemic organ dysfunction caused by infection, with the lungs being the
most severely infected organ. Rosavin attenuates sepsis-induced lung injuries caused by
cecal ligation and puncture (CLP) in mice, inhibits the inflammatory response and reduces
neutrophil extracellular trap (NET) levels and myeloperoxidase activity in CLP model
mice. Mechanistic studies have shown that Rosavin inhibits the NET formation to attenuate
sepsis-induced lung injury by inhibiting the MAPK/ERK/p38/JNK signaling pathway [63].
This study showed that Rosavin can be an effective drug for the treatment of sepsis.

5.4. Bone Diseases

Osteoarthritis (OA) is a degenerative disease that can cause pain, joint inflammation
and destruction of the articular cartilage matrix, finally leading to loss of mobility. It is
the main cause of disability in the elderly [64]. Cartilage degeneration is one of the most
important causes of pain in OA. In a study of a monosodium iodoacetate (MIA)-induced
OA rat model, the combination of Rosavin with a probiotic complex and zinc increased
the femur volume and attenuated cartilage destruction in OA model rats, showing a
significant anti-cartilage-degeneration effect. It also exerted an antinociceptive function by
upregulating the paw-withdrawal latency (PWL), paw-withdrawal threshold (PWT) and
weight-bearing capacity. The combination reduced inflammation-induced pain and joint
destruction by downregulating the proinflammatory cytokine levels of IL-6 and TNF-α
but enhancing IL-10 expression. The combination exerted chondroprotective effects by
decreasing MMP3 and increasing the expression of tissue inhibitors of metalloproteinase
TIMP3 [65]. The research revealed the cartilage-degeneration improvement and anti-
inflammatory effects of the complex among MIA-induced OA rats, suggesting that Rosavin
may be a candidate for OA treatment.

Bone metabolic homeostasis is maintained by osteoblast-associated bone formation
and osteoclast-associated bone resorption. Excessive osteoclastogenesis or reduced osteo-
genesis, resulting in the dysregulation of bone homeostasis, can lead to various diseases,
such as postmenopausal osteoporosis [66]. In a study of the effect of Rosavin on osteo-
clastogenesis, in vitro experiments showed that Rosavin inhibited osteoclastogenesis and
suppressed the function of osteoclasts. It could reduce the expression of genes related to
osteoclast differentiation, inhibit the phosphorylation of p65 and the inhibitory subunit
of NF-κB (IκBα) induced by the osteoclast differentiation factor RANKL as well as sup-
press p65 nuclear translocation. Rosavin also inhibited the phosphorylation of ERK, p38
and JNK. In vivo experiments showed that compared with the control group mice, the
Rosavin treatment significantly increased the number and area of bone trabeculae, bone
volume and bone density and attenuated bone loss in the distal femur, suggesting that
Rosavin was able to alleviate ovariectomy-induced osteoporosis in mice [67]. These studies
indicated that Rosavin suppressed RANKL-induced osteoclastogenesis by blocking the
NF-κB and MAPK pathways, and it may be a potential drug for the clinical treatment of
osteoclastogenesis-related disorders.

The previous research mentioned above established that Rosavin could be effective in
in vitro and vivo models of chronic diseases, including AD, neuroinflammation, depression,
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I/R, RIII, IBD, NASH, IPF, PM2.5-induced lung injury, sepsis and postmenopausal osteo-
porosis (Figure 3). The therapeutic effect of Rosavin is associated with its anti-inflammatory
and antioxidant activity, modulation of the MAPK/NF-κB pathway, etc. Rosavin may also
be effective for other chronic diseases such as Parkinson’s disease, alcoholic fatty liver
disease and coronary artery disease. However, there are no relevant studies on the above
diseases. A lot of research is still needed on the use of Rosavin in such chronic diseases.
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6. Drug Metabolism and Formulation Studies of Rosavin

Rosavin is a hydrophilic compound with high water solubility and a low oil–water
partition coefficient. Currently, researchers mostly use ultraperformance liquid chromatog-
raphy (UPLC) [68] and UPLC-MS/MS methods [69] for pharmacokinetic assays of Rosavin.
The results of the plasma assay after a single administration of Rosavin to rats showed that
the blood concentration of Rosavin declined rapidly after an intravenous administration
of 10 mg/kg to rats with a half-life of 5.5 ± 1.3 h, whereas the concentration of Rosavin
in the plasma increased gradually after a gavage administration of 20 mg/kg to rats and
reached a maximum of 324.3 ± 66.9 ng/mL with a half-life of 11.6 ± 2.7 h. Compared with
intravenous administration, gavage administration has a longer drug-elimination time. But
the oral bioavailability (F) of Rosavin was only 2.5 ± 0.2%, which may be related to the
malabsorption caused by the hydrolysis of Rosavin to glycosidic elements in the acidic
environment of the digestive tract and the first-pass metabolism of the drug [68,69].

