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Abstract: A quantitative analysis of the relationship between the structure and inhibitory activity
against the herpes simplex virus thymidine kinase (HSV-TK) was performed for the series of 5-
ethyluridine, N2-guanine, and 6-oxopurines derivatives with pronounced anti-herpetic activity
(IC50 = 0.09 ÷ 160,000 µmol/L) using the GUSAR 2019 software. On the basis of the MNA and
QNA descriptors and whole-molecule descriptors using the self-consistent regression, 12 statistically
significant consensus models for predicting numerical pIC50 values were constructed. These models
demonstrated high predictive accuracy for the training and test sets. Molecular fragments of HSV-1
and HSV-2 TK inhibitors that enhance or diminish the anti-herpetic activity are considered. Virtual
screening of the ChEMBL database using the developed QSAR models revealed 42 new effective
HSV-1 and HSV-2 TK inhibitors. These compounds are promising for further research. The obtained
data open up new opportunities for developing novel effective inhibitors of TK.

Keywords: inhibitors of herpes simplex virus thymidine kinase; HSV-1; HSV-2; QSAR models;
GUSAR 2019 program; QNA descriptors; MNA descriptors; structure–activity relationships

1. Introduction

Herpes virus infections induced by viruses of the Herpesviridae family are among
the most widespread human diseases. Antibodies to various herpes viruses are identified
in about 95% of the world’s population. Eight types of Herpesviridae viruses cause
herpesvirus infections [1–3]. Herpes simplex viruses of the first and second type (HSV-1
and HSV-2) are the most common [4]. HSV-1 usually affects the upper body (mouth, eyes,
and brain), whereas HSV-2 relates to genital infections [5]. These viruses are usually latent.
However, when immunity is reduced, they are activated, which, in turn, provokes diseases,
such as oral herpes, genital herpes, keratitis, conjunctivitis, herpes zoster, etc. It is reported
that herpes virus infections induced by HSV-1 and HSV-2 (and other types) increase the
possibility to be infected with the human immunodeficiency virus (HIV) and are almost
always diagnosed in patients with an HIV infection, which complicates the course of this
disease. There is evidence that HSV-1 can participate in the development of multiple
sclerosis [6] and lead to male infertility [7].

Currently, there are three classes of drugs in active medical practice for the treatment of
infectious diseases caused by different types of herpes viruses, including HSV-1 and HSV-2:
(1) acyclic guanosine analogues; (2) acyclic nucleotide analogues; and (3) pyrophosphate
analogues (foscarnet) [8].

Acyclovir is known to be an effective inhibitor of viral thymidine kinase (TK). This
drug is the gold standard for the prevention and treatment of infections caused by HSV-1
and HSV-2, as this drug combines a pronounced clinical effect and low toxicity [9]. However,
a significant disadvantage of acyclovir is its low oral bioavailability, poor solubility, and
short blood circulation time. An increase in the therapeutic dose of this drug is undesirable
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with long-term use, as it leads to an increase in its toxicity. Another disadvantage of
acyclovir is related to drug resistance development. This problem is not significant for
patients with good immunity, since the incidence of acyclovir-resistant herpes simplex virus
strains among them is ~0.5% of cases. However, among patients with immunodeficiency
conditions, it exceeds 30% of cases. In 95% of cases, acyclovir resistance is due to mutations
in the thymidine kinase and DNA polymerase genes, which are related to the mechanism
of action of this drug [10–15]. In addition to acyclovir, the phenomenon of drug resistance
was observed for pentacyclovir and its analogues used as HSV-1- and HSV-2-replication
inhibitors. The analogues of adenine, adefovir, and tenofovir have found the greatest
application in clinical practice among the phosphonate derivatives of guanosine. These
drugs are included in therapy to suppress HSV-1 strains resistant to acyclovir (and its
analogues) and some similar cases with the deficiency of viral thymidine kinase. The
same drugs are used in the treatment of hepatitis B and HIV. However, these drugs have
a pronounced nephro- and hepatotoxic effect. Foscarnet, a covalent inhibitor of DNA
polymerase, has not been widely used in clinical practice due to the rather high toxicity
and the lack of selectivity. The above-mentioned issues demonstrate the necessity for the
search for new anti-herpetic drugs [8].

Additional promising strategies against the HSV-induced herpes infections deal with
the development of inhibitors of other enzymes (helicase-primase or ribonucleotide re-
ductase) and inhibitors of the adhesion/penetration of the virus into the cell. Currently,
inhibitors of the mentioned enzymes are at various stages of preclinical and clinical trials
and out of medical practice.

Thymidine kinase inhibitors occupy a special place in the development of new-
generation antiviral drugs. It should be noted that this enzyme plays a key role in the
thymidine metabolism both in healthy and virus-infected cells. In healthy cells, this in-
tracellular enzyme catalyzes the conversion of thymidine to thymidine monophosphate
(TMP) in the presence of adenosine triphosphate (ATP). Viral thymidine kinase differs from
the thymidine kinase of the host cell in its much greater substrate specificity and it is able
to catalyze the phosphorylation of thymidine, pyrimidines, and purines. Subsequently, in
both healthy and virus-infected cells, the resulting monophosphates of pyrimidines and
purines are converted into the corresponding bi- and triphosphates. Triphosphates are then
incorporated into deoxyribonucleic acid. Thus, viral thymidine kinase inhibitors cannot be
simultaneously used with preparations containing acyclovir and its analogues as an active
component [5,8].

DNA polymerase inhibitors prevent the replication of the virus after reactivation. In
contrast, thymidine kinase inhibitors are aimed at preventing reactivation by lengthen-
ing the latent period of the virus. However, when developing antiviral drugs based on
thymidine kinase, one should bear in mind that viral thymidine kinase is not a key target
in the replication of herpes virus in rapidly dividing cells where the amount of thymidine
triphosphate is sufficient for the synthesis of viral DNA due to cellular metabolism. How-
ever, this enzyme plays a key role in non-proliferating (non-dividing) nerve cells, in which
the synthesis of cellular DNA occurs at a low level (if at all). In this case, the inhibition of
viral thymidine kinase leads to the growth of damaged and, therefore, non-viable cells in
primary neuronal cultures.

In addition to a potential target in the fight against viral infections, thymidine kinase
(TK) is considered a tumor marker, which is used to diagnose and monitor the increased
proliferation of tumor cells. It is known that tumor cells have an increased concentration of
TK due to their high-intensity division and growth.

Thus, the search for efficient TK inhibitors, including TK of the human herpes viruses
HSV-1 and HSV-2, can be considered one of the promising medical treatment options for
herpetic infections and cancer diseases of various origins [16,17]. However, the rational
search for new drugs without involving virtual screening methods is impractical both from
an economic point of view and because of the high time costs [18–22].
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In this regard, scientists use various approaches for computer-aided drug design
(CADD) to search for hit compounds at the initial stage of development of new potential
drugs [23]. There are known drugs that have been developed using this approach, such
as tirofiban [24], zanamivir [25], boceprevir [26], saquinavir [27], captopril [28,29], and
aliskiren [30]. CADD approaches are classified into structure-based and ligand-based
methods. In the first category of methods, computational drug design is carried out by
studying the interactions between ligands and target molecules. Accordingly, the aim of
this variant of CADD is to optimize the binding structure of the ligand under study and
the corresponding receptor in a three-dimensional form. Virtual protein–ligand complexes
are modeled using pharmacophore search, molecular docking, and molecular dynamics
methods. The most obvious disadvantage of structure-based approaches in CADD is
the requirement of correct information on the receptor structure and the high time and
computational costs [31].

In the alternative category of ligand-based CADD approaches, the leading factors
contributing to biological activity are the physicochemical, electronic, and conformational
features of the ligands. The key advantage of the latter strategy over the former one is
mainly that in the latter case, knowledge of the spatial structure and amino acid composition
of the target is not required for the design of potential drugs [23,31].

Quantitative structure–activity relationship (QSAR) is a valuable method in CADD
which aims to build statistically significant mathematical models for predicting different
biological activity parameters (pIC50, pLD50, pKi, etc.) based on different physicochem-
ical, electronic, and structural characteristics of organic compounds [32,33]. In terms of
dimensionality, the type of QSAR models depends on the descriptors used, ranging from
0D-QSAR to 7D-QSAR [34]. Several descriptors (e.g., atomic properties, number of frag-
ments, and topological descriptors) make up the 0D to 2D-QSAR components. Modeling
using 3D-QSAR methods requires the inclusion of 3D descriptors giving an additional di-
mension in spatial coordinates [35,36]. Additional aspects of 3D-QSAR models require the
use of multidimensional molecular descriptors based on conformational flexibility, induced
fit, solvation function, and target-based receptor models. These supplements generate
multidimensional QSAR (i.e., 4D to 7D-QSARs) [32]. A factor complicating the practical
use of 3D-7D QSAR methods is the required knowledge of the bioactive conformation of
the ligands that are structural analogues of the compounds being modeled [37–39]. Taking
into account of all of the above factors in terms of time and computational cost can, in some
cases, be far superior to the first category of structure-based CADD methods. In this regard,
today there is a growing interest in the use of 2D-QSAR models against the background of
a relatively smaller number of studies using multivariate QSAR approaches despite the
high predictive power, logical validity, and objectivity of the latter.

The GUSAR program, developed at the V.N. Orekhovich Institute of Biomedical Chem-
istry of the Russian Academy of Medical Sciences, is modern software for the construction
of quantitative and classification models (QSAR and SAR models) and the prediction of
various types of biological activity, as well as other properties of organic compounds based
on a 2D approach (structural formulae of organic compounds) [20]. In this software, the
chemical structure is described in terms of descriptors called quantitative neighborhoods
of atoms (QNAs) and multilevel neighborhoods of atoms (MNAs) developed at the same
institute [40–42]. The functioning algorithm of this software is based on the method of
self-consistent regression previously developed by the same team with the inclusion of
additional estimates of the quality of prediction of the target property (based on the method
of nearest neighbors and artificial neural network with a radial basis function) and con-
struction of a consensus of the set of models [20]. It is reported that GUSAR is not inferior
to other methods (CoMFA, CoMSIA, HQSAR, etc.) used to build QSAR/QSPR models in
terms of accuracy and predictive ability [43,44]. As a result, the software can be successfully
applied to a variety of QSAR/QSPR tasks [45–58]. In particular, the GUSAR software has
been used for more than a decade to model various types of biological activity and toxicity
of organic compounds [40–49]. In addition, the successful application of this software has
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been demonstrated for the QSPR modeling of several physicochemical properties of organic
compounds, including the n-octanol–water partition coefficient (logP) [45], boiling and
melting points, density, thermal conductivity, viscosity, surface tension, water solubility,
and gas pressure [40].

Additionally, our earlier publications demonstrated the successful application of this
software for QSPR modeling of antioxidants under conditions of the liquid-phase radical-
chain oxidation of organic substrates [59–63].

This software has been used for more than a dozen years for modeling different types
of biological activity. It was shown by the developers and other researchers, including our
research team, that GUSAR software can be successfully applied to multiple QSAR/QSPR
problems [50–63].

In this work, we used GUSAR 2019 software to study the quantitative structure–
activity relationship for inhibitors of HSV-1 and HSV-2 viral thymidine kinase using
the series of 5′-amino-2′,5′-dideoxy-5-ethyluridine (I–III), N2-phenylguanine (IV), and
2-phenylamino-6-oxopurine carboxamide derivatives (V–VI, Figure 1) and developed cou-
pled and statistically significant QSAR models for screening virtual libraries and databases.
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Figure 1. General structural formulas of simulated inhibitors of HSV-1 and HSV-2 thymidine kinases
based on a series of 5′-amino-2′,5′-dideoxy-5-ethyluridine (I–III), N2-phenylguanine (IV), and 2-
phenylamino-6-oxopurine carboxamide derivatives (V,VI).

2. Results

Using the consensus approach implemented in the GUSAR 2019 program, we have
studied the quantitative relationship between the structure and the efficiency of inhibition
of HSV-1 and HSV-2 TK with 5-ethyluridine, N2-guanine, and 6-oxopurine derivatives with
general structural formulas I–VI (Figure 1). These compounds made up the training sets
TrS1–TrS4. Depending on the type of descriptors used in the calculations (MNA and/or
QNA), three QSAR consensus models have been obtained for each of the training sets.
In total, we have built 12 QSAR consensus models for predicting pIC50 values for HSV-1
and HSV-2 TK inhibitors that included from 20 to 360 partial regression models. The
pIC50 values for inhibitors included in TrS1–TrS4 derived from these QSAR consensus
models M1–M12 were compared with the experimental values of pIC50 (see Tables S2–S5
in Supplementary Materials).

The regression models were not explicitly displayed, as a clear physical interpretation
of the descriptors was absent. Hence, we could not determine the descriptors making the
largest/the smallest contributions to the simulated activity [64,65]. However, this was
beyond the scope of this study. Our goal was to solve two problems:
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(1) to show that the ideology of descriptor formation and selection implemented in the
GUSAR 2019 software is applicable for modeling potential inhibitors of HSV-1 and HSV-2
TK enzymes in the series of 5-ethyluridine, N2-guanine, and 6-oxopurine derivatives;

(2) to develop statistically significant QSAR models suitable for the virtual screening of
HSV TK inhibitors.

For the internal validation of the QSAR models M1–M12 over the TrS1–TrS4 structures,
we used a cross validation procedure with a 20-fold randomized exclusion of 20% of the
compounds. Here, the averaged values of determination coefficients R2 and Q2 for the
inhibitors of all training sets were similar (Table 1); the difference between these two
indicators (∆ = R2 − Q2) did not exceed 0.1. This assessment indicates the stability of the
constructed consensus models.

Table 1. Statistical parameters and accuracy of the predicted pIC50 values of the compounds included
in the training sets TrS1–TrS4 within the M1–M12 consensus models. ∆pIC50 TrS1 = ∆pIC50 TrS3 = 5.867,
∆pIC50 TrS2 = ∆pIC50 TrS4 = 6.250 1.

Training Set Model N NPM R2 F SD Q2 V

QSAR models based on the QNA descriptors

TrS1 M1 73 20 0.878 67.101 0.569 0.848 7
TrS2 M4 74 20 0.891 84.683 0.593 0.869 6
TrS3 M7 61 20 0.875 50.879 0.579 0.837 7
TrS4 M10 62 20 0.891 65.152 0.598 0.863 6

QSAR models based on the MNA descriptors

TrS1 M2 73 20 0.878 63.594 0.568 0.854 7
TrS2 M5 74 20 0.906 79.140 0.552 0.887 8
TrS3 M8 61 20 0.882 51.831 0.565 0.853 7
TrS4 M11 62 20 0.894 70.947 0.589 0.872 6

QSAR models based on both QNA and MNA descriptors

TrS1 M3 73 320 0.891 57.523 0.542 0.862 8
TrS2 M6 74 320 0.905 70.945 0.559 0.882 8
TrS3 M9 61 320 0.881 45.955 0.570 0.846 7
TrS4 M12 62 320 0.899 63.865 0.578 0.873 7

1 N is the number of structures in the training set; NPM is the number of regression equations used for the
consensus model; R2 is the coefficient of determination calculated for the compounds of TrSi; Q2 is the correlation
coefficient calculated for the training set based on cross-validation with the exception of one; F is Fisher’s criterion;
SD is the standard deviation; V is the number of variables in the final regression equation.

This is exemplified in Tables 1–3, which present the numerical values of the statistical
criteria estimated by comparing the experimental and predicted pIC50 values calculated
using models M1–M12 with 95% of the data included in the corresponding training set.
Full information about all of these criteria using the twelve developed QSAR models,
which enables an objective evaluation of the descriptive and predictive ability of the
models, taking into account 95% and 100% of the data included in the training and test sets,
respectively, is given in the Supplementary Materials (Tables S2–S5).

The data of Tables 1–3 provide the conclusion that all constructed QSAR models
had high descriptive ability. However, the data presented in Tables 1–3 clearly demon-
strate the discrepancy between the numerical values of determination coefficients (R2)
found while evaluating the descriptive ability of models M1–M12 in the GUSAR 2019 and
XternalValidationPlus 1.2 software, due to different ideologies underlying the calculations.

It should be taken into account that in the GUSAR 2019 software, the target parameter
(in our case, pIC50) for each chemical structure included in the training or test set is
predicted as a result of averaging the numerical values of this parameter calculated using
each of the particular models included in a single consensus model. The final statistical
parameters are calculated in a similar way.
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Table 2. Validation parameters of the QSAR models estimated using the Xternal Validation Plus 1.2
program based on the experimental and predicted pIC50 values of the HSV-1 TK inhibitors from
training sets TrS1 (M1–M3) and TrS3 (M7–M9). ∆pIC50 TrS1 = ∆pIC50 TrS3 = 5.867 1.