In the current studies, the gavage dosage of Rosavin is approximately 50–200 mg/kg [45,62],
with a maximum dosage of 360 mg/kg [38]; most intraperitoneal doses are within 10 mg/kg [56,68],
with a maximum dosage of 30 mg/kg [36]. However, there are no studies to identify
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Rosavin’s toxicity, and the systemic toxicological analysis in the liver and kidney after using
Rosavin is still unclear.

To improve the oral effect of Rosavin, a research team improved the fast-disintegrating
oral tablets of the compound Rosavin based on the traditional dosage form, using Rosavin
as the main ingredient with excipients such as an ice-tablet β-cyclodextrin inclusion, lac-
tose, microcrystalline cellulose, low-substituted hydroxypropylcellulose and crosslinked
povidone. The compound tablets achieved rapid disintegration and a rapid onset of action
under no water or a small amount of water [70]. In a further study, Rosavin tablets were
prepared by using Rosavin as the main drug plus hydroxypropyl methylcellulose, maltol
sugar powder, microcrystalline cellulose and magnesium stearate and were applied to
the prevention and treatment of coronary heart disease, angina pectoris, as well as in
combination with anticancer drugs to reduce the toxicity of anticancer drugs, etc. [71].
Pharmacodynamic studies showed that the Rosavin tablets could significantly prolong
the weight-loaded swimming time and survival time under normobaric hypoxia in mice
and improve the ability of mice to withstand high and low temperatures. The mice in the
high-dose group (0.8 g/kg) experienced a significant inhibition of the tumor-growth ratio
of the H22 hepatocellular carcinoma transplantation tumor. Rosavin tablets could enhance
the phagocytosis function of the reticuloendothelial system and increase the percentage
of peripheral blood T-lymphocytes in the H22 tumor-bearing mice, showing the effects of
the Rosavin tablets in terms of their antifatigue, antistress and antitumor effects and the
enhancement of immune function [71].

7. Summary and Outlook

As a unique component of RRL, Rosavin is a crucial active ingredient in the Rhodiola L.
plant. Recent studies have highlighted Rosavin’s powerful multibioactivities, including
its antioxidant, lipid-lowering, antifatigue, analgesic, antiradiation, antitumor and im-
munomodulatory effects. However, its mechanism of action has not been fully elucidated,
which has encouraged more interest in further research. Existing animal model experiments
have confirmed that Rosavin has significant therapeutic effects on a range of diseases such
as Alzheimer’s disease, radioactive intestinal injuries, pulmonary fibrosis and osteoarthritis.
These investigations show the great potential of Rosavin as a therapeutic drug for diseases
and provide some basis for the future clinical treatment of related diseases.

With the deepening of the research and the emergence of broad application prospects,
the demand for Rosavin is expanding. Traditional plant extraction and isolation are
no longer sufficient for research and application needs. So, all-chemical and biological
synthesis pathways of Rosavin have been gradually developed, which has provided the
possibility of scaling up the industrial production of Rosavin.

Rosavin’s investigations have shown promising effects, but several shortcomings
need to be addressed. Some of the research directions of interest are as follows. Firstly,
biosynthesis should be improved to achieve large-scale production. Industrial synthetic
production will be the primary source of Rosavin in the future, and biosynthesis is more
favorable due to the toxicity of chemical synthesis. However, the current biosynthesis
yields Rosavin analogs. Further research must clarify the key enzyme in it and improve
the synthetic route to obtain Rosavin. Future research is expected to achieve a green,
nontoxic and high-yield total biosynthesis, which will greatly reduce the price of Rosavin
and promote its pharmaceutical formulations and research related to disease treatments.
Secondly, the preparation and formulations of Rosavin are still relatively scarce. The current
oral bioavailability of Rosavin is only 4.7% [70], which may be related to its poor small
intestinal membrane permeability and first-pass metabolism. How to formulate Rosavin
so that it can be absorbed and utilized as much as possible is an issue that needs to be
investigated by pharmacy scholars, such as preparing it into phospholipid complexes,
using liposomes or changing its delivery system. Thirdly, toxicological studies on Rosavin
are needed. As of today, related toxicological studies on the liver and kidney after the use of
Rosavin are still unclear. Finally, clinical trials are lacking. Most of the studies of Rosavin’s
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therapeutic effects on diseases are still at the stage of basic research. Some large-scale,
well-controlled clinical trials are needed to establish its safety and efficacy.

In summary, future research will focus on the total biosynthesis, preparation research,
precise mechanisms of action and the optimal use of Rosavin in various disease therapies
and large-scale clinical trials. It is a broad development space worth exploring.
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