Comments Prediction
Parameters

QSAR Model Used for Predicting pIC50

TrS1 TrS2

M1 M2 M3 M7 M8 M9

Classical metrics (after
removing 5% of the data with

high residuals)

R2 0.9609 0.9594 0.9653 0.9591 0.9611 0.9654
R2

0 0.9555 0.9579 0.9614 0.9556 0.9587 0.9593
R2′

0 0.8443 0.8804 0.8661 0.8568 0.8725 0.8483

R2
m 0.8776 0.9052 0.8952 0.8883 0.8971 0.8819

∆R2
m 0.0379 0.0355 0.0326 0.0379 0.0352 0.0342

CCC 0.9755 0.9777 0.9790 0.9759 0.9779 0.9775

Mean absolute error and
standard deviation for the test
set (after removing 5% of the

data with high residuals)

RMSE 0.3368 0.3331 0.3193 0.3323 0.3327 0.3331
MAE 0.2914 0.2784 0.2673 0.2872 0.2768 0.2830

SD 0.1701 0.1844 0.1758 0.1687 0.1861 0.1773
MAE + 3·SD 0.8016 0.8314 0.7948 0.7933 0.8351 0.8149

Prediction quality - Good

Presence of systematic errors - Absent

1 R2, R2
0, and R2′

0 are the determination coefficients calculated with and without taking into account the origin;
average R2

m is the averaged determination coefficient of the regression function calculated using the determination
coefficients on the ordinate axis (R2

m) and on the abscissa axis (R2′
m), respectively; ∆R2

m is the difference between
R2

m and R2′
m; CCC is the concordance correlation coefficient; MAE is the mean absolute error; SD is the

standard deviation.

Table 3. Validation parameters of the QSAR models estimated using the Xternal Validation Plus 1.2
program based on the experimental and predicted pIC50 values of the HSV-2 TK inhibitors from
training sets TrS2 (M4–M6) and TrS4 (M10–M12). ∆pIC50 TrS2 = ∆pIC50 TrS4 = 6.250 1.

Comments Prediction
Parameters

QSAR Model Used for Predicting pIC50

TrS2 TrS4

M4 M5 M6 M10 M11 M12

Classical metrics (after
removing 5% of the data with

high residuals)

R2 0.9714 0.9712 0.9719 0.9708 0.9676 0.9743
R2

0 0.9687 0.9701 0.9694 0.9681 0.9664 0.9710
R2′

0 0.8890 0.9086 0.8927 0.8889 0.9009 0.8891

R2
m 0.9137 0.9267 0.9142 0.9148 0.9216 0.9109

∆R2
m 0.0270 0.0260 0.0267 0.0273 0.0290 0.0252

CCC 0.9830 0.9843 0.9836 0.9827 0.9823 0.9844

Mean absolute error and
standard deviation for the test
set (after removing 5% of the

data with high residuals)

RMSE 0.3278 0.3121 0.3146 0.3333 0.3328 0.3164
MAE 0.2712 0.2590 0.2624 0.2739 0.2822 0.2676

SD 0.1856 0.1753 0.1748 0.1915 0.1781 0.1703
MAE + 3·SD 0.8279 0.7850 0.7868 0.8484 0.8164 0.7785

Prediction quality - Good

Presence of systematic errors - Absent

1 R2, R2
0, and R2′

0 are the determination coefficients calculated with and without taking into account the origin;
average R2

m is the averaged determination coefficient of the regression function calculated using the determination
coefficients on the ordinate axis (R2

m) and on the abscissa axis (R2′
m), respectively; ∆R2

m is the difference between
R2

m and R2′
m; CCC is the concordance correlation coefficient; MAE is the mean absolute error; SD is the

standard deviation.

For example, when predicting pIC50 values for any compound from the training set
TrS1 using the consensus model M1, we get a set of 20 predicted pIC50 pred values and
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20 sets of different internal validation criteria: R2, Q2, F, and SD. Further, all the same data
are averaged, which is displayed as the final results.

Meanwhile, in the XternalValidationPlus 1.2 program, the calculation of statistical
parameters for assessing the descriptive and predictive ability of QSAR models is based
on comparing the experimental pIC50 data with the average values previously predicted
using the GUSAR 2019 software. This procedure is performed twice without averaging the
final results [66]:

(1) for the full dataset in each training and test set (100% of data);
(2) for 95% of the data in each training and test set (95% of the data).

In general, a comparison of the data given in Tables 1–3 demonstrates that the SCR
method of GUSAR 2019 for selecting significant descriptors produces stable regression
dependences with acceptable statistical characteristics (R2

TrS > 0.6 and Q2
TrS > 0.5) for

simulated HSV-1 and HSV-2 TK inhibitors, regardless of the selected types of descriptors.
The different determination criteria of the descriptive ability of models M1–M12 are similar

irrespective of the amount of data in the sets (95 or 100%) and tend to be 1 (Tables 2 and 3).
The MAE error values do not exceed 15% of the ∆pIC50 range of the inhibitory activity of
the TrS1–TrS4 structures. The parameter ∆R2

m is in all cases is much lower than 0.2 and
does not exceed 0.048. All of these data indicate the rather high simulability of the target
properties using the selected algorithms for a calculation of descriptors and construction of
regression equations [67] implemented in the GUSAR 2019 software.

An external validation of the M1–M3 and M7–M9 QSAR models was performed by
predicting the pIC50 for HSV-1 TK inhibitors using test sets TS1 and TS3. The validity
of the models M4–M6 and M10–M12, meant for the prediction of the pIC5 for HSV-2 TK
inhibitors, was evaluated in relation to test sets TS2 and TS4. All estimates of the predictive
ability of the M1–M12 models were based on three criteria:

(1) numerical values of various coefficients of determination based on R2 (R2, R2
0, Q2

F1,
Q2

F2, CCC);
(2) numerical values of the MAE prediction error;
(3) the scatter range of activity prediction data taking into account MAE in the mσ

(or mSD) range: MAE + 3·SD. All of these parameters were computed using the
XternalValidationPlus 1.2 program. In addition, this program was used to trace the
systematic error that can arise in QSAR modeling.

Figures 2–5 show the distribution of different determination coefficients and pre-
diction errors for pIC50 values for 95% of the HSV inhibitors from test sets TS1–TS4 cal-
culated using the XternalValidationPlus 1.2 program. The complete set of all statistical
parameters obtained from a comparison of experimental and predicted pIC50 values for
the TS1–TS4 structures determined based on models M1–M12 is given in Tables S2–S5
(Supplementary Materials).

The more stringent criterion R2
m is relatively high for the external validation of mod-

els M1–M12 using the full size of TS1–TS4, being in the range of 0.8273–0.8859 and
0.7587–0.8683 for HSV-1 and HSV-2 inhibitors, respectively. After removing 5% of outliers
from TS1–TS4, the ranges of R2

m become 0.8207–0.9294 and 0.8664–0.9294 for HSV-1 and
HSV-2 inhibitors, respectively (Figures 2–5, Tables S2–S5 in Supplementary Materials). The
∆R2

m criterion, proposed by the same authors as an additional parameter for assessing the
predictive ability for the external validation of regression models, did not exceed 0.09 in
any of the cases. This also indicates the rather high predictive ability of QSAR models
M1–M12 (Figures 2–5, Tables S6–S13 in Supplementary Materials).
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Based on a comparison of different determination coefficients obtained during the
external validation of models M1–M12, we have found that the parameter pIC50 for 5-
ethyluridine, N2-guanine, and 6-oxopurine derivatives with respect to HSV-1 is modeled
with higher accuracy than that for the same compounds against HSV-2.

As we noted above, an analysis of different types of determination coefficients is
faced with the following contradictory situation: the R2 and R2

0 values for the activity
of 5-ethyluridine, N2-guanine, and 6-oxopurine derivatives against HSV-1 are equal to
or less than Q2

F1 and Q2
F2. This means that the constructed models M1–M12 predict the

activities of TS1–TS4 compounds better than the activities of the training set structures.
Note that in practice, the situation is usually opposite. This fact was repeatedly noted
by other researchers [68–71]. Thus, the use of the metrics based on R2 and Q2 alone for
assessing the predictive ability of QSAR models seems to be insufficient.

According to these two criteria, the predictive ability of models M1–M3, M7, and M9
has been classified as high for both test sets TS1 and TS3. Since the MAE + 3·SD criterion has
been at the boundary of the allowable threshold value equal to 1.1735, the predictive ability
of model M8 for 95% of the data of test set TS1 is moderate. The MAE and MAE + 3·SD
values in the case of sets TS2 and TS4 do not exceed 0.6250 and 1.5625, respectively. As a
result, the predictive ability of model M4 in the sets TS2 and TS4 has also been rated as
high. At the same time, considering these two threshold values, the predictive abilities of
M5–M12 can be estimated as satisfactory for set TS2 and as high for set TS4.

A comparative analysis of the statistical characteristics and prediction errors of pIC50
indicate that all constructed models have rather high descriptive and predictive ability.
However, to solve the problem of searching for new potential inhibitors of HSV-1 and
HSV-2 TK enzymes among the title compounds, it is most preferable to use the consensus
models M3 and M6 because they include 100 particular regression models and each of them
is based on the maximum set of structures and descriptors.

In this regard, we have applied the consensus models M3 and M6 to virtual screening
through the CHEMBL database for new HSV TK inhibitors among various lead compounds
and active drug components of different pharmacological profiles. Unlike traditional
methods of QSAR modeling (multilinear regression (MLR), partial least squares (PLS)
method, etc.), the GUSAR software does not specify clear threshold criteria regarding the
Tanimoto coefficient, which would limit the search for new potential biologically active
substances in virtual databases. However, adhering to concepts of the classical school, we
limited the scope of the search for new potential inhibitors of HSV-1 TK and HSV-2 TK
in the ChEMBL database by the degree of similarity of at least 70% with respect to the
reference compounds.

The virtual screening involved 400 5-ethyluridine, N2-guanine, and 6-oxopurine
derivatives with pronounced antitumor and antibacterial properties and no antiviral prop-
erties. However, only 192 lead compounds and known pharmaceuticals fitted in the range
of applicability of consensus models M3 and M6. For 155 structures of these, the predicted
IC50 values were <1 µmol/L. The most promising hit compounds are presented in Table 4.
The complete list of the structures of the potential HSV TK inhibitors predicted using
consensus models M3 and M6 is given in Table S14 in the Supplementary Materials. We
assume that in living systems, these compounds should behave as multi-target drugs. They
are promising for further detailed studies.

Additionally, using the GUSAR 2019 program, we carried out a structural analysis of TK
inhibitors. Since for 42 compounds presented in Table 4, there were no experimental data on the
inhibitory activity against human herpes viruses HSV-1 and HSV-2, these compounds were not
included in the structural analysis. We used the consensus model M3, as it provides more objec-
tive and accurate results due to the maximum number of modeled structures and involvement
of all types of descriptors implemented in GUSAR 2019 [20–22]. However, it should be noted
that these compounds have been extensively studied for their inhibitory activity against
HPV in previous biological experiments [17,72,73]. Therefore, here, we will briefly discuss
this issue. Figures 6–8 show the analysis of the contribution of different functional groups
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to the activity of inhibitors of HSV-1 and HSV-2 thymidine kinase with general structural
formulas I–VI. For compounds with the general structural formula I, it was experimentally
shown that the replacement of a hydrogen atom in the R1 position of the benzene ring
(1) increases the inhibitory activity, irrespective of the nature of the acyclic substituent. The
results of a structural analysis of the same compounds obtained using the GUSAR 2019
program lead to a similar conclusion. This enhancement is manifested for compounds
2–7 containing fluoro (2), chloro (3), methyl (4), and trifluoromethyl (5) substituents in the
ortho-positions (Figure 6a).

Table 4. Potential effective HSV-1 and HSV-2 TK inhibitors selected from the ChEMBL database using
virtual screening with QSAR models M3 and M6.

No. Name in ChEBIL Structure
pIC50pred Selectivity(

Selectivity= IC50,HSV−1
IC50,HSV−2

)
HSV-1 HSV-2
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Table 4. Cont.

No. Name in ChEBIL Structure
pIC50pred Selectivity(

Selectivity= IC50,HSV−1
IC50,HSV−2

)
HSV-1 HSV-2

9 CHEMBL19510
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Table 4. Cont.

No. Name in ChEBIL Structure
pIC50pred Selectivity(

Selectivity= IC50,HSV−1
IC50,HSV−2

)
HSV-1 HSV-2
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40 CHEMBL241407 * -H 
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41 CHEMBL241408 * -H 
 

 10.05 6.47 1.5544 

42 CHEMBL1183075 * 

 

15.18 3.11 4.8817 

The asterisk marks structures that obey Lipinski’s rule of five. 

Additionally, using the GUSAR 2019 program, we carried out a structural analysis of 

TK inhibitors. Since for 42 compounds presented in Table 4, there were no experimental 

data on the inhibitory activity against human herpes viruses HSV-1 and HSV-2, these 

compounds were not included in the structural analysis. We used the consensus model 

M3, as it provides more objective and accurate results due to the maximum number of 

modeled structures and involvement of all types of descriptors implemented in GUSAR 

2019 [20–22]. However, it should be noted that these compounds have been extensively 

studied for their inhibitory activity against HPV in previous biological experiments 

[17,72,73]. Therefore, here, we will briefly discuss this issue. Figures 6–8 show the analysis 

of the contribution of different functional groups to the activity of inhibitors of HSV-1 and 

HSV-2 thymidine kinase with general structural formulas I–VI. For compounds with the 

general structural formula I, it was experimentally shown that the replacement of a hy-

drogen atom in the R1 position of the benzene ring (1) increases the inhibitory activity, 

irrespective of the nature of the acyclic substituent. The results of a structural analysis of 

the same compounds obtained using the GUSAR 2019 program lead to a similar conclu-

sion. This enhancement is manifested for compounds 2–7 containing fluoro (2), chloro (3), 

methyl (4), and trifluoromethyl (5) substituents in the ortho-positions (Figure 6a).  

In compounds with the general formula II, replacement of the dihydroxanthene moi-

ety (8) with a xanthene (9) or thioxanthene dioxide (12) moiety somewhat increases the 

activity of the TK inhibitors of HSV-1 and HSV-2. At the same time, replacement by diben-

zosuberene, anthracene, or NMe-acridine (10) has an adverse effect on both target prop-

erties. Note that the first two of these groups induce a pronounced decrease in the inhibi-

tory activity, while the third replacement has only a moderate effect. The replacement of 

the dihydroxanthene moiety in 8 with a thioxanthene moiety (11) decreases the inhibitory 

activity against HSV-1 TK by a factor of 1.5 and has almost no effect on the inhibitory 

activity against HSV-2 TK (Figure 6b). 

8.81 0.93 9.4314

Molecules 2023, 28, x FOR PEER REVIEW 13 of 28 
 

 

36 CHEMBL1185716 

 

8.81 0.93 9.4314 

  

 

   

R1 R2 R3 

37 CHEMBL217675 * -H -H 

 

62.83 26.96 2.3306 

38 CHEMBL238635 -H 

 
 36.62 42.98 0.8520 

39 CHEMBL2403290 * 

 

-H -CH3 26.44 40.28 0.6564 

40 CHEMBL241407 * -H 

 
 14.48 22.16 0.6535 

41 CHEMBL241408 * -H 
 

 10.05 6.47 1.5544 

42 CHEMBL1183075 * 

 

15.18 3.11 4.8817 

The asterisk marks structures that obey Lipinski’s rule of five. 

Additionally, using the GUSAR 2019 program, we carried out a structural analysis of 

TK inhibitors. Since for 42 compounds presented in Table 4, there were no experimental 
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M3, as it provides more objective and accurate results due to the maximum number of 

modeled structures and involvement of all types of descriptors implemented in GUSAR 

2019 [20–22]. However, it should be noted that these compounds have been extensively 

studied for their inhibitory activity against HPV in previous biological experiments 

[17,72,73]. Therefore, here, we will briefly discuss this issue. Figures 6–8 show the analysis 

of the contribution of different functional groups to the activity of inhibitors of HSV-1 and 

HSV-2 thymidine kinase with general structural formulas I–VI. For compounds with the 

general structural formula I, it was experimentally shown that the replacement of a hy-

drogen atom in the R1 position of the benzene ring (1) increases the inhibitory activity, 

irrespective of the nature of the acyclic substituent. The results of a structural analysis of 

the same compounds obtained using the GUSAR 2019 program lead to a similar conclu-

sion. This enhancement is manifested for compounds 2–7 containing fluoro (2), chloro (3), 

methyl (4), and trifluoromethyl (5) substituents in the ortho-positions (Figure 6a).  

In compounds with the general formula II, replacement of the dihydroxanthene moi-

ety (8) with a xanthene (9) or thioxanthene dioxide (12) moiety somewhat increases the 

activity of the TK inhibitors of HSV-1 and HSV-2. At the same time, replacement by diben-

zosuberene, anthracene, or NMe-acridine (10) has an adverse effect on both target prop-

erties. Note that the first two of these groups induce a pronounced decrease in the inhibi-

tory activity, while the third replacement has only a moderate effect. The replacement of 

the dihydroxanthene moiety in 8 with a thioxanthene moiety (11) decreases the inhibitory 

activity against HSV-1 TK by a factor of 1.5 and has almost no effect on the inhibitory 

activity against HSV-2 TK (Figure 6b). 
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Additionally, using the GUSAR 2019 program, we carried out a structural analysis of 

TK inhibitors. Since for 42 compounds presented in Table 4, there were no experimental 

data on the inhibitory activity against human herpes viruses HSV-1 and HSV-2, these 

compounds were not included in the structural analysis. We used the consensus model 

M3, as it provides more objective and accurate results due to the maximum number of 

modeled structures and involvement of all types of descriptors implemented in GUSAR 

2019 [20–22]. However, it should be noted that these compounds have been extensively 

studied for their inhibitory activity against HPV in previous biological experiments 

[17,72,73]. Therefore, here, we will briefly discuss this issue. Figures 6–8 show the analysis 

of the contribution of different functional groups to the activity of inhibitors of HSV-1 and 

HSV-2 thymidine kinase with general structural formulas I–VI. For compounds with the 

general structural formula I, it was experimentally shown that the replacement of a hy-

drogen atom in the R1 position of the benzene ring (1) increases the inhibitory activity, 

irrespective of the nature of the acyclic substituent. The results of a structural analysis of 

the same compounds obtained using the GUSAR 2019 program lead to a similar conclu-

sion. This enhancement is manifested for compounds 2–7 containing fluoro (2), chloro (3), 

methyl (4), and trifluoromethyl (5) substituents in the ortho-positions (Figure 6a).  

In compounds with the general formula II, replacement of the dihydroxanthene moi-

ety (8) with a xanthene (9) or thioxanthene dioxide (12) moiety somewhat increases the 

activity of the TK inhibitors of HSV-1 and HSV-2. At the same time, replacement by diben-

zosuberene, anthracene, or NMe-acridine (10) has an adverse effect on both target prop-

erties. Note that the first two of these groups induce a pronounced decrease in the inhibi-

tory activity, while the third replacement has only a moderate effect. The replacement of 

the dihydroxanthene moiety in 8 with a thioxanthene moiety (11) decreases the inhibitory 

activity against HSV-1 TK by a factor of 1.5 and has almost no effect on the inhibitory 

activity against HSV-2 TK (Figure 6b). 
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Additionally, using the GUSAR 2019 program, we carried out a structural analysis of 

TK inhibitors. Since for 42 compounds presented in Table 4, there were no experimental 

data on the inhibitory activity against human herpes viruses HSV-1 and HSV-2, these 

compounds were not included in the structural analysis. We used the consensus model 

M3, as it provides more objective and accurate results due to the maximum number of 

modeled structures and involvement of all types of descriptors implemented in GUSAR 

2019 [20–22]. However, it should be noted that these compounds have been extensively 

studied for their inhibitory activity against HPV in previous biological experiments 

[17,72,73]. Therefore, here, we will briefly discuss this issue. Figures 6–8 show the analysis 

of the contribution of different functional groups to the activity of inhibitors of HSV-1 and 

HSV-2 thymidine kinase with general structural formulas I–VI. For compounds with the 

general structural formula I, it was experimentally shown that the replacement of a hy-

drogen atom in the R1 position of the benzene ring (1) increases the inhibitory activity, 

irrespective of the nature of the acyclic substituent. The results of a structural analysis of 

the same compounds obtained using the GUSAR 2019 program lead to a similar conclu-

sion. This enhancement is manifested for compounds 2–7 containing fluoro (2), chloro (3), 

methyl (4), and trifluoromethyl (5) substituents in the ortho-positions (Figure 6a).  

In compounds with the general formula II, replacement of the dihydroxanthene moi-

ety (8) with a xanthene (9) or thioxanthene dioxide (12) moiety somewhat increases the 

activity of the TK inhibitors of HSV-1 and HSV-2. At the same time, replacement by diben-

zosuberene, anthracene, or NMe-acridine (10) has an adverse effect on both target prop-

erties. Note that the first two of these groups induce a pronounced decrease in the inhibi-

tory activity, while the third replacement has only a moderate effect. The replacement of 

the dihydroxanthene moiety in 8 with a thioxanthene moiety (11) decreases the inhibitory 

activity against HSV-1 TK by a factor of 1.5 and has almost no effect on the inhibitory 

activity against HSV-2 TK (Figure 6b). 
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the same compounds obtained using the GUSAR 2019 program lead to a similar conclu-

sion. This enhancement is manifested for compounds 2–7 containing fluoro (2), chloro (3), 

methyl (4), and trifluoromethyl (5) substituents in the ortho-positions (Figure 6a).  

In compounds with the general formula II, replacement of the dihydroxanthene moi-

ety (8) with a xanthene (9) or thioxanthene dioxide (12) moiety somewhat increases the 

activity of the TK inhibitors of HSV-1 and HSV-2. At the same time, replacement by diben-

zosuberene, anthracene, or NMe-acridine (10) has an adverse effect on both target prop-
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tory activity, while the third replacement has only a moderate effect. The replacement of 

the dihydroxanthene moiety in 8 with a thioxanthene moiety (11) decreases the inhibitory 

activity against HSV-1 TK by a factor of 1.5 and has almost no effect on the inhibitory 

activity against HSV-2 TK (Figure 6b). 
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of the xanthene ring decreases both target properties. The alternative replacement of the 

hydrogen atom at position R2 by a chlorine atom (16) increases the activity of TK inhibitors 

for HSV-1 almost 2-fold, but barely affects the inhibitory activity against HSV-2 TK. The 

additional incorporation of a second chlorine atom at position R3 (17) is favorable for the 

activity against HSV-1 TK and almost does not influence the activity against HSV-2 TK. 

The replacement of the hydrogen atom in position R2 with a trifluoromethyl group (18) 

and unsubstituted phenyl increases the TK inhibitory activity against HSV-1 and has al-

most no effect on this activity against HSV-2. Meanwhile, the modification of position R2 

by introducing a methoxy group (19) increases the activity of HSV-1 TK inhibitors and 

decreases the activity of HSV-2 TK inhibitors. However, the changes caused by a hydro-

gen atom replacement with the above substituents are moderate. 

Figure 6. Effect of acyclic substituents on the activity of herpes virus inhibitors with general formulas
I and II with the chemical group contributions to the activity; superscripts 1 and 2 refer to the activities
against HSV-1 TK and HSV-2 TK, respectively. Dotted lines highlight the substituents. The up and
down arrows indicate the positive or negative effect of the selected group. A and B denote fragments
that remained unchanged during structural analysis.

In compounds with the general formula II, replacement of the dihydroxanthene
moiety (8) with a xanthene (9) or thioxanthene dioxide (12) moiety somewhat increases
the activity of the TK inhibitors of HSV-1 and HSV-2. At the same time, replacement by
dibenzosuberene, anthracene, or NMe-acridine (10) has an adverse effect on both target
properties. Note that the first two of these groups induce a pronounced decrease in the
inhibitory activity, while the third replacement has only a moderate effect. The replacement
of the dihydroxanthene moiety in 8 with a thioxanthene moiety (11) decreases the inhibitory
activity against HSV-1 TK by a factor of 1.5 and has almost no effect on the inhibitory activity
against HSV-2 TK (Figure 6b).
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In compounds with the general structural formula IV (Figure 7b), the replacement of 

the hydrogen atom (20) in the meta-position by chlorine (21) or a trifluoromethyl group 

(22) increases the activity of both TK isoforms quite significantly. Modification of the 

meta-position in the benzene ring with a hydroxymethyl group (23) negatively affects 

both target properties, and the adverse effect is high. At the same time, the alternative 

replacement of the hydrogen atom with ethyl (24) or n-propyl (25) increases the activity 

of TK inhibition of HSV-1 and decreases the activity of TK inhibition of HSV-2. 

The replacement of hydrogen in the para-position with a bromine atom (26) favora-

bly affects both target properties. In contrast, the alternative replacement of hydrogen 

with methyl (29), ethyl (32), n-butyl (35), trifluoromethyl (28), or hydroxyl (27) markedly 

decreases the inhibitory activity of compounds with the general structural formula IV 

against both TK isoforms (Figure 7b). 

The simultaneous substitution of hydrogen atoms in the meta- and para-positions of 

the benzene ring by a bromine atom (31) considerably increases the efficiency of inhibitors 

of HSV-1 TK and almost does not affect the efficiency against HSV-2 TK. However, if we 

consider this substitution as sequential, the introduction of the second bromine atom in 

Figure 7. Effect of acyclic substituents on the activity of herpes virus inhibitors with general formulas
III–IV with the chemical group contributions to the activity; the superscripts 1 and 2 refer to activities
against HSV-1 TK and HSV-2 TK, respectively. The dotted lines highlight the substituents. The up
and down arrows indicate the positive or negative effect of the selected group. C and D denote
fragments that remained unchanged during structural analysis.

In compounds with the general structural formula III containing an oxygen atom in
position R1 (i.e., xanthene ring, 13) (Figure 7a), the replacement of the hydrogen atom in
position R2 with a methyl group (14) increases the inhibitory activity against HSV-1 TK
and impairs the activity of TK inhibitors against HSV-2. However, the effect is not clearly
pronounced in both cases. The introduction of a second methyl group into position R3
(15) of the xanthene ring decreases both target properties. The alternative replacement
of the hydrogen atom at position R2 by a chlorine atom (16) increases the activity of TK
inhibitors for HSV-1 almost 2-fold, but barely affects the inhibitory activity against HSV-2
TK. The additional incorporation of a second chlorine atom at position R3 (17) is favorable
for the activity against HSV-1 TK and almost does not influence the activity against HSV-2
TK. The replacement of the hydrogen atom in position R2 with a trifluoromethyl group
(18) and unsubstituted phenyl increases the TK inhibitory activity against HSV-1 and has
almost no effect on this activity against HSV-2. Meanwhile, the modification of position
R2 by introducing a methoxy group (19) increases the activity of HSV-1 TK inhibitors and
decreases the activity of HSV-2 TK inhibitors. However, the changes caused by a hydrogen
atom replacement with the above substituents are moderate.
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Figure 8. Effect of acyclic substituents on the activity of herpes virus inhibitors with general formulas
V–VI with the chemical group contributions to the activity, where superscripts 1 and 2 refer to
activities against HSV-1 TK and HSV-2 TK, respectively. Dotted lines highlight substituents. The up
and down arrows indicate the positive or negative effect of the selected group. D, E and F denote
fragments that remained unchanged during structural analysis.

In compounds with the general structural formula IV (Figure 7b), the replacement of
the hydrogen atom (20) in the meta-position by chlorine (21) or a trifluoromethyl group
(22) increases the activity of both TK isoforms quite significantly. Modification of the meta-
position in the benzene ring with a hydroxymethyl group (23) negatively affects both target
properties, and the adverse effect is high. At the same time, the alternative replacement of
the hydrogen atom with ethyl (24) or n-propyl (25) increases the activity of TK inhibition of
HSV-1 and decreases the activity of TK inhibition of HSV-2.

The replacement of hydrogen in the para-position with a bromine atom (26) favorably
affects both target properties. In contrast, the alternative replacement of hydrogen with
methyl (29), ethyl (32), n-butyl (35), trifluoromethyl (28), or hydroxyl (27) markedly de-
creases the inhibitory activity of compounds with the general structural formula IV against
both TK isoforms (Figure 7b).

The simultaneous substitution of hydrogen atoms in the meta- and para-positions of
the benzene ring by a bromine atom (31) considerably increases the efficiency of inhibitors
of HSV-1 TK and almost does not affect the efficiency against HSV-2 TK. However, if we
consider this substitution as sequential, the introduction of the second bromine atom in
the meta-position of the benzene ring decreases the activity of both TKs compared to the
modification of only the para-position by this substituent. The inclusion of fluorine and
chlorine atoms in the para- and meta-positions (30) of the benzene ring, respectively, does
not affect the inhibitory efficiency against HSV-1 and markedly decreases that against
HSV-2. Similar modifications of para- and meta-positions based on the inclusion of two
chlorine (33) or fluorine atoms (34) significantly decrease both target properties (Figure 7b).

The replacement of benzene (20) with a 2,3-dihydro-1H-indene (36) or naphthalene
(37) ring and with a number of acyclic groups, including n-butyl (38), n-hexyl (39), and
1-hydroxypentyl (40), in compounds with general structural formula V has the same effect
(Figure 8a).
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In addition, in compounds with the general structural formula V, replacement of the
benzene ring (20) in position R2 with a benzyl moiety (41) markedly reduces the efficiency
of inhibition of HSV-1 TK and has almost no effect on the activity of HSV-2 TK. At the same
time, structural analogues of benzyl containing a chlorine atom in the meta- (43) or para-
position (42) have the opposite effect, which is also markedly pronounced. The replacement
of the oxo group (hydroxyl group, if we consider the alternative resonance structure) with
a chlorine atom (44) and a hydroxyl group significantly reduces the inhibitory activity
against both TK isoforms (Figure 8a).

In compounds of general formula VI, the introduction of hydroxyalkyl, aminoalkyl,
or carboxyalkyl substituents in position 9 (position R2) of the purine ring, except for
2-hydroxyethyl (45) and 3-hydroxypentyl (46), increases both target properties. The in-
troduction of 4-(piperidinyl)butyl and its derivatives containing a benzene moiety and
acyclic substituents at positions 2, 3, and 4 of the pyridine ring has a similar effect. The only
exceptions in the latter case are the two oxopurine derivatives with the general structural
formula VI containing 4-(4-hydroxypyridyl)butyl and 4-(1,4′-bipyridine)butyl at position
R1. However, these two moieties have a negative effect only for the inhibition of the TK
activity of HSV-1. The activities of HSV-2 TK inhibitors are not affected by these two
modifications. The modification of the R2 position in the oxopurine ring by replacing the
hydrogen atom with 4-(decahydroquinolyl)butyl or 4-(1,2,3,4-tetrahydroquinolyl)butyl
makes a positive contribution to both target properties (Figure 8b).

In oxopurine derivatives with the general formula VI containing a 4-hydroxyl group
at position R2, the replacement of the phenylamine moiety at position R1 with a primary
amino group or with a methylamine moiety significantly decreases the inhibitory activity
against both TKs. Meanwhile, the introduction of a 2-phenoxyl or 2-phenylthiol moiety
instead of 2-phenylaminyl moiety promotes the activity of inhibitors of HSV-1 TK, but
negatively affects the inhibition efficiency of HSV-2 TK.

Overall, the comparison of experimental and calculated data indicates that the results
of the structural analysis performed in GUSAR-2019 were 80% consistent with the results
of previous biological studies.

The discrepancies in predicted estimates of the influence of structural descriptors
on the target activities are observed only for the simulated structures containing bulky
cyclic moieties, such as dibenzosuberene, NMe-acridine, thioxanthene dioxide, and their
structural analogues. The mismatch is explained by the fact that the structural analysis in
the GUSAR 2019 program is based on the 2D approach and, therefore, does not take into
account steric features of the receptor that the activity of which the simulated compounds
are intended to inhibit.

3. Discussion

In the present work, using the GUSAR 2019 program, we have modeled the quanti-
tative structure–activity relationship for 89 TK inhibitors for HSV-1 and HSV-2 in the
series of some carboxamide derivatives of 5′-amino-2′,5′-dideoxy-5-ethyluridine, N2-
phenylguanine, and 2-phenylamino-6-oxopurine with general structural formulas I–VI.
The modeled TK inhibitors differed quite significantly in structure and belonged to dif-
ferent classes of organic compounds. In particular, compounds with general structural
formulas I–III had a rather high degree of similarity to thymidine in the backbone structure.
Compounds with general structural formulas IV–VI were more diverse and were actually
structural analogues of guanine.

The modeling resulted in the construction of 12 valid QSAR consensus models focused
on predicting target properties in the form of pIC50. Each of these consensus models
contains 20 to 100 partial regression relationships, which differ from each other by a set of
descriptors. The validity of the use of structurally diverse TK inhibitors for modeling is
confirmed based on the rather high numerical values of statistical criteria of the internal and
external validation of QSAR models M1–M12. In particular, the high descriptive ability of
the consensus models M1–M12 was confirmed based on the reliable prediction of activities
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performed for compound structures of four training sets using two categories of metrics: (1)
metrics based on R2 coefficients of determination (R2, R2

0, R2
m, CCC); and (2) metrics based

on errors in predicting pIC50 values (root mean square error (RMSEP), mean absolute error
(MAE), standard deviation (SD)).

The predictive ability of QSAR models M1–M12 was evaluated using similar statistical
criteria and prediction errors. Additionally, the criteria Q2

F1 and Q2
F2, which are also used

in the scientific literature to evaluate the predictive ability of QSAR/QSPR models, were
determined. All models demonstrated rather high predictive ability in predicting target
properties for both internal and external test set structures regardless of their size (95 and
100% of data).

This result is not an exception to the general rule, although it may be rather cautiously
perceived by followers of the methodology of Gunch, Hammett, Taft, etc. In this context,
note that the GUSAR program has been used for more than ten years since the release of
its first version to build (Q)SAR/QSPR models focused on the detection and quantitative
prediction of different types of biological activity. The developers of this program have
repeatedly demonstrated in their publications that an important and undeniable advan-
tage of their software product is the correct modeling of organic compounds that differ
significantly in the structure and type of experimental studies. This important benefit of
the GUSAR software is once again confirmed by the results of the present studies and is
related to the unique algorithms used to calculate descriptors, as well as methods used to
select the most significant descriptors for building the final QSAR models. In particular, the
calculation of descriptors, the ideology of which is described in detail in the Section 4.1 and
in the Supplementary Materials, is performed in the GUSAR program not only on the basis
of whole molecules, but also on the basis of their individual structural parts, including
individual atoms, as well as their various combinations. The calculation of descriptors
based on the nature and properties of all atoms included in the modeled structures and
their local environments is dominant in the descriptor-generation methodology, unlike
the calculation of properties using whole molecular structures. This approach to the cal-
culation of descriptors allows for common elements to be found among various organic
compounds differing in the nature of cyclic and acyclic moieties, and, accordingly, expands
the possibilities of QSAR modeling in general.

The ideology of the consensus approach, which actually takes into account the pre-
dictions of all partial regression relationships with a focus on their statistical weights, also
significantly increases the reliability of adequate prediction of quantitative indicators of
biological activity.

In addition, GUSAR program developers have repeatedly reported that QSAR models
based on a diverse range of compound structures have a broader applicability in virtual
screening than models based on a narrow set of multiple data. Such models allow for
the identification and quantification of target properties for a broader class of organic
compounds.

4. Computational Details
4.1. Computational Methodology

The QSAR analysis of HSV-1 and HSV-2 TK inhibitors was performed using the
GUSAR 2019 (general unrestricted structure activity relationships) program [40–49]. In
total, 12 QSAR models (M1–M12) were built.

The construction of QSAR models was performed using GUSAR 2019 software in
several stages based on the training sets TrS1–TrS4. To validate these models, we used the
external and internal test sets (TS1–TS2 and TS3–TS4, respectively).

4.2. Formation of Training and Test Sets

The training sets TrS1–TrS4 and external and internal test sets TS1–TS4 were formed
from sets S1 and S2 according to the chart shown in Figure 9.
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Figure 9. Chart of construction of the training and test sets and design of the QSAR consensus models
M1–M12 (S is set, TrS and TS are training and test sets, respectively, N is the number of compounds
included to the corresponding sets and arrays). Designations: (1) S1 and S2 are all datasets; (2) S3 is
the training set TrS1 for models M1–M3; (3) S4 is the external test set TS1 for models M1–M3 and
M7–M9; (4) S5 is the training set TrS2 for models M4–M6; (5) S6 is the external test set TS2 for models
M4–M6 and M10–M12; (6) S7 is the training set TrS3 for models M7–M9; (7) S8 is the internal test set
TS3 for models M7–M9; (8) S9 is the training set TrS4 for models M10–M12; (9) S10 is the internal test
set TS4 for models M10–M12.

The datasets S1 and S2 comprised the same chemical structures (general structural
formulas I–VI, Figure 1), the inhibitory activity of which against HSV-1 and HSV-2 TKs was
quantitatively expressed as the IC50. The IC50 values for these compounds were determined
in earlier experimental studies [17,72,73]. The minor difference between the numbers of
compounds in these sets is due to elimination of one compound with an inaccurately
measured IC50 value from the set S1 (IC50 > 10 µmol/L).

The training set TrS1 was designed to build QSAR models M1–M3 and included
73 HSV-1 TK inhibitors. To assess the predictive power of M1–M3, we used the external
test set TS1. Both of these sets were obtained by splitting the original data set S1 in a 5:1 ratio
by moving every sixth chemical compound from S1 to TS1. Previously, all structures of S1
were ranked by an increasing IC50 (Figure 9).

The training set TrS2 contained 74 HSV-2 TK inhibitors. It was designed to build QSAR
models M4–M6. To assess the validity of these models, we used external test set TS2. Both
sets were obtained from the original S2 set in the same way as TrS1 and TS1.

The training sets TrS3 and TrS4 and internal test sets TS3 and TS4 were obtained by
splitting TrS1 and TrS2 in a 5:1 ratio (the chemical structures of the sets were ranked by
increasing IC50 values). A detailed description of training sets TrS1–TrS4 and test sets
TS1–TS4 is presented in Tables 5 and 6, respectively. A comparison of the data in these
tables indicated that the activity distribution of compounds in all training and test sets was
almost identical. As a result, the average pIC50 values for HSV-1 and HSV-2 TK inhibitors
were almost equal for TrS1–TrS4 and TS1–TS4.
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Table 5. Statistical characteristics of the training sets TrS1–TrS4.

Designation of TrSi

Code of the Training Set
HSV-1 HSV-2

TrS1 TrS3 TrS2 TrS4

N 73 61 74 62
pIC50 6.788 6.921

∆pIC50 5.867 6.250

Thresholds used to evaluate the model’s forecast

0.10 × ∆pIC50 0.587 0.625
0.15 × ∆pIC50 0.880 0.938
0.20 × ∆pIC50 1.174 1.250
0.25 × ∆pIC50 1.467 1.563

Table 6. Statistical characteristics of the test sets TS1–TS4.

Designation of TSi

Code of the Test Set
HSV-1 HSV-2

TS1 TS3 TS2 TS4

N 15 12 15 12
pIC50 6.788 6.921

∆pIC50 5.867 6.250

Distribution of the observed response values of test sets TSi around the test mean

pIC50 ± 0.5, % 26.667 16.667 20.000 25.000
pIC50 ± 1.0, % 40.000 41.667 40.000 41.667
pIC50 ± 1.5, % 60.000 58.333 46.667 50.000
pIC50 ± 2.0, % 73.333 83.333 66.667 66.667

Distribution of the observed response values of test sets TSi around the training mean

pIC50 ± 0.5, % 13.333 8.333 26.667 16.667
pIC50 ± 1.0, % 33.333 25.000 33.333 41.667
pIC50 ± 1.5, % 46.667 50.000 46.667 50.000
pIC50 ± 2.0, % 66.667 75.000 66.667 75.000

The chemical structures of the compounds of TrS1–TrS4 and TS1–TS4 were created
with the Marvin Sketch 17.22.0 program [74] and converted to the SDF format using the
Discovery Studio Visualizer program [75]. To build QSAR models M1–M12, we used the
IC50 values in mol/L, which were then converted to the pIC50 values:

pIC50 = −log10(IC50) (1)

Tables 5 and 6 show that the scatter of IC50 values ∆pIC50 > 5 in the training sets is an
important condition for constructing reliable QSAR models [76].

4.3. Building QSAR Models

QSAR models were developed using the GUSAR 2019 software. Chemical structures
were described using three types of descriptors, the calculation of which is incorporated in
this software: whole-molecule descriptors, 35 electro-topological descriptors (quantitative
neighborhoods of atoms, QNAs), and 30 substructural descriptors (multilevel neighbor-
hoods of atoms, MNAs). The whole-molecule descriptors used in GUSAR include the
topological length, topological volume, and lipophilicity [40–49,55–63]. We will briefly
explain the ideology of QNA and MNA descriptor formation, as it is rather new and un-
conventional in terms of classical QSAR approaches. A detailed description of the ideology
of these computations is presented in the Supplementary Materials.
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Formally, QNA descriptors represent the structure of a molecule using only two
descriptors (P and Q). The P and Q values are calculated on the basis of the connectivity
matrix (C) and atomic characteristics, such as the standard ionization potential (IP) and
electron affinity (EA). The values for P and Q for each atom i are calculated as follows:

Pi = Bi∑
k

(
exp

(
−1

2
C
))

ik
Bk (2)

Qi = Bi∑
k

(
exp

(
−1

2
C
))

ik
BkAk (3)

Ak =
1
2
(IPk + EAk) (4)

Bk = (IPk − EAk)
−1/2 (5)

where k stands for all the other atoms in the molecule, IP is the first ionization potential,
EA is the electron affinity for each atom (in eV), and C is the connectivity matrix for the
molecule as a whole [42]. The standard IP and EA values of atoms in a molecule were taken
from the literature.

Bivariate Chebyshev polynomials are used for the further approximation of P and Q
functions over the entire junction structure. The regression equations use the averaged val-
ues of specific bivariate Chebyshev polynomials as independent variables. The averaging
of these functions takes into account all atoms that are directly bonded to at least two other
neighboring atoms. A detailed account of the calculation of QNA descriptors is presented
in the Supplementary Materials.

In addition, GUSAR allows for the creation of QSAR models based on different bio-
logical activity profiles that are predicted for the compounds included in the training sets.
All theoretically acceptable biological activities for the compounds used to build a QSAR
model can be predicted with the PASS algorithm. The current version of PASS predicts
more than 6000 types of biological activity with an average prediction accuracy of about
95%. This list includes pharmacotherapeutic effects, mechanisms of action, side and toxic
effects, metabolic conditions, sensitivity to transporter proteins, and gene expression related
activity. Adequate performance of the PASS algorithm is realized under conditions where
each structure is represented as a list of MNA descriptors. Accordingly, before running
the PASS algorithm, a set of MNA descriptors is preliminarily automatically calculated for
each compound [40–42]. Thus, it is fair to say that in this case, regression models are based
on MNA descriptors. The results of the PASS procedure for each type of biological activity
are outputted in the form of a list of Pa-Pi parameter values, representing the difference
between the probabilities that a compound is active (Pa) or inactive (Pi), respectively. Subse-
quently, the selection of independent variables necessary for the construction of regression
relationships is performed automatically from this list at random. A detailed account of the
calculation of MNA descriptors is also presented in the Supplementary Materials.

The self-consistent regression method (SCR) was applied to select the optimal number
of descriptors for the QSAR models [20–22]. As previously reported by the developers of the
GUSAR 2019 program, this makes it possible to remove the variables that poorly describe
the target value. Additionally, this method is resistant to the noise in the data [55–58,60].

The SCR method of descriptor selection is a regularized least squares method based
on the use of the mathematical apparatus of Bayesian statistics for the optimal estimation
of regularization parameters and descriptor selection for the subsequent construction of
regression relationships. The essence of the SCR method is the iterative selection of regu-
larization coefficients νi, first, to find the optimal number of descriptors in the regression
equation, and second, to find the maximum values for regression coefficients ai, and thus to
obtain the maximum and, hence, reliable values of the dependent variable y for the training
set compounds. As a result, the minimum error of quantitative prediction of the target
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property is achieved. Unlike the multiple linear regression method, which is traditionally
used to solve such problems, the SCR method, based on its ideology, does not impose
restrictions on the number of regressors in the final regression equation or on the absence
of a correlation (or the presence of a weak correlation) between them. Thus, the advantages
of the SCR descriptor selection method over classical multiple linear regression are obvious.
Unlike various heuristic approaches that solve multiple linear regression problems, descrip-
tor selection in the SCR method is mathematically sound. Because of this, the SCR method
can be successfully applied to remove variables that poorly describe the modeled activity
value, while retaining a set of variables that correctly represent the existing relationships.
The detailed mathematical apparatus on which the SCR method is based is presented in
previous publications [47,55–58,60] and in the Supplementary Materials.

The GUSAR 2019 program allows for the building of both partial regression depen-
dences and consensus models based on them. In this study, to reduce the variability of
the final results, we used the consensus approach to build QSAR models. The final values
of statistical criteria (coefficient of determination, Fisher’s test, etc.) and the predicted
pIC50 values for each molecule were estimated, in accordance with the consensus approach
incorporated in the GUSAR 2019 software, as the weighted averages of these values derived
from a set of partial QSAR models (for predictions that were within the respective areas of
applicability). Meanwhile, each of these private models included in the consensus model
was built independently based on a combination of QNA and/or MNA descriptors with the
above three types of whole-molecule descriptors. This algorithm allowed us to combine the
results of QSAR modeling based on different types of descriptors that are provided in the
GUSAR 2019 software. As a result, we built 12 QSAR consensus models, which included
20 to 320 partial models. Since we used QSAR consensus models derived from dozens
or even hundreds of single QSAR models, it is not possible to provide a general equation
describing all selected variables. For this reason, the created QSAR consensus models could
not provide information about positively and negatively influencing descriptors. Instead,
GUSAR 2019 shows the positive and negative impact of each atom of the molecule on the
predicted value [61]. An analysis of the effect of atoms on predicted pIC50 values and the
search for general relationships between the structures of active compounds interacting
with targets is described in this publication in Section 2.

4.4. Assessment of Applicability

GUSAR 2019 uses three different approaches to assess the applicability of the models:
similarity, leverage, and accuracy assessment, which were described in detail previously [20–22,42].
A detailed description of these characteristics is given in the Supplementary Materials.

5. Evaluation of the Quality and Predictive Ability of QSAR Models
5.1. Calculating the pIC50 Values Using the Consensus Approach in the GUSAR 2019 Program

The descriptive and predictive ability of the M1–M12 consensus models was evaluated
using the results of predicting pIC50 values for the structures included in the training sets
TrS1–TrS4 and test sets TS1–TS4, respectively. For internal validation, a cross-validation
control was used with a random twenty-fold exclusion of 20% of the structures from each
training set.

5.2. Statistical Parameters Characterizing the Predictive Ability of QSAR Models

The predictive ability of QSAR models was estimated by predicting the pIC50 values
for HSV-1 and HSV-2 TK inhibitors included in the external and internal test sets using two
types of metrics:

(1) based on coefficients of determination R2 (R2, R2
0, Q2

F1, Q2
F2, R2

m, CCC);
(2) estimating the prognostic errors of pIC50: standard error (RMSEP), mean absolute

error (MAE), and standard deviation (SD) [68–71,77].

Statistical parameters were calculated using the XternalValidationPlus 1.2 program [66,78].
The relevant formulas are presented in the Supplementary Materials. The same program
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was used to identify systematic errors in the constructed consensus models. To avoid
false predictions associated with outliers in experimental data, XternalValidationPlus 1.2
automatically removes 5% of compounds with high residuals.

In this work, when assessing the descriptive and predictive ability of the QSAR models,
we mainly focused on the recommendations of Roy et al. [71]. We rated the descriptive and
predictive power of each of the Mi QSAR models we developed as high if the following
four conditions were met simultaneously:

(1) different coefficients of determination, calculated by comparing the experimental
data with the calculated pIC50 data contained in each of the training and test sets,
respectively, were numerically similar and tended to be 1;

(2) MAE values for predicted pIC50 of compounds of the training or test set, respectively,
did not exceed 10% of the range of variation of the experimental pIC50 values for this set;

(3) the following relation held: MAE+3·SDTrS ≤ 0.2·pIC50 TrS, where ∆pIC50 is the range
of variation of pIC50 values for the TrS structures (this criterion refers to the assessment
of the descriptive ability of the model);

(4) the following relation held: MAE+3·SDTrS ≤ 0.2·pIC50 TrS, where ∆pIC50 is the range
of variation of pIC50 values for the TrS structures (the criterion refers to the assessment
of the predictive ability of the model).

We rated the descriptive and predictive ability of each of the Mi QSAR models we
developed as low if the following conditions were met simultaneously:

(1) the numerical values of different coefficients of determination, calculated by compar-
ing the experimental data with calculated pIC50, did not exceed 0.6;

(2) MAE values estimated from the results of comparing the experimental and predicted
pIC50 values of compounds of the training or test set, respectively, did not exceed 20%
of the range of variation of the experimental pIC50 values in the training set used to
build the Mi model;

(3) the following relation held: MAE + 3·SDTrS ≥ 0.25·pIC50 TrS, where ∆pIC50 is the
range of variation of pIC50 values for the TrS structures (the criterion refers to the
assessment of the descriptive ability of the model);

(4) the following relation held: MAE + 3·SDTS ≥ 0.25·pIC50 TrS, where ∆pIC50 is the range
of variation of pIC50 values for the TrS structures (the criterion refers to the assessment
of the predictive ability of the model).

The predictions not meeting any of the above conditions are considered moderate. If
the QSAR model contained a systematic error, then it was excluded from consideration.

5.3. Evaluation of the Contribution of Atoms to the Target Activity

QSAR consensus models M3 and M6, containing 73 and 74 HSV-1 and HSV-2 TK
inhibitors, respectively, were further used for assessing the contribution of atoms and
functional groups to the simulated activity. It should be noted that this procedure is
automatically implemented in the GUSAR 2019 program when calculating QNA descriptors
and constructing QSAR models based on them.

6. Conclusions

Based on the QSAR methodology using the GUSAR 2019 program, a quantitative
relationship between the structure and inhibitory activity against thymidine kinase of
the herpes viruses HSV-1 and HSV-2 have been found in a series of 89 derivatives of
5-ethyluridine, N2-guanine, and 6-oxopurine. The inhibitory activities of the simulated
compounds were in the range of IC50 = 0.09–160,000.00 nmol/L. Based on the MNA and
QNA descriptors and whole-molecule descriptors using the self-consistent regression, we
have constructed 12 statistically significant QSAR consensus models characterized by high
accuracy of the prediction of pIC50 values for inhibitors of thymidine kinase of the herpes
viruses HSV-1 and HSV-2 (R2

TrS > 0.6; Q2
TrS > 0.5; R2

TS > 0.5). All of them can be used
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for virtual screening of new TK inhibitors in a series of 5-ethyluridine, N2-guanine, and
6-oxopurine derivatives.

Thus, the approach implemented in the GUSAR 2019 program makes it possible
to model, with a high degree of reliability, the inhibitory activity of derivatives of 5-
ethyluridine, N2-guanine, and 6-oxopurine with respect to the TK of human herpes viruses
in order to develop new inhibitors of this enzyme.

The approach implemented in the GUSAR 2019 program allows for the reliable simula-
tion of the inhibitory activity of derivatives of 5-ethyluridine, N2-guanine, and 6-oxopurine
against TK of human herpes viruses to develop new inhibitors of this enzyme. In addition,
the correctness of the computational protocols used and the construction of regression
models in the GUSAR 2019 program are confirmed by the absence of a systematic error in
the calculations.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28237715/s1, Supplementary file contains
Tables S1–S14. Table S1: The equations for assessing the descriptive and predictive potentials of the
QSAR models based on the R2 and MAE metrics; Table S2: The validation parameters of the QSAR
models estimated using the Xternal Validation Plus 1.2 program based on the experimental and pre-
dicted values of the HSV-1 TK inhibitors from test set TS1; Table S3: The validation parameters of the
QSAR models estimated using the Xternal Validation Plus 1.2 program based on the experimental and
predicted data for HSV-2 TK inhibitors from internal test set TS2; Table S4: The validation parameters
of the QSAR models estimated using the Xternal Validation Plus 1.2 program based on the experimen-
tal and predicted data for the HSV-1 TK inhibitors from test set TS3; Table S5: The validation parame-
ters of the QSAR models estimated using the Xternal Validation Plus 1.2 program based on the experi-
mental and predicted data for the HSV-2 TK inhibitors from internal test set TS4; Table S6: Prediction
of the pIC50 values for the TrS1 compounds using models M1–M3; Table S7: Prediction of the pIC50
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